
Root finding with threshold circuits

Emil Jeřábek

Institute of Mathematics of the Academy of Sciences

Žitná 25, 115 67 Praha 1, Czech Republic, email: jerabek@math.cas.cz

December 16, 2011

Abstract

We show that for any constant d, complex roots of degree d univariate rational (or
Gaussian rational) polynomials—given by a list of coefficients in binary—can be computed
to a given accuracy by a uniform TC0 algorithm (a uniform family of constant-depth
polynomial-size threshold circuits). The basic idea is to compute the inverse function of
the polynomial by a power series. We also discuss an application to the theory VTC 0 of
bounded arithmetic.

1 Introduction

The complexity class TC0 was originally defined by Hajnal et al. [14] in the nonuniform
setting, as the class of problems recognizable by a family of polynomial-size constant-depth
circuits with majority gates. It was implicitly studied before by Parberry and Schnitger [26],
who consider various models of computation using thresholds (threshold circuits, Boltzmann
machines, threshold RAM, threshold Turing machines). The importance of the class follows
already from the work of Chandra, Stockmayer, and Uzi [6], who show (in today’s terminol-
ogy) the TC0-completeness of several basic problems (integer multiplication, iterated addition,
sorting) under AC0 reductions. Barrington, Immerman, and Straubing [3] establish that there
is a robust notion of fully uniform TC0. (We will use TC0 to denote this uniform TC0, unless
stated otherwise.)

We can regard TC0 as the natural complexity class of elementary arithmetical opera-
tions: integer multiplication is TC0-complete, whereas addition, subtraction, and ordering
are in AC0 ⊆ TC0. The exact complexity of division took some time to settle. Wallace [32]
constructed division circuits of depth O((log n)2) and bounded fan-in (i.e., NC2). Reif [28]
improved this bound to O(log n log log n). Beame, Cook, and Hoover [4] proved that division,
iterated multiplication, and exponentiation (with exponent given in unary) are TC0-reducible
to each other, and constructed P-uniform TC0 circuits for these problems. Chiu, Davida, and
Litow [7] exhibited logspace-uniform TC0 circuits for division, showing in particular that di-
vision is computable in L. Finally, Hesse, Allender, and Barrington [15] proved that division
(and iterated multiplication) is in uniform TC0.

1

Using these results, other related problems can be shown to be computable in TC0, for
example polynomial division, iterated multiplication, and interpolation. In particular, using
iterated addition and multiplication of rationals, it is possible to approximate in TC0 functions
presented by sufficiently nice power series, such as log, exp, x1/k, and trigonometric functions,
see e.g. Reif [28], Reif and Tate [29], Maciel and Thérien [19], and Hesse et al. [15].

Numerical computation of roots of polynomials is one of the oldest problems in mathemat-
ics, and countless algorithms have been devised to solve it, both sequential and parallel. The
most popular methods are based on iterative techniques that successively derive closer and
closer approximations to a root (or, sometimes, to all the roots simultaneously) starting from a
suitable initial approximation. Apart from the prototypical Newton–Raphson iteration, there
are for instance Laguerre’s method [27, §9.5], Brent’s method [27, §10.3], the Durand–Kerner
method [12, 18], the Jenkins–Traub algorithm [16], and many others. One can also reduce
root finding to matrix eigenvalue computation, for which there are iterative methods such
as the QR algorithm [13]. Another class of root-finding algorithms are divide-and-conquer
approaches: the basic idea is to recursively factorize the polynomial by identifying a suitable
contour (typically, a circle) splitting the set of roots roughly in half, and recovering coeffi-
cients of the factor whose roots fall inside the contour from the residue theorem by numerical
integration. Algorithms of this kind include Pan [23], Ben-Or et al. [5], Neff [21], Neff and
Reif [22], and Pan [24], see Pan [25] for an overview. These algorithms place root finding in
NC: for example, the algorithm of [24] can find n-bit approximations to all roots of a poly-
nomial of degree d ≤ n in time O((log n)2(log d)3) using O(nd2(log log n)/(log d)2) processors
on an EREW PRAM.

The purpose of this paper is to demonstrate that in the case of constant-degree polynomi-
als, we can push the complexity of root finding down to uniform TC0 (i.e., constant time on
polynomially many processors on a TRAM, in terms of parallel complexity), as in the case
of elementary arithmetical operations. (This is clearly optimal: already locating the unique
root of a linear polynomial amounts to division, which is TC0-hard.) As a corollary, the
binary expansion of any algebraic constant can be computed in uniform TC0 when given the
bit position in unary. Our primary interest is theoretical, we seek to investigate the power of
the complexity class TC0; we do not expect our algorithm to be competitive with established
methods in practice, and we did not make any effort to optimize parameters of the algorithm.

The basic idea of the algorithm is to express the inverse function of the polynomial by a
power series, whose partial sums can be computed in TC0 using the results of Hesse et al. [15].
We need to ensure that coefficients of the series are TC0-computable, we need bounds on the
radius of convergence and convergence rate of the series, and we need to find a point in whose
image to put the centre of the series so that the disk of convergence includes the origin. Doing
the latter directly is in fact not much easier than approximating the root in the first place,
so we instead construct a suitable polynomial-size set of sample points, and we invert the
polynomial at each one of them in parallel.

We formulated our main result in terms of computational complexity, but our original
motivation comes from logic (proof complexity). The bounded arithmetical theory VTC 0 (see
Cook and Nguyen [11]), whose provably total computable functions are the TC0 functions,

2

can define addition, multiplication, and ordering on binary integers, and it proves that these
operations obey the basic identities making it a discretely ordered ring. The question is
which other properties of the basic arithmetical operations are provable in the theory, and
in particular, whether it can prove induction (on binary integers) for some class of formulas.
Now, it follows easily from known algebraic characterizations of induction for open formulas in
the language of ordered rings (IOpen, see Shepherdson [31]) and from the witnessing theorem
for VTC 0 that VTC 0 proves IOpen if and only if for each d there is a TC0 root-finding
algorithm for degree d polynomials whose soundness is provable in VTC 0. Our result thus
establishes the computational prerequisites for proving open induction in VTC 0, leaving aside
the problem of formalizing the algorithm in the theory. Since the soundness of the algorithm
can be expressed as a universal sentence, we can also reformulate this result as follows: the
theory VTC 0 + Th∀ΣB

0
(N) proves IOpen.

The paper is organized as follows. In Section 2 we provide some background in the
relevant parts of complexity theory and complex analysis. Section 3 contains material on
inverting polynomials with power series. Section 4 presents our main result, a TC0 root-
finding algorithm. Finally, in Section 5 we discuss the connection to bounded arithmetic.

2 Preliminaries

A language L is in nonuniform TC0 if there is a sequence of circuits Cn : {0, 1}n → {0, 1}
consisting of unbounded fan-in majority and negation gates such that Cn computes the char-
acteristic function of L on strings of length n, and Cn has size at most nc and depth c for
some constant c.

L is in (uniform) TC0, if the sequence {Cn : n ∈ ω} is additionally DLOGTIME-uniform
(UD-uniform in the terminology of Ruzzo [30]): i.e., we can enumerate the gates in the circuit
by numbers i < nO(1) in such a way that one can check the type of gate i and whether gate i is
an input of gate j by a deterministic Turing machine in time O(log n), given n, i, j in binary.
There are other equivalent characterizations of TC0. For one, it coincides with languages
recognizable by a threshold Turing machine [26] in time O(log n) with O(1) thresholds [2].
Another important characterization is in terms of descriptive complexity. We can represent a
string x ∈ {0, 1}n by the first-order structure 〈{0, . . . , n − 1}, <, bit, X〉, where X is a unary
predicate encoding the bits of x. Then a language is in TC0 iff its corresponding class of
structures is definable by a sentence of FOM (first-order logic with majority quantifiers). We
refer the reader to [3] for more background on uniformity of TC0.

In some cases it may be more convenient to consider languages in a non-binary alphabet
Σ. The definition of TC0 can be adapted by adjusting the input alphabet of a threshold
Turing machine, or by considering more predicates in the descriptive complexity setting. In
the original definition using threshold circuits, the same can be accomplished by encoding
each symbol of Σ with a binary substring of fixed length. We can also define TC0 predicates
with more than one input in the obvious way.

A function f : {0, 1}∗ → {0, 1}∗ is computable in TC0 if the length of its output is polyno-
mially bounded in the length of its input, and its bitgraph is a TC0 predicate. (The bitgraph

3

of f is a binary predicate b(x, i) which holds iff the ith bit of f(x) is 1.) In terms of the original
definition, this amounts to allowing circuits Cn : {0, 1}n → {0, 1}m(n), where m(n) = nO(1).
TC0 functions are closed under composition, and under “parallel execution”: if f is a TC0

function, its aggregate function g(〈x0, . . . , xm−1〉) = 〈f(x0), . . . , f(xm−1)〉 is also TC0. We
note in this regard that TC0 functions can do basic processing of lists

x0, x1, . . . , xm−1

where “,” is a separator character. Using the fact that TC0 can count commas (and other
symbols), we can for instance extract the ith element from the list, convert the list to and
from a representation where each element is padded to fixed length with blanks, or sort the
list according to a given TC0 comparison predicate.

We will refrain from presenting TC0 functions in one of the formalisms suggested by the
definitions above: we will give informal algorithms, generally consisting of a constant number
of simple steps or TC0 building blocks, sometimes forking into polynomially many parallel
threads. The reader should have no difficulty convincing herself that our algorithms are
indeed TC0.

We will work with numbers of various kinds. Integers will be represented in binary as
usual, unless stated otherwise. As we already mentioned in the introduction, elementary
arithmetical operations on integers are TC0 functions: this includes addition, subtraction,
ordering, multiplication, division with remainder, exponentiation (with unary exponents),
iterated addition, iterated multiplication, and square root approximation. Here, iterated
addition is the function 〈x0, . . . , xm−1〉 7→

∑
i<m xi, and similarly for multiplication. Notice

that using iterated multiplication, we can also compute factorials and binomial or multinomial
coefficients of unary arguments. Base conversion is also TC0.

Rational numbers will be represented as pairs of integers, indicating fractions. We cannot
assume fractions to be reduced, since integer gcd is not known to be TC0-computable. Using
integer division, we can convert a fraction to its binary expansion with a given accuracy
(the opposite conversion is trivial). Rational arithmetic is reducible to integer arithmetic
in the obvious way, hence rational addition, subtraction, ordering, multiplication, division,
exponentiation (with unary integer exponents), iterated addition, iterated multiplication, and
square root approximation are TC0.

In lieu of complex numbers, we will compute with Gaussian rationals (elements of the
field Q(i)), represented as pairs of rationals a + ib. By reduction to rational arithmetic, we
can see that addition, subtraction, complex conjugation, norm square, norm approximation,
multiplication, division, and iterated addition of Gaussian rationals are TC0. Using the
binomial theorem, exponentiation with unary integer exponents is also TC0. (In fact, iterated
multiplication of Gaussian rationals is TC0 using conversion to polar coordinates, but we will
not need this.)

We will need some tools from complex analysis. We refer the reader to Ahlfors [1] or
Conway [9] for background, however, we review here some basic facts to fix the notation.
A function f : U → C, where U ⊆ C is open, is holomorphic (or analytic) in U if f ′(a) =
limz→a(f(z) − f(a))/(z − a) exists for every a ∈ U . The set of all functions holomorphic in

4

U is denoted H(U). Let B(a, r) := {z : |z − a| < r} and B(a, r) := {z : |z − a| ≤ r}. If f is
holomorphic in the open disk B(a,R), it can be expressed by a power series

f(z) =
∞∑

n=0

cn(z − a)n

on B(a,R). More generally, if f is holomorphic in the annulus A = B(a,R) r B(a, r),
0 ≤ r < R ≤ ∞, it can be written in A as a Laurent series

f(z) =
+∞∑

n=−∞
cn(z − a)n.

We denote the coefficients of the series by [(z − a)n]f := cn. (Other variables may be used
instead of z when convenient.) The residue of f at a is Res(f, a) := [(z − a)−1]f . When
a = 0, we write just [zn]f , Res(f). The coefficients of a Laurent series are given by Cauchy’s
integral formula:

[(z − a)n]f =
1

2πi

∫
γ

f(z)
(z − a)n+1

dz,

where γ is any closed curve in A whose index with respect to a is 1 (such as the circle
γ(t) = a + %e2πit, r < % < R). The identity theorem states that if f, g are holomorphic in a
region (i.e., connected open set) U and coincide on a set X ⊆ U which has a limit point in
U , then f = g. The open mapping theorem states that a nonconstant function f holomorphic
in a region is an open mapping (i.e., maps open sets to open sets).

We use log x to denote natural logarithm. If X ⊆ C and a ∈ C, we put dist(a,X) =
inf{|z − a| : z ∈ X}.

We will also need some easy facts on zeros of polynomials. Let f ∈ C[x] be a degree
d polynomial, and write f(x) =

∑d
j=0 ajx

j . Cauchy’s bound states that every zero α of f

satisfies
|a0|

|a0|+ max
0<i≤d

|ai|
≤ |α| ≤ 1 + max

i<d

|ai|
|ad|

.

Let f, g ∈ (Q(i))[x] be two polynomials of degrees d, e (resp.), and assume f(α) = g(β) = 0,
α 6= β. If f, g ∈ (Z[i])[x], we have

(∗) |α− β| ≥ 1
(2d+1‖f‖∞)e‖g‖d

2

,

where ‖f‖p denotes the Lp-norm of the vector of coefficients of f [33, §6.8]. In general, we can
apply (∗) to the polynomials rf and sg, where r is the product of all denominators appearing
among the coefficients of f , and similarly for s. If we represent f and g by the lists of their
coefficients, which are in turn represented by quadruples of binary integers as detailed above,
we obtain easily the following root separation bound:

Lemma 2.1 For each j = 0, 1, let fj ∈ (Q(i))[x] have degree dj and total bit size nj, and
assume fj(αj) = 0. If α0 6= α1, then

|α0 − α1| ≥ 2−(d1n0+d0n1) ≥ 2−n0n1 .

5

3 Inverting polynomials

As already mentioned in the introduction, the main strategy of our algorithm will be to
approximate a power series computing the inverse function of the given polynomial f . In this
section, we establish the properties of such series needed to make the algorithm work.

The basic fact we rely on is that holomorphic functions with nonvanishing derivative are
locally invertible: i.e., if f ∈ H(U) and a ∈ U is such that f ′(a) 6= 0, there exist open
neighbourhoods a ∈ U0 ⊆ U and f(a) ∈ V0 such that f is a homeomorphism of U0 onto V0,
and the inverse function g = (f � U0)−1 is holomorphic in V0. In particular, g is computable
by a power series in a neighbourhood of f(a).

Notice that local inverses of holomorphic functions are automatically two-sided: if f ∈
H(U), g ∈ H(V), a ∈ U , b ∈ V , g(b) = a, and f(g(z)) = z in a neighbourhood of b, then
g(f(z)) = z in a neighbourhood of a.

The coefficients of the power series of an inverse of a holomorphic function are given by
the Lagrange inversion formula [8, §3.8, Thm. A]:

Fact 3.1 Let f ∈ H(U), g ∈ H(V), f ◦ g = idV , a = g(b) ∈ U , b = f(a) ∈ V , n > 0. Then

[(w − b)n]g(w) =
1
n

Res
(

1
(f(z)− b)n

, a

)
.

We can make the formula even more explicit as follows. First, the composition of two power
series is given by Faà di Bruno’s formula [8, §3.4, Thm. A], which we formulate only for
a = b = 0 for simplicity:

Fact 3.2 Let f ∈ H(U), g ∈ H(V), g(0) = 0 ∈ U , f(0) = 0 ∈ V , n ≥ 0. Then

[zn](g ◦ f) =
∑

P∞
i=1 imi=n

(∑
i mi

m1,m2, . . .

)
[w

P
i mi]g

∞∏
i=1

(
[zi]f

)mi .

Note that here and below, the outer sum is finite, and the product has only finitely many
terms different from 1, hence the right-hand side is well-defined without extra assumptions
on convergence. We can now expand the residue in Fact 3.1 to obtain the following version
of Lagrange inversion formula, which only refers to the coefficients of f [8, §3.8, Thm. E]:

Proposition 3.3 Let f ∈ H(U), g ∈ H(V), f ◦ g = idV , a = g(b) ∈ U , b = f(a) ∈ V . Then
[(w − b)0]g = a, and for n > 0,

[(w − b)n]g =
1

n! [z − a]f

∑
P∞

i=2(i−1)mi=n−1

(
∑

i imi)!
∞∏
i=2

1
mi!

(
− [(z − a)i]f

([z − a]f)i

)mi

.

Proof: By a linear change of variable, we may assume a = b = 0 and [z]f = f ′(0) = 1. Write

6

f(z) = z(1− h(z)), where h ∈ H(U), h(0) = 0. Then

[wn]g =
1
n

[z−1]
1
fn

=
1
n

[zn−1]
1

(1− h)n

=
1
n

∑
P∞

i=1 imi=n−1

(
∑

i mi)!
m1!m2! · · ·

(
∑

i mi + n− 1)!
(
∑

i mi)! (n− 1)!

∞∏
i=1

(
[zi]h

)mi

=
1
n!

∑
P∞

i=1 imi=n−1

(
∑

i(i + 1)mi)!
m1!m2! · · ·

∞∏
i=1

(
−[zi+1]f

)mi

=
1
n!

∑
P∞

j=2(j−1)mj=n−1

(∑
j jmj

)
!
∞∏

j=2

(
−[zj]f

)mj

mj !

using Facts 3.1 and 3.2, and the expansion [wk](1− w)−n =
(
k+n−1

n−1

)
. �

Let d be a constant. If f in Proposition 3.3 is a polynomial of degree d, then the product
is nonzero only when mi = 0 for every i > d, hence it suffices to enumerate m2, . . . ,md. It
follows easily that the outer sum has polynomially many (namely, O(nd)) terms, and we can
compute [(w − b)n]g in uniform TC0 given a, b, and the coefficients of f in binary, and n in
unary.

Apart from a description of the coefficients, we also need bounds on the radius of conver-
gence of the inverse series, and on its rate of convergence (i.e., on the norm of its coefficients).
Generally speaking, the radius of convergence of a power series is the distance to the nearest
singularity. Since a polynomial f is an entire proper map, its inverse cannot escape to infinity
or hit a point where f is undefined, thus the only singularities that can happen are branch
points. These occur at zeros of f ′. This suggests that the main parameter governing the
radius of convergence and other properties of the inverse should be the distance of a to the
set Cf = {z ∈ C : f ′(z) = 0} of critical points of f .

Lemma 3.4 Let f ∈ C[x] be a degree d polynomial with no roots in B(a,R), R > 0, and let
µ > 0. Then |f(z)− f(a)| <

(
(1 + µ)d − 1

)
|f(a)| for all z ∈ B(a, µR).

Proof: Write f(z) = c
∏

i<d(z − αi). We have

f(z)
f(a)

=
∏
i<d

(z − a) + (a− αi)
a− αi

=
∑
I⊆d

∏
i∈I

z − a

a− αi
,

hence ∣∣∣∣f(z)
f(a)

− 1
∣∣∣∣ =

∣∣∣∑
I 6=∅

∏
i∈I

z − a

a− αi

∣∣∣ ≤ ∑
I 6=∅

∏
i∈I

|z − a|
R

< (1 + µ)d − 1. �

Proposition 3.5 Let f ∈ C[x] have degree d > 1, f(a) = b, and 0 < R ≤ dist(a,Cf). Let

g(w) = a +
∞∑

n=1

cn(w − b)n

7

satisfy f ◦ g = idB(b,%), where % > 0 is the radius of convergence of g. Put

µ = d−1
√

2− 1 ≥ log 2
d− 1

, ν =
2(d− 1)µ− 1

d
≥ log 4− 1

d
,

λδ = d
√

1 + δdν − 1 ≥ δ log log 4
d

for 0 < δ ≤ 1.

(i) f is injective on B(a, µR).

(ii) % ≥ %0 := νR |f ′(a)|.

(iii) g[B(b, %)] ⊇ B(a, λ1R), and more generally, g[B(b, δ%0)] ⊇ B(a, λδR).

(iv) |cn| ≤ µR/n%n
0 .

Proof: (i): Let u, v ∈ B(a, µR), u 6= v. We have

f(v)− f(u) =
∫ v

u
f ′(z) dz = (v − u)

(
f ′(a) +

∫ 1

0
f ′

(
(1− t)u + tv

)
− f ′(a) dt

)
.

Since |f ′((1− t)u + tv)− f ′(a)| < |f ′(a)| for all t ∈ (0, 1) by Lemma 3.4, we obtain∣∣∣∣∫ 1

0
f ′

(
(1− t)u + tv

)
− f ′(a) dt

∣∣∣∣ ≤ ∫ 1

0

∣∣f ′((1− t)u + tv
)
− f ′(a)

∣∣ dt < |f ′(a)|,

thus f(u) 6= f(v). Notice that ex − 1 ≥ x for every x ∈ R, hence d−1
√

2− 1 = exp((log 2)/(d−
1))− 1 ≥ (log 2)/(d− 1).

(ii): Let U = B(a, µR). Since f is a biholomorphism of U and f [U], % ≥ dist(b, C r f [U]).
Since f [U] is open, there exists w /∈ f [U] such that |w− b| = dist(b, C r f [U]). Let zn ∈ U be
such that limn f(zn) = w. By compactness, {zn} has a convergent subsequence; without loss
of generality, there exists z = limn zn. Then f(z) = w by continuity, hence z /∈ U . However,
z ∈ U , hence z ∈ ∂U . We have thus verified that % ≥ dist(b, f [∂U]).

Let u = a + µReiθ ∈ ∂U . We have

f(u) = b +
∫ u

a
f ′(z) dz = b + Reiθ

(
µf ′(a) +

∫ µ

0
f ′(a + teiθR)− f ′(a) dt

)
.

By Lemma 3.4, |f ′(a + teiθR)− f ′(a)| ≤
(
(1 + t)d−1 − 1

)
|f ′(a)|, hence∣∣∣∣∫ µ

0
f ′(a + teiθR)− f ′(a) dt

∣∣∣∣ ≤ |f ′(a)|
∫ µ

0
(1 + t)d−1 − 1 dt = |f ′(a)|

(
(1 + µ)d − 1

d
− µ

)
= |f ′(a)| 2(1 + µ)− 1− dµ

d
= |f ′(a)| 1− (d− 2)µ

d
.

Thus,

|f(u)− b| ≥ R |f ′(a)|
(

µ− 1− (d− 2)µ
d

)
= νR |f ′(a)|.

8

(iii): The proof above shows that g[B(b, %0)] ⊆ U . As f is injective on U ⊇ B(a, λδR), it
suffices to show that f [B(a, λδR)] ⊆ B(b, δ%0). Let thus u = a + λReiθ, λ < λδ. As above,

f(u) = b + Reiθ

(
λf ′(a) +

∫ λ

0
f ′(a + teiθR)− f ′(a) dt

)
and ∣∣∣∣∫ λ

0
f ′(a + teiθR)− f ′(a) dt

∣∣∣∣ ≤ |f ′(a)|
(

(1 + λ)d − 1
d

− λ

)
,

hence

|f(u)− b| ≤ R |f ′(a)|(1 + λ)d − 1
d

< R |f ′(a)|(1 + λδ)d − 1
d

= δ%0.

(iv): Let γ(t) = a + µRe2πit. By Fact 3.1 and Cauchy’s integral formula,

cn =
1

2πin

∫
γ

dz

(f(z)− b)n
=

µR

n

∫ 1

0

e2πit dt

(f(γ(t))− b)n
.

The proof of (ii) shows |f(γ(t))− b| ≥ %0, hence

|cn| ≤
µR

n

∫ 1

0

dt

|f(γ(t))− b|n
≤ µR

n%n
0

. �

Example 3.6 Let f(z) = zd, a = b = 1. Then f ′ = dzd−1, Cf = {0}, R = 1, f ′(a) = d. It
is not hard to see that f is injective on B(1, r) iff no two points of B(1, r) have arguments
differing by 2π/d iff r ≤ sin(π/d) = π/d + O(d−3). Since g must hit a root of f ′ at the circle
of convergence, we must have % = 1 = (1/d)Rf ′(a). Finally, |(1 + z)d − 1| is maximized
on {z : |z| = r} for z positive real, thus B(1, λR) ⊆ g[B(1, δ%)] iff (1 + λ)d − 1 ≤ δ iff
λ ≤ (1+ δ)1/d−1 = log(1+ δ)/d+O(d−2). Thus, in Proposition 3.5, µ, ν, and λδ are optimal
up to a linear factor.

Remark 3.7 We prefer to give a simple direct proof of Proposition 3.5 for the benefit of
the reader. Nevertheless, we could have assembled the bounds (with somewhat different
constants) from several more sophisticated results in the literature. The Grace–Heawood
theorem (or rather its corollary, originally due to Alexander, Kakeya, and Szegő; see [20,
Thm. 23,2]) states that (i) holds with µ = sin(π/d) (which is tight in view of the zd example).
Then the Koebe 1/4-theorem [10, Thm. 14.7.8] implies (ii) with ν = µ/4, and one more
application of the theorem yields (iii) with λδ = νδ/4.

4 Root finding in TC0

We start with the core part of our root-finding algorithm. While it is conceptually simple, its
output is rather crude, so we will have to combine it with some pre- and postprocessing to
obtain the desired result (Theorem 4.5).

9

Theorem 4.1 Let d be a constant. There exists a uniform TC0 function which, given the
coefficients of a degree d polynomial f ∈ (Q(i))[x] in binary and t in unary, computes a list
{zj : j < s} ⊆ Q(i) such that every complex root of f is within distance 2−t of some zj.

Proof: We assume d ≥ 2. Let µ, ν, λ = λ1/2 be as in Proposition 3.5 (more precisely, we should
use their fixed rational approximations; we will ignore this for simplicity). Let A = 1 + λ/5,
p = d5π/λe, and ξ = e2πi/p (approximately, again). Consider the TC0 algorithm given by the
following description:

(i) Input: f =
∑

j≤d fjz
j with fj ∈ Q(i), fd 6= 0, and t > 0 in unary.

(ii) Put ε = 2−t. Compute recursively a list C = {αj : j < s} including ε/4-approximations
of all roots of f ′.

(iii) Output (in parallel) each αj .

(iv) Put c = 2 + maxj<d|fj/fd| and kmax = dlog(2cε−1)/ log Ae.

(v) For every j < s, k < kmax, and q < p, do the following in parallel.

(vi) Let a = αj + εAkξq, b = f(a), R = 1
2 |a− αj |, N = dlog2(µRε−1)e.

(vii) For each i ≤ d, let f̃i =
∑d

u=i

(
u
i

)
fuau−i.

(viii) Compute and output

zj,k,q = a +
∑

m2,...,mdP
i(i−1)mi<N

(2m2 + · · ·+ dmd)! (−f̃2)m2 · · · (−f̃d)md(−b)1+m2+···+(d−1)md

m2! · · ·md! (1 + m2 + · · ·+ (d− 1)md)! f̃
1+2m2+···+dmd
1

.

Let f(α) = 0, we have to show that one of the numbers output by the algorithm is ε-close
to α. If |α−αj | < ε for some j, we are done by step (iii). We can thus assume dist(α, C) ≥ ε,
which implies dist(α, Cf) ≥ 3ε/4. Assume that αj is an ε/4-approximation of the root α̃j of
f ′ nearest to α. Since all roots of f or f ′ have modulus bounded by c−1 by Cauchy’s bound,
we have ε ≤ |α−αj | < 2c, thus there exists k < kmax such that εAk ≤ |α−αj | < εAk+1. Let
q < p be such that the argument of α − αj differs from 2πq/p by at most π/p, and consider
steps (v)–(viii) for this particular choice of j, k, q (cf. Fig. 1). We have

|α− a| ≤
(

π

p
+ 1− 1

A

)
|α− αj | ≤

2λ

5
|α− αj | <

1
5
|α− αj |,

hence

dist(a,Cf) ≥ dist(α, Cf)− |a− α| ≥ |α− αj | −
ε

4
− 1

5
|α− αj | ≥

1
2
|α− αj | ≥ R.

Since
|a− αj | ≥ |α− αj | − |a− α| > 4

5
|α− αj |,

we also have
|a− α| < 5

4
2λ

5
|a− αj | = λR.

10

A A A

a
R

α

α∼ ε ε ε ε

α

λ

j

j
k k k−1 +1

Figure 1: The spiderweb.

Let

g(w) = a +
∞∑

n=1

cn(w − b)n

be an inverse of f in a neighbourhood of b, and let % be its radius of convergence. By
Proposition 3.5, |−b| = |f(α)− b| < %0/2, where %0 = νR |f ′(a)| ≤ %. Thus, g(f(α)) = g(0) =
α. Since

∑
i f̃iz

i = f(z + a) by the binomial formula, f̃i = [(z − a)i]f . Then it follows from
Proposition 3.3 that

zj,k,q = a +
N∑

n=1

cn(−b)n.

Since
|cn(−b)n| ≤ µR

n%n
0

|b|n <
µR

2n

by Proposition 3.5, we have

|α− zj,k,q| =
∣∣∣∣ ∞∑
n=N+1

cn(−b)n

∣∣∣∣ <
µR

2N
≤ ε. �

Most of the algorithm described in Theorem 4.1 is independent of the assumption of d being
constant (or it can be worked around). There are two principal exceptions. First, the recursion
in step (ii) amounts to d sequential invocations of the algorithm. Second, while N is still linear
in the size of the input, the main sum in step (viii) has roughly Nd terms. Thus, approximation
of roots of arbitrary univariate polynomials can be done by (uniform) threshold circuits of
depth O(d) and size nO(d), where n is the total length of the input. (The known NC algorithms
for root finding can do much better for large d.)

The algorithm from Theorem 4.1 does the hard work in locating the roots of f , but it
suffers from several drawbacks:

• Its output includes a lot of bogus results that are not actually close to any root of f .

11

• There may be many elements on the list close to the same root, and we do not get any
information on the multiplicity of the roots.

• The roots have no “identity”: if we run the algorithm for two different ts, we do not
know which approximate roots on the output lists correspond to each other.

• It may be desirable to output the binary expansions of the roots rather than just ap-
proximations.

We are going to polish the output of the algorithm to fix these problems. Let us first formulate
precisely the goal.

Definition 4.2 The t-digit binary expansion of a ∈ C is the pair 〈bRe(a2t)c, bIm(a2t)c〉,
where both integers are written in binary. A root-finding algorithm for a set of polynomials
P ⊆ (Q(i))[x] is an algorithm with the following properties:

(i) The input consists of a polynomial f ∈ P given by a list of its coefficients in binary,
and a positive integer t in unary.

(ii) The output is a list of pairs {〈zj(f, t), ej(f, t)〉 : j < s(f, t)}.

(iii) For every f ∈ P , there exists a factorization

f(z) = c
∏
j<s

(z − aj)ej ,

where c ∈ Q(i), aj ∈ C, aj 6= ak for j 6= k, and ej > 0, such that for every t: s(f, t) = s,
ej(f, t) = ej , and zj(f, t) is the t-digit binary expansion of aj .

We note that the choice of base 2 in the output is arbitrary, the algorithm can output expan-
sions in any other base if needed.

Lemma 4.3 Let d be a constant. Given a degree d polynomial f ∈ (Q(i))[x], we can compute
in uniform TC0 a list of pairwise coprime square-free nonconstant polynomials fj, c ∈ Q(i),
and integers ej > 0 such that f = c

∏
j<k f

ej

j , where k, ej ≤ d.

Proof: Since d is constant, division of degree d polynomials takes O(1) arithmetical oper-
ations, hence it can be implemented in uniform TC0. The same holds for gcd, using the
Euclidean algorithm. We compute a list L = 〈fj : j < k〉, k ≤ d, of nonconstant polynomials
such that f =

∏
j fj as follows:

(i) Start with L = 〈f〉. Repeat the following steps until none of them is applicable.

(ii) If fj is not square-free, replace it with gcd(fj , f
′
j) and fj/ gcd(fj , f

′
j).

(iii) If fi | fj , fj - fi for some i, j, replace fj in L with fi, fj/fi.

(iv) If g := gcd(fi, fj) 6= 1 for some i, j such that fi - fj , fj - fi, replace fi, fj in L with
g, g, fi/g, fj/g.

The algorithm terminates after at most d steps, hence it is TC0. Clearly, it computes a list of
square-free polynomials such that for every i, j, fi is coprime to fj or fi is a scalar multiple
of fj . It remains to collect scalar multiples of the same polynomial together. �

12

Lemma 4.4 Let d be a constant. Given a degree d square-free polynomial f ∈ (Q(i))[x] and
t in unary, we can compute in uniform TC0 a list {zj : j < s} such that every root of f is
within distance 2−t of some zj, and every zj is within distance 2−t of some root.

Proof: We use the notation from the proof of Theorem 4.1. We modify the algorithm from
that proof as follows:

• We compute an ε0 > 0 such that the distance of any root of f to any root of f ′ is at
least ε0 using Lemma 2.1. In step (ii), we put ε = min(2−t, ε0/3).

• We skip step (iii).

• In step (vi), we check that |b| < 1
2ν|f ′(a)|R and |a− αj′ | ≥ R + ε/4 for every j′ < s. If

either condition is violated, we output a symbol “∗” instead of a number, and skip the
remaining two steps.

The result is a list of numbers and ∗’s; it is easy to construct the sublist consisting of only
numbers by a TC0 function.

Let zj,k,q be one of the numbers output by the algorithm. In step (vi) we ensured
dist(a,C) ≥ R + ε/4, hence dist(a,Cf) ≥ R. Moreover, |0 − b| < %0/2, hence 0 is within
the radius of convergence of g, and α = g(0) is a root of f whose distance from zj,k,q is

|α− zj,k,q| =
∣∣∣∣ ∞∑
n=N+1

cn(−b)n

∣∣∣∣ <
µR

2N
≤ ε.

On the other hand, let α be a root of f . Since dist(α, Cf) ≥ ε0, we have dist(α, C) ≥ ε,
hence we can choose j, k, q such that |α− zj,k,q| < ε as in the proof of Theorem 4.1. We have
to show that the extra conditions in step (vi) are satisfied. |b| < 1

2νR|f ′(a)| was verified in
the proof of Theorem 4.1. Moreover,

|a− αj′ | ≥ |α− α̃j′ | − |a− α| − ε

4
≥ |a− α̃j | − |a− α| − ε

4
≥ 4

5
|α− αj | −

ε

2
≥ R +

ε

4

as |α− αj | ≥ ε0 − ε/4 > 5
2ε. �

We can now finish the proof of the main result of this paper:

Theorem 4.5 For every constant d, there exists a uniform TC0 root-finding algorithm for
degree d polynomials in the sense of Definition 4.2.

Proof: We employ the notation of Definition 4.2. By Lemma 4.3, we can assume f to be
square-free (in which case we will have ej(f, t) = 1 for all j, so we only need to compute the
roots). Consider the following TC0 algorithm:

(i) Using Lemma 2.1, compute an η > 0 such that all roots of f are at distance at least η

from each other.

(ii) Using Lemma 4.4, compute a list {r′j : j < u} such that every root of f is within
distance η/5 of some r′j , and vice versa.

13

(iii) Note that if r′i and r′j correspond to the same root, then |r′i − r′j | < 2
5η, otherwise

|r′i − r′j | > 3
5η. Use this criterion to omit duplicate roots from the list, creating a list

{rj : j < d} which contains η/5-approximations of all roots of f , each of them exactly
once.

(iv) If ε := 2−t ≥ η/5, output zj := rj and halt. Otherwise use Lemma 4.4 to construct a
list {z′i : i < s} consisting of ε-approximations of roots of f .

(v) For each j < d, output zj := z′i(j), where i(j) is the smallest i < s such that |z′i − rj | <
η/2.

Notice that the computation of rj is independent of t. Let aj be the unique root of f such that
|aj − rj | < η/5. Given t and i, let j′ be such that |z′i − aj′ | < ε. Then |z′i − rj | < ε+ η/5 ≤ 2

5η

if j = j′, otherwise |z′i − rj | > 4
5η − ε ≥ 3

5η. Thus, the definition of i(j) in the last step is
sound, and guarantees |zj − aj | < ε.

It follows that this TC0 function has all the required properties, except that it computes
approximations instead of binary expansions. We can fix this as follows. Using the algorithm
we have just described, we can compute integers u, v such that |u + iv − 2taj | < 1. Then
bRe(2taj)c is either u or u− 1, hence it remains to find the sign of Re(2taj)− u (the case of
Im is similar).

Let g(z) = f(2−t(2z + u)), h(z) = g(−z), and α = 1
2(2taj − u). Then g(α) = 0 = h(−α)

and α−(−α) = Re(2taj)−u. Using Lemma 2.1, we can compute ξ > 0 such that |α−(−α)| ≥ ξ

whenever it is nonzero. Using the algorithm above, we can compute rational u′, v′ such that
|u′ + iv′ − 2taj | < ξ/4. If |u − u′| < ξ/2, then Re(2taj) = u. Otherwise, |Re(2taj) − u| ≥ ξ,
hence the sign of u′ − u agrees with the sign of Re(2taj)− u. �

Corollary 4.6 If α is a fixed real algebraic number, then the kth bit of α can be computed in
uniform TC0, given k in unary. �

(Note that this corollary is only interesting in the uniform setting, since the language is
unary.)

5 Open induction in VTC 0

As we already mentioned in the introduction, our primary motivation for studying root finding
for constant-degree polynomials comes from bounded arithmetic. We will now describe the
connection in more detail. A reader not interested in bounded arithmetic may safely stop
reading here.

The basic objects of study in bounded arithmetic are weak first-order theories based on
integer arithmetic. There is a loose correspondence of arithmetical theories to complexity
classes: in particular, if a theory T corresponds to a class C, then the provable total com-
putable functions of T are functions from C (or more precisely, FC). The following is one of
the natural problems to study in this context: assume we have a concept (say, a language or
a function) from the computational class C. Which properties of this concept are provable

14

in the theory T? (This asks for a form of feasible reasoning: what can we show about the
concept when we are restricted to tools not exceeding its complexity?)

Here we are concerned with the theory VTC 0, corresponding to TC0. We refer the reader
to Cook and Nguyen [11] for a comprehensive treatment of VTC 0. Let us briefly recall that
VTC 0 is a two-sorted theory, with one sort intended for natural numbers (which we think of
as given in unary), and one sort for finite sets of these unary numbers (which we also regard
as finite binary strings, or as numbers written in binary). We are primarily interested in
the binary number sort, we consider the unary sort to be auxiliary. We use capital letters
X, Y, . . . for variables of the binary (set) sort, and lowercase letters x, y, . . . for the unary
sort. The language of the theory consists of basic arithmetical operations on the unary sort,
the elementhood (or bit) predicate x ∈ X, and a function |X| which extracts an upper
bound on elements of a set X. The axioms of VTC 0 include comprehension for ΣB

0 formulas
(formulas with number quantifiers bounded by a term and no set quantifiers)—which also
implies induction on unary numbers for ΣB

0 formulas—and an axiom ensuring the existence
of counting functions for any set. The provably total computable (i.e., Σ1

1-definable: Σ1
1

formulas consist of a block of existential set quantifiers in front of a ΣB
0 formula) functions of

VTC 0 are the TC0 functions.
In VTC 0, we can define the basic arithmetical operations +, ·,≤ on binary integers. Our

main question is, what properties of these operations are provable in VTC 0. (We can make
this more precise as follows: which theories in the usual single-sorted language of arithmetic
LPA = 〈0, 1,+, ·,≤〉 are interpreted in VTC 0 by the corresponding operations on the binary
sort?) It is not hard to show that VTC 0 proves binary integers to form a discretely ordered
ring (DOR). What we would especially like to know is whether VTC 0 can prove the induction
schema on the binary sort

ϕ(0) ∧ ∀X (ϕ(X) → ϕ(X + 1)) → ∀X ϕ(X)

for some nontrivial class of formulas ϕ. In particular, we want to know whether VTC 0

includes the theory IOpen (axiomatized by induction for open formulas of LPA over DOR)
introduced by Shepherdson [31] and widely studied in the literature.

Now, assume for a moment that VTC 0 ` IOpen. Then for each constant d, VTC 0 proves

X < Y ∧ F (X) ≤ 0 < F (Y) → ∃Z (X ≤ Z < Y ∧ F (Z) ≤ 0 < F (Z + 1))

where F (X) =
∑

i≤d UiX
i is a degree d integer polynomial whose coefficients are parameters of

the formula. This is (equivalent to) a Σ1
1 formula, hence the existential quantifier is, provably

in VTC 0, witnessed by a TC0 function G(U0, . . . , Ud, X, Y). Since any rational polynomial
is a scalar multiple of an integer polynomial, and we can pass from a polynomial F (X) to
2tdF (2−tX) to reduce the error from 1 to 2−t, we see that there is a TC0 algorithm solving
the following root-finding problem: given a degree d rational polynomial and two rational
bounds where it assumes opposite signs, approximate a real root of the polynomial between
the two bounds up to a given accuracy. Using a slightly more complicated argument, one can
also obtain a root-finding algorithm in the set-up we considered earlier : i.e., we approximate
all complex roots of the polynomial, and the input of the algorithm is only the polynomial

15

and the desired error of approximation. Thus, a TC0 root-finding algorithm is a necessary
prerequisite for showing IOpen in VTC 0.

We can in a sense reverse the argument above to obtain a proof of open induction from
a root-finding algorithm, but there is an important caveat. The way we used the witnessing
theorem for VTC 0, we lost the information that the soundness of the algorithm is provable
in VTC 0. Indeed, if we are only concerned with the computational complexity of witnessing
functions, then witnessing of Σ1

1 formulas is unaffected by addition of true universal (i.e.,
∀ΣB

0) axioms to the theory. In other words, the same argument shows the existence of a root-
finding algorithm from the weaker assumption VTC 0 + Th∀ΣB

0
(N) ` IOpen, where Th∀ΣB

0
(N)

denotes the set of all ∀ΣB
0 sentences true in the standard model of arithmetic. Now, this

formulation of the argument can be reversed:

Theorem 5.1 The theory VTC 0 + Th∀ΣB
0
(N) proves IOpen for the binary number sort.

Proof: Let M be a model of VTC 0 + Th∀ΣB
0
(N), and D be the discretely ordered ring of the

binary integers of M . For any constant d, we can use Theorem 4.1 to construct a TC0 function
which, given the coefficients of an integer polynomial of degree d, computes a list of integers
a0 < a1 < · · · < ak, k ≤ d, such that the sign of the polynomial is constant on each of the
integer intervals (ai, ai+1), (−∞, a0), (ak,+∞). This property of the function is expressible
by a ∀ΣB

0 sentence (when the coefficients of the polynomial and the ai are taken from the
binary sort), hence it holds in D that such elements a0, . . . , ak exist for every polynomial over
D.

Any atomic formula ϕ(x) of LPA with parameters from D is equivalent in DOR to the
formula f(x) ≤ 0 for some f ∈ D[x], hence ϕ(D) := {x : D |= ϕ(x)} is a finite union of
intervals. Sets of this kind form a Boolean algebra, hence ϕ(D) is a finite union of intervals
for every open formula ϕ. This implies induction for ϕ: if D |= ϕ(0)∧¬ϕ(u) for some u > 0,
the interval I of ϕ(D) containing 0 cannot be infinite from above, hence its larger end-point
v ∈ D satisfies D |= ϕ(v) ∧ ¬ϕ(v + 1). �

Problem 5.2 Does VTC 0 prove IOpen?

In light of the discussion above, Problem 5.2 is essentially equivalent to the following: are there
TC0 root-finding algorithms for constant-degree polynomials whose correctness is provable in
VTC 0? We remark that the complex-analytic tools we used in the proof of Theorem 4.1 are
not available in VTC 0.

We note that already proving the totality of integer division in VTC 0 (i.e., formalization
of a TC0 integer division algorithm in VTC 0) is a nontrivial open1 problem, thus Problem 5.2
may turn out to be too ambitious a goal. The following is a still interesting version of the
question, which may be easier to settle:

1Hesse et al. [15, Cor. 6.6] claim that the totality of integer division is provable in VTC 0 (or rather, in

the theory C0
2 of Johannsen and Pollett [17], RSUV-isomorphic to VTC 0 +ΣB

0 -AC , which is ∀Σ1
1-conservative

over VTC 0). However, the way it is stated there with no proof as an “immediate” corollary strongly suggests

that the claim is due to a misunderstanding. See also [11, §IX.7.3].

16

Problem 5.3 Does VTC 0 + IMUL prove IOpen, where IMUL is a natural axiom postulating
the totality of iterated integer multiplication?

Acknowledgements

I am grateful to Paul Beame and Yuval Filmus for useful discussions.

References

[1] Lars V. Ahlfors, Complex analysis: An introduction to the theory of analytic functions
of one complex variable, McGraw–Hill, New York, 1979.

[2] Eric Allender, The permanent requires large uniform threshold circuits, Chicago Journal
of Theoretical Computer Science 1999, article no. 7.

[3] David A. Mix Barrington, Neil Immerman, and Howard Straubing, On uniformity within
NC 1, Journal of Computer and System Sciences 41 (1990), no. 3, pp. 274–306.

[4] Paul W. Beame, Stephen A. Cook, and H. James Hoover, Log depth circuits for division
and related problems, SIAM Journal on Computing 15 (1986), no. 4, pp. 994–1003.

[5] Michael Ben-Or, Ephraim Feig, Dexter Kozen, and Prasoon Tiwari, A fast parallel algo-
rithm for determining all roots of a polynomial with real roots, SIAM Journal on Com-
puting 17 (1988), no. 6, pp. 1081–1092.

[6] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin, Constant depth reducibility,
SIAM Journal on Computing 13 (1984), no. 2, pp. 423–439.

[7] Andrew Y. Chiu, George I. Davida, and Bruce E. Litow, Division in logspace-uniform
NC 1, RAIRO – Theoretical Informatics and Applications 35 (2001), no. 3, pp. 259–275.

[8] Louis Comtet, Advanced combinatorics: The art of finite and infinite expansions, D. Rei-
del Publishing Company, Dordrecht, 1974.

[9] John B. Conway, Functions of one complex variable, Springer, New York, 1978.

[10] , Functions of one complex variable II, Springer, New York, 1995.

[11] Stephen A. Cook and Phuong Nguyen, Logical foundations of proof complexity, Cam-
bridge University Press, New York, 2010.

[12] Émile Durand, Solutions numériques des équations algébriques. Tome I: Équations du
type F (x) = 0: Racines d’un polynôme, Masson, Paris, 1960 (in French).

[13] Gene H. Golub and Charles F. Van Loan, Matrix computations, third ed., Johns Hopkins
University Press, Baltimore, 1996.

17

[14] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán,
Threshold circuits of bounded depth, Journal of Computer and System Sciences 46 (1993),
no. 2, pp. 129–154.

[15] William Hesse, Eric Allender, and David A. Mix Barrington, Uniform constant-depth
threshold circuits for division and iterated multiplication, Journal of Computer and Sys-
tem Sciences 65 (2002), no. 4, pp. 695–716.

[16] Michael A. Jenkins and Joseph F. Traub, A three-stage variable-shift iteration for poly-
nomial zeros and its relation to generalized Rayleigh iteration, Numerische Mathematik
14 (1970), no. 3, pp. 252–263.

[17] Jan Johannsen and Chris Pollett, On proofs about threshold circuits and counting hier-
archies (extended abstract), in: Proceedings of the 13th Annual IEEE Symposium on
Logic in Computer Science, 1998, pp. 444–452.

[18] Immo O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Poly-
nomen, Numerische Mathematik 8 (1966), no. 3, pp. 290–294 (in German).

[19] Alexis Maciel and Denis Thérien, Efficient threshold circuits for power series, Information
and Computation 152 (1999), no. 1, pp. 62–73.

[20] Morris Marden, The geometry of the zeros of a polynomial in a complex variable, Math-
ematical Surveys vol. 3, American Mathematical Society, New York, 1949.

[21] C. Andrew Neff, Specified precision polynomial root isolation is in NC, Journal of Com-
puter and System Sciences 48 (1994), no. 3, pp. 429–463.

[22] C. Andrew Neff and John H. Reif, An efficient algorithm for the complex roots problem,
Journal of Complexity 12 (1996), no. 2, pp. 81–115.

[23] Victor Y. Pan, Fast and efficient algorithms for sequential and parallel evaluation of
polynomial zeros and of matrix polynomials, in: Proceedings of the 26th Annual IEEE
Symposium on Foundations of Computer Science, 1985, pp. 522–531.

[24] , Optimal and nearly optimal algorithms for approximating polynomial zeros,
Computers & Mathematics with Applications 31 (1996), no. 12, pp. 97–138.

[25] , Solving a polynomial equation: Some history and recent progress, SIAM
Review 39 (1997), no. 2, pp. 187–220.

[26] Ian Parberry and Georg Schnitger, Parallel computation with threshold functions, Journal
of Computer and System Sciences 36 (1988), no. 3, pp. 278–302.

[27] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Nu-
merical recipes: The art of scientific computing, third ed., Cambridge University Press,
2007.

18

[28] John H. Reif, Logarithmic depth circuits for algebraic functions, SIAM Journal on Com-
puting 15 (1986), no. 1, pp. 231–242.

[29] John H. Reif and Stephen R. Tate, On threshold circuits and polynomial computation,
SIAM Journal on Computing 21 (1992), no. 5, pp. 896–908.

[30] Walter L. Ruzzo, On uniform circuit complexity, Journal of Computer and System Sci-
ences 22 (1981), no. 3, pp. 365–383.

[31] John C. Shepherdson, A nonstandard model for a free variable fragment of number theory,
Bulletin de l’Académie Polonaise des Sciences 12 (1964), no. 2, pp. 79–86.

[32] Christopher S. Wallace, A suggestion for a fast multiplier, IEEE Transactions on Elec-
tronic Computers 13 (1964), no. 1, pp. 14–17.

[33] Chee Keng Yap, Fundamental problems in algorithmic algebra, Oxford University Press,
2000.

19

