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Professor Ivo Babuška 80 years young and enthousiastic

That is, young enough to help us youngsters through the next

twenty years of numerical mathematics and engineering.

congratulations !
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Professor Ivo Babuška 100 years young and enthousiastic

C O N G R A T U L A T I O N S !
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Summary

Already since 2018, the Finite Quantum Method completely out-
performs the FDM and FEM. Applied to the the 6D Hawking-
Penrose Equations∗ we arrive at a fully discrete Theory of Every-
thing. We show that the FQM satisfies the 2021 Babuška† Reli-
ability Condition and comment on how to solve the n× n = 1/h

system of equations using Matlab, where h is Planck’s constant.

References

• I. Babuška et al. (2013). The Finite Quantum Method.

• S. Hawking and R. Penrose (2017), The Theory of Everything.

• I. Babuška (2021). Reliability of Finite Quantum Methods.
∗Hawking and Penrose got the Nobel Prizes for Peace and Physics in 2025
†without Brezzi, who retired already in 2010 at the early age of 65
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Motivation

Simplicial finite elements in two and three space dimensions are

by now well understood and coded in many different applications

FEM models of fluid structure interaction (left) and electric

charges in the heart, solved in FEMLAB
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Understood:

Finite element theory is embedded more and more in pure math-

ematics, like in

• Differential Geometry

• Homology

Arnold, Falk, Winther: Finite element exterior calculus, ho-

mological techniques, and applications, Acta Numerica 2006

Tuesday 09.00 - 09.45:

Mark Ainsworth: Diagonal scaling of discrete differential forms
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Coded:

Day by day, commercial software is becoming more powerful and

easier to use. FEMLAB from COMSOL is being used by many

people who have no mathematical knowledge at all of the theory.

Prague, October 27, 2006

For the latest developments, hands-on training, networking.
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Time has come to look ahead into four dimensions

Computational resources are rapidly becoming powerful enough

to realize four dimensional simplicial finite elements

Potential applications range from fundamental physics to finan-

cial mathematics. One day there may really be 6D Hawking-

Penrose equations to solve!

Moreover:

It gives further insights in the finite element method in two and

three space dimensions if proofs and constructions can be given

that are independent of the spatial dimension.
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Example 1: Supercloseness and superconvergence

Supercloseness and superconvergence are a tool for a posteriori

error estimation in finite element methods

|uh − Lhu|H1 ≤ Ch2|u|H3.

For simplicial elements, proofs can be found in:

n = 1: Tong (1956)

n = 2: Oganesian & Ruhovets (1969)

n = 3: Chen (1980), Kantchev & Lazarov (1986)

Even though the mesh conditions for n = 2 and n = 3 are similar,

the proofs in these papers are very different from each other.
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Dimensions n ≥ 4

The directional derivative of a continuous piecewise linear func-

tion along an edge of a simplex is constant on the patch of

simplices sharing that edge

If these patches are point-symmetric with respect to their center

of gravity, this results in certain cancellations of error terms

Brandts & Kř́ı̌zek (2003)
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Example 2: Strengthened Cauchy-Schwarz inequalities

Let V2h and Vh the continuous piecewise linear functions with

respect to a triangulation/tetrahedralization T2h and its uniform

refinement Th. Write

Vh = V2h ⊕Wh.

For all v ∈ V2h, wh ∈ Wh the strengthened CS inequality holds

|a(v2h, wh)|2 ≤ γ2a(v2h, v2h)a(wh, wh) with γ2 < 1.

n = 1 : γ2 = 0/1

n = 2 : γ2 = 1/2: Axelsson (1982)

n = 3 : γ2 = 3/4: Blaheta (2003)
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Dimensions n ≥ 4

The value of γn in n space dimensions is

γn =

√
1−

(
1

2

)n−1

which extends the tabular in the following way

dim γ2 dim γ2

1 0/1 4 07/08
2 1/2 5 15/16
3 3/4 6 31/32

Notice that γn → 1 for n →∞.

Brandts, Korotov, Kř́ı̌zek (2004)



Questions that may rise

What does a simplicial partition in more than four dimensions

look like? When are the patches point-symmetric? How can you

refine a partition, globally or locally? What do the relevant angle

properties depend on?
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The n-simplex S in linear algebraic terms

S is the convex hull of the origin and n linearly independent
vectors pj

P = (p1| . . . |pn)

Let

Q∗ = P−1, with Q = (q1| . . . |qn)

Since Q∗P = I each qj is normal to the convex hull Fj of the pi
with i 6= j which is the facet Fj of S opposite pj.

Notice

`j : x 7→ q∗jx is the linear nodal basis function for pj and

(∇`j,∇`i) = q∗j qi|S|.
From this we also see that q0 = −Qe, where e = (1, . . . ,1)∗.
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Illustration for n = 3
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Example 3: Assuring the discrete maximum principle

Sufficient for the DMP to hold is

0 ≥ (∇`j,∇`i) = q∗j qi|S| = −‖qi‖‖qj‖|S| cos(Fi, Fj)

Since the height h of S measured from Fj equals

h =
p∗jqj

‖qj‖
=

1

‖qj‖
and thus |S| =

|Fj|
n‖qj‖

the DMP holds if

0 ≤
|Fi||Fj| cos(Fi, Fj)

n2|S|

n = 2: Santos (1986)

n = 3: Kř́ı̌zek and Lin (1995)

n ≥ 4: Brandts, Korotov Kř́ı̌zek and (2006)
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Non-obtuse and acute simplices

The DMP holds if q∗j qi < 0 for each pair of distinct normal vec-

tors. Those numbers are the off-diagonal entries of

(q0|Q)∗(q0|Q) =

[
q∗0q0 q∗0Q
Q∗q0 Q∗Q

]
Recalling that q0 = −Qe with e = (1, . . . ,1)∗ and thus that

Q∗q0 = −Q∗Qe

it suffices to consider off-diagonal entries and row sums of

Q∗Q

only. Recall that Q = P−∗ can be any non-singular matrix.
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Ortho-simplices and path-simplices

An ortho-simplex is a simplex having n mutually orthogonal edges.
If those edges form a path, the simplex is called a path-simplex.

L. Schläfli, Theorie der vielfachen Kontinuität aus dem Jahre
1852; In: Gesammelte mathematische Abhandlungen, Birkhäuser,
Basel, 1950.

Schläfli used the alternative name orthoscheme.

Lobachevsky: pyramid (R3)

Wythoff: double-rectangular (R3)

Schoute: polygonometry (Rn)

Eppstein: path simplex (Rn) (tetrahedron)
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More about the path-simplex

The canonical path-simplex is represented by

P =


1 · · · · · · 1

.. . ...
. . . ...

1

 where Q = P−∗ =


1

−1 1
.. . . . .

−1 1


which can be used to prove that path-simplices are non-obtuse

Rajan (1991) ortho-simplex + self-centered ⇔ path-simplex

Corollary: A dissection into path-simplices is Delaunay
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Dissection into path-simplices

Freudenthal (1942) The n-cube dissects into n! path-simplices.
However, the simplexity of the n-cube is

1,2,5,16,67,308,1493, ...

Hadwiger (1957) Conjecture: Every n-simplex can be dissected
into finitely many path-simplices

• n = 2: trivially into 2

• n = 3: Lenhardt (1960), 12

• n = 4: A.B. Charsischwili (1982), into 730

• n = 4: H. Kaiser (1986), into 610

• n = 4: K. Tschirpke (1993), into 500

• n = 5: K. Tschirpke (1993), into ≤ 12.598.800
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Uniform refinement in higher dimensions

K = [0,1]n can be subdivided into n! simplices of dimension n,

Sσ = {x ∈ Rn | 0 ≤ xσ(1) ≤ · · · ≤ xσ(n) ≤ 1},

where σ ranges over all permutations of 1, . . . , n.

We may define uniform refinement of those simplices by:

• uniformly refine the cube into 2n subcubes

• Subdivide each subcube into n! simplices

• Each Sσ consists of 2n smaller simplices

Freudenthal (1942)

Kuhn (1960)

Blaheta (2003)
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Example 4: bi-(tri-)section of the two-(three-)pathsimplex

A right triangle can be subdivided into two right triangles, and
this process can be locally towards a vertex at the long diagonal

A path-tetrahedron (3-orthoscheme) can be dissected into three
sub- orthoschemes

Coxeter (1989) Trisecting an orthoscheme, Computers Math.
Applic., 17(1-3):59–71

Repeating this procedure results in local refinement towards a
vertex at the long diagonal

Korotov, Kř́ı̌zek (2003), Local nonobtuse tetrahedral refine-
ments of a cube, Appl. Math. Lett. 16:1101 - 1104.
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Dimensions n ≥ 4

Inductively dissect into n + 1 path-subsimplices such that each
orthogonal path ends at α1p1 with 0 < α1 < 1.

Then consider the degenerate case α1 = 1, resulting in n path-
subsimplices.
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Repeating this procedure results in local refinement towards a

vertex at the long diagonal

The bottom left simplex after two refinements is similar to the

original one.
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Conclusions

We have a number of ingredients available to write an effi-

cient linear finite element code for elliptic equations on four-

dimensional domains.

Such a code could include:

• Uniform refinement or refinement towards a particular node

• Optimal complexity algebraic multigrid solvers

• Error estimation based on superconvergence

• A condition to assure the discrete maximum principle



Work in progress and future work

To prove Hadwiger’s Conjecture that each simplex can be sub-

divided into a finite number of path-simplices.

To prove equivalence of several regularity conditions for families

of simplicial partitions in two and three dimensions, to generalize

them to n ≥ 4, and to design refinement procedures satisfying

those conditions for n ≥ 4.

Coding in Matlab of four-dimensional examples.

Discretizing the Hodge Laplacian in four dimensions using mixed

finite elements using Nedelec’s edge-face-facet elements.
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