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Abstract

D’Aquino et al. (J. Symb. Log. 75(1)(2010)) have recently shown
that every real-closed field with an integer part satisfying the arith-
metic theory IΣ4 is recursively saturated, and that this theorem fails
if IΣ4 is replaced by I∆0. We prove that the theorem holds if IΣ4

is replaced by weak subtheories of Buss’ bounded arithmetic: PV or
Σb

1-IND |x|k . It also holds for I∆0 (and even its subtheory IE 2) under
a rather mild assumption on cofinality. On the other hand, it fails for
the extension of IOpen by an axiom expressing the Bézout property,
even under the same assumption on cofinality.

A discretely ordered subring A of a real-closed field (henceforth often:
rcf) R is an integer part of R if for every r ∈ R there exists a ∈ A such that
a ≤ r < a + 1. It is well-known that every rcf has an integer part [MR93],
which is then a model of the weak arithmetic theory IOpen (induction for
quantifier-free formulas in the language of ordered rings). On the other hand,
every model of IOpen is an integer part of its real closure (or, more precisely,
the real closure of its fraction field), as shown by Shepherdson [She64].

Recently, d’Aquino et al. [DKS10] studied the question which rcfs have
integer parts satisfying more arithmetic, e.g. Peano Arithmetic. It turns out
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that at least in the countable case, the answer is relatively straightforward:
a countable non-archimedean rcf R has an integer part satisfying PA if and
only if R is recursively saturated. Moreover, the “only if” direction actually
requires neither countability nor full PA: to conclude that R is recursively
saturated, it is enough to know that R has an integer part satisfying IΣ4.
(The uncountable case is more complex, see [MS12, CDK12].)

From an arithmetical point of view, IΣ4 is still quite a powerful theory,
so it is natural to wonder whether it can be replaced by something weaker.
D’Aquino et al. point out that it cannot be replaced by I∆0, for a rather
trivial reason: some nonstandard models of I∆0 are bounded, in the sense
that they contain a cofinal set of the form {an : n ∈ N}, whereas an integer
part of a recursively saturated ordered field must obviously be unbounded.
However, the more general question “how much arithmetic in an integer part
is enough to guarantee recursive saturation?” is left open in [DKS10].

We take up this very question; though we are not able to provide a com-
plete answer, we do manage to show that the boundary between arithmetic
theories which do guarantee recursive saturation and those which do not
lies far below IΣ4. In particular, boundedness is the only reason why a non-
archimedean rcf with an integer part satisfying I∆0 may fail to be recursively
saturated. This remains true if I∆0 is replaced by its fragment IE 2 (induc-
tion for formulas with just two blocks of bounded quantifiers). Recursive
saturation of an rcf also follows from the existence of integer parts satisfying
weak fragments of Buss’ bounded arithmetic: PV (a canonical theory for
polynomial time reasoning), or restricted forms of Σb

1 induction, studied by
Boughattas and Ressayre [BR10].

On the other hand, some algebraic extensions of IOpen, previously studied
in the context of independence results [Smi93] and as counterexamples to
Tennenbaum’s theorem [Moh06], can be satisfied in an integer part of an
unbounded but not recursively saturated rcf. We verify this for IOpen +
Bézout , which extends IOpen by the Bézout axiom:

∀x ∀y ∃z ∃u ∃v (z | x ∧ z | y ∧ xu+ yv = z).

We also show that the real closure of a recursive discretely ordered ring
can never be recursively saturated, and generalize a result of [DKS10] on
theories satisfiable in integer parts of recursively saturated rcfs.

On the whole, our results seem to suggest that the property of arithmetic
theories T , “every unbounded rcf with an integer part satisfying T is recur-
sively saturated”, is best seen as a Tennenbaum-like property, i.e. a structural
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feature of models that separates theories with “significant arithmetical con-
tent” from “algebraic” fragments of arithmetic such as IOpen. Earlier prop-
erties of this kind include the one arising from Tennenbaum’s theorem, i.e. “T
has no recursive nonstandard models” [Ten59, She64, Wil85, BO96, Moh06],
as well as “every nonstandard model of T has a nonstandard initial segment
satisfying PA” [McA82, Par84] and “the reduct of every nonstandard model
of T to the language of addition is recursively saturated” [CMW82, Wil85].
Of course, each concrete property leads to a different notion of “significant
arithmetical content”. In our case, interesting questions remain. For exam-
ple, we do not know whether an unbounded rcf with an integer part satisfying
the fragment IE 1 of I∆0 has to be recursively saturated.

Our paper consists of this introduction and six further sections. Section 1
has a preliminary character and fixes definitions and notation. In Section 2,
we show that real closures of recursive discretely ordered rings are not re-
cursively saturated. In Section 3, we prove our main results about weak
arithmetic theories which imply recursive saturation of an rcf when satis-
fied in its integer part. In Section 4, we construct an unbounded model of
IOpen +Bézout whose real closure is not recursively saturated. In Section 5
we construct models of extensions of IOpen with preassigned real closure. In
Section 6 we mention some open problems.

1 Preliminaries

An ordered ring (R, 0, 1,+, ·,≤) is a commutative ring endowed with a total
order such that the set of nonnegative elements is closed under + and ·.
A real-closed field (rcf) (see e.g. Chapter 3 of [Mar02]) is an ordered field
in which every positive element has a square root, and every polynomial
of odd degree has a root. The theory of real-closed fields, denoted RCF ,
is complete (in particular, it coincides with Th(R)), decidable, and enjoys
effective elimination of quantifiers. The last property implies that every rcf
is an o-minimal structure: every definable subset of R is a finite union of
(possibly degenerate) intervals.

Any ordered domain R has a real closure rcl(R): an rcf which is an
algebraic extension of R. Real closure is unique up to isomorphism preserving
R. More generally, if R is an rcf and X a subset of R, we will write rcl(X)
for the set of elements of R algebraic over X; in other words, the real closure
of the subring of R generated by X.
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A discretely ordered ring is an ordered ring with no element between 0
and 1. Any such ring is necessarily a domain. A discretely ordered ring R
is a Z-ring if R/nR ' Z/nZ for every integer n > 0. IOpen is the theory of
discretely ordered rings whose nonnegative parts satisfy the induction axioms

φ(0) ∧ ∀x (φ(x)→ φ(x+ 1))→ ∀xφ(x) (φ-IND)

for all open (i.e. quantifier-free) formulas φ. An easy argument shows that a
model of IOpen is always a Z-ring.

In some contexts it is more convenient, and for stronger fragments of
arithmetic quite standard, to consider ordered semirings with 0 as the least
element instead of rings. That is, we can formulate IOpen as the theory
consisting of the open induction schema on top of the theory of nonnegative
parts of discretely ordered rings (denoted PA−). Models of the latter theory
can be extended in a unique way to a full ring, and we will pass from one
representation of the model to the other without notice.

An integer part of an rcf R is a discretely ordered subring A ⊆ R such
that for every r ∈ R there is a ∈ A such that a ≤ r < a+1. Models of IOpen
are exactly integer parts of rcfs, and in particular, every A |= IOpen is an
integer part of rcl(A). If A is an integer part of R, then the fraction field F
of A is dense in R: there is an element of F between any two elements of R.

Basic information on Peano Arithmetic PA and its subsystems IΣn and
I∆0 can be found e.g. in [HP93]. I∆0 and its fragments ([HP93, Wil85])
are defined as follows (the presentation below is in terms of semirings with a
least element rather than rings). Bounded quantifiers are introduced by

∃x ≤ t φ(x)⇔ ∃x (x ≤ t ∧ φ(x))

∀x ≤ t φ(x)⇔ ∀x (x ≤ t→ φ(x))

where t is a term not involving x. A formula φ is bounded if all quantifiers
in φ are bounded; the set of all bounded formulas is denoted ∆0. A bounded
formula in prenex normal form is En (resp., Un) if its quantifier prefix can be
divided into n alternating blocks (not necessarily nonempty) of quantifiers
of the same type, where the first block is existential (resp., universal). A
formula is ∇n in a theory T if it is, provably in T , equivalent to both an En

formula and a Un formula. If Γ is a set of formulas (such as ∆0 or En), then
IΓ denotes the theory PA− + Γ-IND .

If A |= PA−, a cut is an initial segment J of A with no greatest element.
If a cut J is closed under multiplication, it is a submodel of A and agrees
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with A on satisfaction of bounded formulas with parameters from A. In
particular, if Γ ⊆ ∆0, then Γ-IND is equivalent to a set of bounded formulas,
hence a cut in a model of IΓ, if closed under ·, is itself a model of IΓ. If
1 < a ∈ A, then aN denotes the cut {x ∈ A : ∃n ∈ N x ≤ an}. If J is a cut of
A, we write a < J < b for a ∈ J , b /∈ J . A model A is bounded if there exists
a ∈ A such that A = aN, otherwise it is unbounded. Similarly, an ordered
ring R (typically, an rcf) is bounded if R = {x ∈ R : ∃n ∈ N |x| ≤ an} for
some a ∈ R, a > 1, and unbounded otherwise. (An rcf is unbounded exactly
if it has unbounded growth in the sense of [DKS10], meaning that it is not
cofinal with the rcl of any of its finitely generated subrings; cf. [DKS12].)

Buss [Bus86] introduced a hierarchy of theories in the language LB = {0,
1,+, ·,≤, |x|,#, bx/2c}, where |x| = dlog2(x + 1)e and x # y = 2|x|·|y|. We
refer the reader to [Kra95, HP93, CN10] for more detailed information. A
bounded quantifier whose bounding term is of the form |t| is called sharply
bounded. Formulas using only sharply bounded quantifiers are called sharply
bounded, or Σb

0. A formula is Σb
1 (resp., Πb

1) if it can be written in a prenex
normal form so that all quantifiers are bounded existential (resp., universal)
or sharply bounded. A formula is Σ̂b

1, or strict Σb
1, if it consists of a block of

existential bounded quantifiers followed by a sharply bounded formula. More
generally, a formula is Σ̂b

i (strict Σb
i) if it can be written with i alternating

blocks of bounded quantifiers, the first one being existential, followed by a
sharply bounded formula; in general Σb

i formulas, sharply bounded quantifiers
are allowed to intervene anywhere in the quantifier prefix.

If t(x) is a unary term and φ a formula, we consider the induction schema

φ(0) ∧ ∀x (φ(x)→ φ(x+ 1))→ ∀x ≤ t(a)φ(x). (φ-IND t)

All theories in LB are tacitly assumed to include the open finite theory
BASIC postulating basic properties of the symbols in the language. With
this convention, Buss’ theories are defined by T i

2 = Σb
i -IND , Si

2 = Σb
i -IND |x|.

We will also consider the theories Σb
1-IND |x|k , where |x|k denotes k times

iterated |x|. In any structure for LB, log(k) denotes downward closure of the
range of |x|k.

PV is an open theory in a language LPV with function symbols for all
polynomial-time computable functions, originally introduced inductively us-
ing bounded recursion on notation; its axioms include defining equations for
these function symbols, and ensure the provability of IND for open formulas.
Alternatively, we may axiomatize PV by the Σb

1-fragment of S1
2 , where we
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expand the language by adding a function symbol for each provably total
Σb

1-definable function of S1
2 .

If A is a model of some arithmetic, S ⊆ N and A 3 s > N, then s codes
S if for each n ∈ N, n ∈ S exactly if the n-th bit of s in binary notation is
1. Other notions of coding are also commonly used, e.g. with the value of
the n-th bit replaced by divisibility by the n-th prime. In general, the family
of sets coded in A may depend on the choice of coding, but nonstandard
models of the theories we study in Section 3 always have nonstandard initial
segments satisfying PA. For such models, the exact choice of a reasonable
coding scheme is immaterial.

Recursive saturation is treated in [BS76]. Let A be a structure in a
finite language L. A (consistent, but not necessarily complete) type of A
over a finite set of parameters ā ∈ A, which can be written in the form
{φ(x̄, ā) : φ(x̄, ȳ) ∈ Γ} for a recursive set of formulas Γ, is called a recursive
type. A is recursively saturated if every recursive 1-type of A is realized in A.
By Craig’s trick, every r.e. type is equivalent to a polynomial-time recursive
type; moreover, the definition of recursive saturation does not change if we
allow n-types for n > 1. Every countable recursively saturated model is
resplendent : for any ā ∈ A and any r.e. theory T in a finite language L′ ⊇ Lā

which is consistent with Th(A, ā), there is an expansion B of (A, ā) to a
model of T ; moreover, we can make B recursively saturated as well.

2 Connection to Tennenbaum

The following simple result shows that at least for T ⊇ IOpen, the prop-
erty “every non-archimedean rcf with an integer part satisfying T is recur-
sively saturated” implies that T satisfies Tennenbaum’s Theorem on the non-
existence of recursive nonstandard models.

Proposition 2.1. If A |= IOpen and rcl(A) is recursively saturated, then
+A and ≤A cannot be both recursive.

Proof. Let X, Y ⊆ N be a recursively inseparable pair of disjoint r.e. sets. By
recursive saturation, there exist x, y ∈ rcl(A) such that 0 < x < y < 1, and
for every z ∈ (x, y), b2n+1zc is even whenever n ∈ X, and it is odd whenever
n ∈ Y . Since the fraction field of A is dense in rcl(A), there exist a, b ∈ A
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such that a/b ∈ (x, y). If +A and ≤A were recursive,{
n ∈ N : A |=

∨
k<2n+1

k even

(kb ≤ 2n+1a < (k + 1)b)
}

would be a recursive set separating X, Y , a contradiction.

Remark. The proposition applies to models of IOpen considered as rings. If
we take A to be only the non-negative part (as is usual for stronger fragments
of arithmetic), we can strengthen the conclusion to state that +A is not
recursive. (If +A is recursive, ≤A is also recursive, as x ≤ y and its negation
are both existentially definable in terms of +.)

Remark. We have not been able to show that if every unbounded rcf with
an integer part satisfying T is recursively saturated, then T has no recursive
nonstandard models.

3 Main results

The entirety of this section is devoted to the proof of our main theorem:

Theorem 3.1. Let A be

(i) an unbounded model of IE 2, or

(ii) a nonstandard model of Σb
1-IND |x|k for some k ∈ N, or

(iii) a nonstandard model of PV ,

and let R be a real-closed field such that A is an integer part of R. Then R
is recursively saturated.

The proof of the main Theorem 5.1 in [DKS10] actually shows the fol-
lowing:

Theorem 3.2. Let R be a real-closed field with integer part A such that
rcl(A) is recursively saturated. Then R is recursively saturated, and if R is
countable, then R ' rcl(A).
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Proof. Since rcl(A) is recursively saturated, it is unbounded, thus A and R
are also unbounded. It follows that R and rcl(A) realize the same types by
[DKS10, Thm. 3.4]. Being recursively saturated, rcl(A) is ω-homogeneous,
hence R is ω-homogeneous by [DKS10, Thm. 4.1], and since it also realizes
the same types as a recursively saturated model, it is recursively saturated.
Moreover, as R and rcl(A) are ω-homogeneous models realizing the same
types, they are isomorphic if they are countable.

Thus, it is enough for our purposes to show that if A satisfies one of
the conditions in the statement of Theorem 3.1, then rcl(A) is recursively
saturated. However, condition (ii) by itself may well be too weak to imply
this: our arguments below make essential use of the assumption that A is
an integer part of rcl(A), or in other words, that A |= IOpen, but it follows
from the work of [BR10] that Σb

1-IND |x|k 0 IOpen for k ≥ 3. For this reason,
what we actually show below is that rcl(A) is recursively saturated whenever
A is:

(i) an unbounded model of IE 2, or

(ii) a nonstandard model of Σb
1-IND |x|k + IOpen for some k ∈ N, or

(iii) a nonstandard model of PV .

Unbounded models of IE 2. Let A |= IE 2 be unbounded, and R = rcl(A).
Consider a recursive type Γ(x, ā) with ā = a1, . . . , ak ∈ R. We claim that
Γ(x, ā) is satisfied in R.

Without loss of generality, we may simultaneously assume that (1) ā ∈ A,
a1 > a2 > · · · > ak > 1, (2) Γ consists of open formulas. (1) holds because
each element of ā is definable in R from elements of A, so we may replace
it by the parameters used in its definition, also changing signs or taking
reciprocals if need be. To obtain (2) as well, we use quantifier elimination for
RCF , which is an effective procedure and hence preserves recursivity of the
type. In order to simplify the notation, we may also assume that Γ contains
the formula x > 0.

If Γ(x, ā) is satisfied by some element of rcl(ā), we are done, so we may
assume that no element of rcl(ā) satisfies Γ(x, ā). It follows by o-minimality
that each finite subset of Γ(x, ā) is satisfied on a non-degenerate interval
I ⊆ R. The endpoints and length of I are in rcl(ā); in particular, if we fix
b ∈ A such that b > aN

1 , we have I < b and lh(I) > 1/b, hence I contains an
element of the form w/b for some w ∈ A ∩ (0, b2).
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Fix an efficient enumeration of terms and open formulas in the arith-
metical language. Let (r)i = x denote sequence encoding using Gödel’s
β-function, which is IE 1-provably ∇1, and let θ(r, z, y0, . . . , yk+1) denote the
formula

∀t, u, v ≤ z [(t = pxuq ∧ u ≤ k + 1→ (r)t = yu)

∧ (t = pu+ vq→ (r)t = (r)u + (r)v)

∧ (t = pu · vq→ (r)t = (r)u · (r)v)

∧ (t = pu ≤ vq→ ((r)t = 1 ∧ (r)u ≤ (r)v)

∨ ((r)t = 0 ∧ (r)u > (r)v))

∧ (t = pu→ vq→ (r)t = max{1− (r)u, (r)v})].

(the k+2 variables y0, . . . , yk+1 will be needed below to accommodate ā, b, and
an extra variable w). The meaning of θ is that the sequence r codes the values
of terms and open formulas with Gödel number below z and parameters
y0, . . . , yk+1 (we may assume that 0, 1 appear among these). We can choose
Gödel numbers so that the identities t = pu + vq etc. above are E1, hence
θ is U1. We also assume that the Gödel number of a term or a formula is
greater than the Gödel numbers of its subterms and subformulas.

For each open formula φ(x, ȳ), we can effectively find an open formula
φ′(w, v, ȳ) such that A |= φ′(w, v, ȳ) iff R |= φ(w/v, ȳ). Let the set Γ′ =
{pφ′q : φ ∈ Γ} be coded by s ∈ A, where s is small nonstandard. Fix some
c ∈ A such that c > bN, and let ψ(z, ā, b, c, s) be the E2 formula

∃w ≤ b2 ∃r ≤ c (θ(r, z, w, b, ā) ∧ ∀f ≤ z (f ∈ s→ (r)f = 1)),

which expresses that some element of the form w/b satisfies all formulas in Γ
with Gödel number below z. Since IE 1 proves that any sequence of elements
below b and of standard length n can be coded by r ≤ bO(n) ≤ c, it follows
easily that A |= ψ(n) for all standard n. By overspill, A |= ψ(d) for some
d > N. This means that some element of the fraction field of A satisfies
Γ(x, ā), and we are done.

Nonstandard models of Σb
1-IND |x|k + IOpen. We follow the same outline as

the proof for IE 2, and we keep some of the notation. Due to the presence of
# in the language, a nonstandard model of Σb

1-IND |x|k is always unbounded.
The inclusion of IOpen in our theory guarantees that the interval I in the
argument above contains an element of the form w/b. Thus, all that has to be
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checked is that Σb
1-IND |x|k has enough sequence-coding power to construct,

and have overspill for, an analogue of the formula ψ(z, ā, b, c, s) stating that
the fragment of Γ(x, ā) up to z is satisfied by some element of the form w/b.

To code sequences, we use the relation bx/2yc = z, which can be defined
by the Σb

1 formula

(y ≥ |x| ∧ z = 0) ∨ ∃w ≤ x ∃v < w (w = 2y ∧ x = wz + v)

(x = 2y has a quantifier-free definition). In general, bx/2yc is not a total
function in Σb

1-IND |x|k , but it is defined if y ∈ log(k). For such y, bx/2yc = z
also has an equivalent Πb

1 definition.
First, we need a universal formula for (standard) open formulas with a

fixed tuple of parameters ā, b and one other free variable w, to be interpreted
by elements bounded by b2. It is not difficult to see that the well-behavedness
of bx/2yc for y ∈ log(k) makes it possible to write such a formula in a Σb

1 way
(non-strict): we can use a formula similar to ψ and θ from the proof for
IE 2, except that we make the universal quantifiers (bounded by z) sharply
bounded, and we employ bx/2yc rather than Gödel’s β-function.

Second, we note that there are arbitrarily small nonstandard s coding
the set of formulas in Γ′ by their bit sequences, where the ith bit of s is
bs/2ic − 2bs/2i+1c. This is because a nonstandard model of Σb

1-IND |x|k has
a nonstandard initial segment satisfying I∆0 (the closure of log(k) under
multiplication, at least if k > 0).

Using this, we can write

∃w < b2 ∀pφ′q < z (pφ′(w, v, ȳ)q ∈ s⇒ A |= φ′(w, b, ā)) (1)

in a Σb
1 way: for small z, the quantifier ∀pφ′q < z can be made sharply

bounded, and pφ′q ∈ s is Πb
1. We thus get overspill for (1), and the rest of

the argument is as in the case of IE 2.

Nonstandard models of PV . The overall strategy is similar to the one for
Σb

1-IND |x|1 = S1
2 , but as an additional difficulty we need to get rid of the

existential quantifier in front of (1). Using the same notation as above, let s
be an element of A coding Γ, and let f(ā, b, s, r) be a PV -function formalizing
the following polynomial-time algorithm:

(i) Write down the list of polynomials p0, . . . , pm ∈ (Z[ā])[x] such that
every φ(x, ā), where pφq ∈ s, pφq ≤ |r|, is a Boolean combination of
atomic formulas equivalent to pi(x) ≥ 0.
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(ii) For each i ≤ m, compute the Sturm sequence pi,0 = pi, pi,1 = p′i,
pi,j+1 = −(pi,j mod pi,j−1). Let pi,ki

be the last nonzero member of the
sequence.

(iii) Compute ci = Vi(0, b) = Vi(0) − Vi(b), where Vi(x) is the number of
sign changes in the sequence pi,0(x), . . . , pi,ki

(x). (If x is a multiple root
of pi, i.e., pi,j(x) = 0 for every j, then we redefine Vi(x) as Vi(x+ 1/b).)

(iv) For each u < ci: using binary search, find wi,u < b2 such that

Vi(0, wi,u/b) ≤ u < Vi(0, (wi,u + 1)/b).

(v) If φ(wi,u/b, ā) holds for all pφq ∈ s, pφq ≤ |r|, then return wi,u.

Note that if we put n = |r| and a = max{ā, 2}, then m ≤ n log n, each
pi is a polynomial of degree at most log n, and the sum of absolute values
of the coefficients of pi is at most alog n, thus pi has bit length O(|a| log n).
This implies that step (i) can be done in polynomial time, and it is easy to
formalize it in PV .

As for (ii), we have ki ≤ deg(pi) ≤ log n, and the computation of the se-
quence in a straightforward way takes O(log3 n) arithmetical operations. In
order to make it polynomial time, it thus suffices to ensure that coefficients
of pi,j have polynomially bounded bit length. This follows from the fact that
these coefficients can be expressed in terms of determinants of submatrices
of the Sylvester matrix of pi and p′i, see e.g. [vzGG99, Thm. 6.53]. Instead of
formalizing these bounds in PV , we directly incorporate them in the defini-
tion of f (i.e., if the bounds are violated at some point, the function aborts
the computation and returns, say, 0).

Step (iii) is clearly polynomial.
Step (iv) comprises log b2 evaluations of Vi(w/b) for some integers w < b2,

which takes polynomial time.
In (v), we use the fact that evaluation of open arithmetical formulas can

be performed in polynomial time; this follows using estimates similar to step
(i).

Assume that Γ is not satisfied by any element of rcl(ā). We claim that

∀pφq ≤ |r| (pφ(x, ȳ)q ∈ s→ R |= φ(f(ā, b, s, r)/b, ā)) (∗)

holds for every standard r. We know that the conjunction of the φ’s is
satisfied on a non-degenerate interval I = (α, β) ⊆ (0, b) of length more than
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1/b whose endpoints are roots of some of the polynomials pi. Assume that
β is the uth root (counted from 0) of pi in (0, b). Since pi has standard
degree, the true Sturm sequence for pi satisfies the above mentioned bounds
on coefficients, hence it coincides with the sequence pi,j computed in step
(ii). By Sturm’s theorem (which works for any rcf), Vi(x, y) is the number
of roots of pi in (x, y] as long as x < y and neither x nor y is a multiple
root of pi. Our definition of Vi(x) ensures that the same holds even if x or
y is a multiple root, because if, say, x is a root, then there is no root in
(x, x+ 1/b]. It follows that there are at most u roots of pi in (0, wi,u/b], and
at least u + 1 roots in (0, (wi,u + 1)/b]. Since there is at most one root in
(wi,u/b, (wi,u + 1)/b], we must have β ∈ (wi,u/b, (wi,u + 1)/b]. In other words,
wi,u/b ∈ [β − 1/b, β) ⊆ I, and f(ā, b, s, r) is wi,u unless the algorithm found
and returned another good wi′,u′ earlier.

As the evaluation of open formulas in the language {0, 1,+, ·,≤} is poly-
nomial-time, the formula (∗) can be treated as a PV -formula. Thus, by
overspill, (∗) also holds for some nonstandard r. Then f(ā, b, s, r)/b satisfies
Γ(x, ā).

We note that most of the argument for PV could be adapted to (the
RSUV-isomorph of) VTC 0 (cf. e.g. [CN10]), extended by IOpen. However,
the binary search in step (iv) seems to genuinely require sequential polyno-
mial time.

Remark. The results of this section show that the property “every nonstan-
dard model of T has a recursively saturated real closure” does not require
T to be particularly strong. However, we do not have a single example of a
theory with this property which has been proved to be strictly weaker than
full bounded induction in its appropriate language.

In particular, even though the theories Σb
1-IND |x|k for k ≥ 3 are known

to be very weak (by [BR10], they do not even prove that powers of 2 have
no non-trivial odd divisors), we are not aware of a result separating Σb

1-
IND |x|k + IOpen from full S2, for any k. Interestingly, [BK10] gives such a
separation in the case of Σ̂b

1-IND |x|5 +IOpen, which has a restricted induction
scheme for strict Σb

1 rather than general Σb
1 formulas. However, our proof of

Theorem 3.1 part (ii) does rely on induction for non-strict Σb
1 formulas.
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4 The unsaturated case

Some extensions of IOpen by algebraic axioms are known to, on the one
hand, disprove various pathological statements consistent with IOpen, on
the other hand, share many of the model-theoretic features of IOpen, such as
the failure of Tennenbaum’s Theorem. Essentially the strongest well-studied
theory of this kind extends IOpen by the Bézout axiom:

∀x ∀y ∃z ∃u ∃v (z | x ∧ z | y ∧ xu+ yv = z).

IOpen + Bézout is known to disprove e.g. the rationality of
√

2, but not the
existence of a greatest prime ([Smi93]). In [Moh06], it is stated (and proved
for a slightly weaker theory) that IOpen +Bézout has recursive nonstandard
models. Here, we prove that the real closure of an unbounded model of
IOpen + Bézout does not have to be recursively saturated.

Theorem 4.1. There exists an unbounded countable principal ideal domain
A |= IOpen (and therefore a model of Bézout + there exist unboundedly many
primes + existence and uniqueness of prime factorization) such that rcl(A)
is not recursively saturated.

Proof. Note that a principal ideal domain (PID) is a Bézout domain and a
unique factorization domain (UFD). A UFD with boundedly many primes
is bounded. Moreover, a UFD satisfies the first-order axiom stating the
existence and uniqueness of prime factorization, formulated using Gödel’s
β-function (since IOpen does not prove that we can multiply together a
sequence of integers, we must formulate it so that a factorization is explicitly
endowed with a sequence of partial products of the factors): on the one
hand, a true prime factorization comprises a sequence of standard length,
which exist in IOpen. On the other hand, the usual proof of uniqueness of
factorization is easily seen to work in this setting whenever at least one of
the factorizations has standard length, which we can assume by the existence
part.

For the actual construction, we adapt the proof by Smith [Smi93, Thm.
10.7] (building on [Wil78, MM89]) that there exists a nonstandard PID
A |= IOpen. We make sure that rcl(A) is not recursively saturated. We as-
sume the reader is familiar with [Smi93], but we will briefly describe Smith’s
construction so that we can refer to its ingredients. We build an increasing
chain of countable discretely ordered UFDs A0 ⊆ A1 ⊆ A2 ⊆ · · · , and let
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A =
⋃

n∈NAn be its union. All the An are included in an ℵ1-saturated rcf L,
which we fix in advance. Every An is endowed with a ring homomorphism
ϕn : An → Ẑ, where

Ẑ =
∏

p prime

Zp = lim←−Z/nZ.

(Here, Zp denotes the ring of p-adic integers. When An is a Z-ring, ϕn is its
unique remainder homomorphism.) We make ϕn ⊆ ϕm for n ≤ m, and we
maintain the condition that each ϕn is parsimonious, i.e., for every nonzero
a ∈ An, there are only finitely many k ∈ N such that k | ϕn(a).

We can take A0 = Z. The other An are constructed as follows:

(i) The “Ẑ-construction”: for odd n, we define An+1 = {a/k : a ∈ An, k ∈
N, k | ϕn(a)}. This ensures that An is a Z-ring for every even n.

(ii) The “Wilkie construction”: for some of the even n, we pick β ∈ rcl(An)
which is not at a finite distance from any element of An (i.e., |v−β| > m
for every v ∈ An and m ∈ N), and we put An+1 = An[v], where v ∈ L
is suitably chosen so that |v − β| < 1, An+1 is discretely ordered, and
v is transcendental over An.

(iii) The “construction F”: for some of the even n, we pick distinct non-
standard primes p, q ∈ An, and we put An+1 = An[v, (pv−1)/q], where
v ∈ L, v > An.

(iv) We include another construction not considered in the original proof:
for infinitely many of the even n, we put An+1 = An[v], where v ∈ L,
v > An.

Smith shows that this strategy can be carried out correctly: i.e., for each
of the constructions (i–iv), An+1 is a discretely ordered UFD, and we can
extend ϕn to a parsimonious ϕn+1 : An+1 → Ẑ (the case of (iv) is a simple
transcendental extension, and as such it is covered by [Smi93, §6]). More-
over, he shows that the steps can be arranged so that all β, p, q get handled
eventually, which ensures that A is a model of IOpen (due to the Wilkie
construction), a UFD, and every pair of primes has Bézout cofactors (due to
construction F). The last two conditions imply that A is a PID. Construction
(iv) ensures that A is unbounded. (In fact, A will be unbounded anyway if we
can argue that construction F is applied infinitely many times in the chain.)

14



Let α be a transcendental computable real number, and Γ(x) = {a < x <
b : a, b ∈ Q, a < α < b} the corresponding recursive type. We want rcl(A)
to omit Γ, which ensures that it is not recursively saturated. It suffices to
arrange that Γ is omitted in every rcl(An). For convenience, we identify α
with a fixed element of L realizing Γ. Using this convention, we need to ensure
that no element v ∈ rcl(An) is infinitesimally close to α (i.e., |v − α| ≤ 1/m
for every m ∈ N; written as v ∼ α).

Clearly, rcl(A0) omits Γ. Assuming rcl(An) omits Γ, we consider our four
constructions of An+1:

(i) The Ẑ-construction preserves the fraction field, and a fortiori the real
closure.

(iv) If v > An, rcl(An[v]) is included in the field F = rcl(An)〈〈v−1〉〉 of
Puiseux series over rcl(An) (see e.g. [BPR06, Cor. 2.98]): elements of
F are formal sums of the form

a =
M∑

m=−∞

amv
m/k,

where am ∈ rcl(An), M,k ∈ N, k > 0. Since v > rcl(An), a is domi-
nated by its leading monomial. Thus, assuming a ∼ α, we must have
am = 0 for all m > 0, hence α ∼ a0 ∈ rcl(An), a contradiction.

(iii) Construction F: since (pv − 1)/q belongs to the fraction field of An[v],
rcl(An[v, (pv − 1)/q]) = rcl(An[v]) omits Γ by (iv).

(ii) In order for the Wilkie construction not to realize Γ in rcl(An+1), we
need to choose v wisely. Let β ∈ rcl(An) not in finite distance from An

be given.

Claim. Let I ⊆ [β, β + 1] be an interval of noninfinitesimal length. If p ∈
An[x, y], p 6= 0, then there exists a noninfinitesimal interval J ⊆ I such that
p(u, v) 6= 0 for every u ∼ α and v ∈ J .

Proof. Let us call v ∈ I bad for u if p(u, v) = 0. Write p(x, y) =
∑

i≤d pi(x)yi,
where pi ∈ An[x]. For each u, either there are at most d bad v, or all v are
bad; the latter happens when u is a root of all pi, which in particular means
that u ∈ rcl(An). Thus, there are m ≤ d bad v for α, let us denote them by
v1 < · · · < vm. Moreover, let v0, vm+1 be the endpoints of I. Since vm+1− v0
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is noninfinitesimal, there is i ≤ m such that vi+1 − vi is noninfinitesimal,
hence we can find rationals c, d such that vi < β + c < β + d < vi+1.
Since the condition of there being no bad v in [β + c, β + d] is definable
with parameters from rcl(An) and satisfied by α, it is satisfied on an interval
including α with endpoints in rcl(An). In particular, it is satisfied by all
u ∼ α, hence J = [β + c, β + d] works.

Resuming our treatment of the Wilkie construction, let {pk(x) : k ∈ N} be
an enumeration of nonzero polynomials in An[x], and {qk(x, y) : k ∈ N} an
enumeration of nonzero polynomials in An[x, y]. We construct a sequence of
nested intervals [β, β + 1] = I0 ⊇ I1 ⊇ I2 ⊇ · · · of noninfinitesimal length
as follows. If m = 2k is even, we find noninfinitesimal Im+1 ⊆ Im such that
no v ∈ Im+1 is infinitesimally close to a root of pk (this is possible as the
number of roots of pk is standard, and Im has noninfinitesimal length). If
m = 2k + 1 is odd, we use the claim to find a noninfinitesimal Im+1 ⊆ Im
such that qk(u, v) 6= 0 for any u ∼ α and v ∈ Im+1. By ℵ1-saturation of
L, there exists an element v ∈

⋂
m Im. The construction ensures that v is

not infinitesimally close to any element of rcl(An), hence An[v] is discretely
ordered by [Wil78]. Assume for contradiction that there exists u ∼ α such
that u ∈ rcl(An[v]). Since u is algebraic over An[v], there is k such that
qk(u, v) = 0, contradicting v ∈ I2k+2.

5 Constructing integer parts

D’Aquino et al. show a kind of converse statement to their main theorem,
that every countable recursively saturated rcf not only has an integer part
satisfying (a given extension of) Peano arithmetic (which follows trivially
from resplendence), but also is the real closure of a model of (a given extension
of) PA [DKS10, Thm. 5.2]. We can generalize this result to extensions of
IOpen (note that this is more general only if we consider unsound theories).

Theorem 5.1. Let R be a countable recursively saturated rcf, and T a con-
sistent recursively axiomatizable extension of IOpen. Then R has an integer
part A such that A |= T and R = rcl(A).

Proof. By resplendence and the completeness of RCF , R has an integer part
B which is a model of T such that (R,B) is recursively saturated. We would
like to argue that R ' rcl(B) by invoking the theorem that a recursively sat-
urated pair of countable elementarily equivalent models are isomorphic. We
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do not actually know whether (R, rcl(B)) is recursively saturated, however
the standard back-and-forth construction of the isomorphism only needs the
following types to be realized in (R, rcl(B)) (using quantifier elimination for
RCF ):

Γ(x) = {φ(c, ā)↔ φ(x, b̄) : φ open},
∆(x) = {φ(x, ā)↔ φ(d, b̄) : φ open} ∪ {x ∈ rcl(B)},

where ā, c ∈ rcl(B), b̄, d ∈ R, tp(ā) = tp(b̄), and rcl(B) is treated as a
new unary predicate. (The formulas φ and the types tp(ā), tp(b̄) are in the
language of ordered rings, they do not involve the new predicate rcl(B).)

Recursive saturation of R immediately implies that Γ is realized; we will
show how to realize ∆. By o-minimality, either the type is satisfied in rcl(B)
and we are done, or each finite subset of ∆ is satisfied on an open interval
I ⊆ rcl(B), and therefore by an element of the fraction field of B. Let ā′ ∈ B
be such that ā is definable in terms of ā′. For each open formula φ, we can
effectively find an open formula φ′(x, y, ā′) equivalent to φ(x/y, ā). Then

∆′(x, y) = {φ′(x, y, ā′)↔ φ(d, b̄) : φ open} ∪ {x, y ∈ B}

is a recursive type of (R,B), hence it is realized by a pair of elements (u, v),
and ∆ is realized by u/v.

Thus, there exists an isomorphism f : rcl(B) ' R, and then A = f(B) is
an integer part of R with all the required properties.

6 Problems

We conclude the paper with a few open problems:

Problem 6.1. Does the property “every unbounded rcf with an integer part
satisfying T is recursively saturated” hold for T equal to:

(a) IE 1?

(b) IOpen(bx/yc)?

(c) (the RSUV-isomorph of) VTC 0?
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We note that [Wil85] shows that the reduct of a nonstandard model of
IE 1 to the language of + and ≤ is recursively saturated, but the techniques
used to prove that result do not seem to be directly applicable in our case.
IOpen(bx/yc) is a theory about which little is known, except that it is strictly
stronger than IOpen ([Kay93]) and contained in (an extension by definitions
of) IE 1. VTC 0 plays an important role in the study of connections between
weak arithmetic and computational complexity. It is normally formulated in
a two-sorted language: after a translation known as the RSUV isomorphism,
it becomes a subtheory of PV . Since multiplication is TC 0-complete, VTC 0

is the weakest reasonable theory in this two-sorted setup whose models have
the structure of ordered semirings.

Problem 6.2. Assume that T contains IOpen and every unbounded rcf with
an integer part satisfying T is recursively saturated. Can T have recursive
nonstandard models (which would then necessarily be bounded)?
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