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1 Approximation in Jacobi-weighted Spaces
over Q) = (—1,1)"
1.1 Jacobi-weighted Besov and Sobolev spaces

H*P(Q),Q = (—1,1)" with integer k£ > 0, real 3 > —1,1 < /¢ <n

k
lull g0 (@) :{ Z /Q!DO‘uPWag(:c)daz}

|a|=0

1/2

with Jacobi weight function :

n

Wag(z) = [ [(1 —a;®)x 7

=1l
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Approximation in Jacobi-weighted Spaces

Jacobi-weighted interpolation spaces

B3 (@Q) = (H(Q), H*(Q)

0,q
with s = (1—9)€+9k,k>€20,9€ (0,1).

B35 (Q) = H*P(Q) s
Jacobi-weighted (fraction order) Sobolev space ,

% dt
2 _ —0 g 4l
g = [ K0S

where

K(tw) = inf ([ollgesiq) +tlwlmesq)

u=v+w
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Approximation in Jacobi-weighted Spaces

B5° (Q) = B*P(Q) is Jacobi-weighted Besov space,

2,00

||| ps.5(Q) = sup t YK (t,u)

t>0

Modified Jacobi-weighted spaces B,ﬁ’ﬁ(Q), v >0

. K(t,u)t™?
s,B3 — 5
B7(Q) >0 (14 | logt|)¥

||

Remark B,ﬁ’ﬁ(Q), v > (0 is not an exact interpolation space, and
B*P(Q) and H*"(Q) are.
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Approximation in Jacobi-weighted Spaces

1.2 Approximation in the spaces

H*Y(Q), H*(Q), By (Q)

Jacobi Projection Let P,(QQ) be set of all polynomials of degree
(separate) < p. For u € H*P(Q) for k > 0,

©@)

u(z) = Z - P, (21, 1) Piy (29, B2) - - - Bi, (Tp,5 By).

’1:1 ,’132 ’Ln :O

where P; (x1,31) is Jacobi polynomial, etc. then the Jacobi
projection on P,(Q) is

p

Up(ﬂf): Z Cq;l,q;g..-z'nPi1(5’31751)Pi2(332>52)"'Pin(xnaﬁn)

’il ,’ig ’ln :0
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Approximation in Jacobi-weighted Spaces

Theorem 1.1 Let u, be the Jacobi projection of v on P,(Q).
Then
(DFor0<i<kandp>0

lu = upll o) < Co~ %D lull s ), (1.1)

andforO<l<sandp >0

| — wpll o (@) < CP™ ) || s () (1.2)

lu = upll sy < Cp~ P91 +logp)” lullgzogy;  @3)
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Approximation in Jacobi-weighted Spaces

(iIfk>n/20rs>n/2,and 6, < —1/2for1 </ <n,1 <n <3,
then
[(u —up)(z)] < Cp_(k_n/mHuHH’fﬁ(Q)a (1.4)

(1 — up)(@)] < Cp~ D ||u|| o), (1.5)
(u = ) (@) < Cp D1+ logp) full oy 49

(i) If p > k — 1 the estimations hold in terms of semi norms for
Integers [ and k

[ = wplrrs(g) < Cp~ " lulaes g (1.7)
and if £ > n/2, in addition

[(u — up)(@)| < Cp~* D |u| gus (). (1.8)
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Approximation in Jacobi-weighted Spaces

The constant C in the above inequalities is independent of p, u,
but may depend on k.

Corollary 1.1 The above estimations can be easily generalized
to for non-integer |.
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Approximation in Jacobi-weighted Spaces

1.3 Regularity and Approximability of singular

functions in Jacobi-weighted Besov spaces over
Q=(-1,1)"n=2
Consider typical singular function on Q = (—1,1)%:
u(z) =717 log” r x(r) ®(0) (1.9)

where real v > 0, integer v > 0, x(r) and ®(r) are C'*° functions
such that for 0 < rg < 2

x(r)=1 forO<r<nry/2, x(r)=0 forr >rg
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Approximation in Jacobi-weighted Spaces

X+1 =K (X +1)

2/ 1

1 X1

X+1=(x+1) / k

('1" -1

L
[ ro

=l
>

Fig. 1.1 Square Domain ¢ and sub region R, g,
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Approximation in Jacobi-weighted Spaces

Theorem 1.2 Fory>0andv >0, u € B,ﬁ’f(@) with
2+ 2v+ 1+ B2 and

(v if v is not an integer, or v = 0

vt = < (1.10)
v—1 If vis an integerand v > 1,

\

Theorem 1.3 Let u(x) be given in (1.9) with v > 0 and integer
v > 0, let ¢ and ¢ are the Jacobi projection of » on P,(Q),p > 1
associated with 3 = (0,0), and g = (—1/2,—1/2), respectively.
Then,
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Approximation in Jacobi-weighted Spaces

lu = o) < C o> 2 log”" (14 p) | gas2vs ) (1.11)

with 3 = (0,0), and
Hu — CbHHl(RO) <C p_2’7 log”* (1 + p)HUHBii—%,B(Q) (1.12)

with g = (—1/2,—1/2), where v* is given in and (1.10) and
Ro=R, o = {:c cQ ‘ r<rgy Oy<O<m/2-— 90} (1.13)

with 8y € (O, 7T/4)
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2 Approximation in the Jacobi-weighted
spaceson ), = (—h, h)"

2.1 Jacobi-weighted Besov and Sobolev spaces over

Qn

Let wy, o g(z) be a weighted function on @y, = (—h, h)",
1 <n<3:

n

€T; a;+05i
Wh,a,8(T) = H (1 - (E>2)
1=1
with a = (ag, ..., a,), a; > 0 integer, and

B=(06;1<i<n),G >—L.
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Approximation in the Jacobi-weighted spaces on ()},

The Jacobi-weighted Sobolev space H*°(Qy,), k > 0, is the
closure of C'°° functions furnished with the norm

The Jacobi-weighted Sobolev spaces H54(Q;,) and Besov

spaces B*°(Q;,) are defined as usual interpolation spaces by
the K-method,

H*P(Qn) = B35 (Qn) = (Hw(Qh% Hkﬁ(@h))e 2

and

B9(Qn) = B2 (Qn) = (H*2(Qn), H*(Q1))

0,00
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Approximation in the Jacobi-weighted spaces on ()},

The space Bﬁ’B(Qh) IS an interpolation defined by the modified
K-method,

B32(Qn) = (H"2(Qn), H*(Qn))

0,00,V

Proposition 2.1 Let u(z) and U(£) = u(h&) be functions
defined on )5, and @, respectively.

(i) uw € HHP(Qy,) with integer k > 0if U(€) = u(hé) € HP(Q),
visa versa. Furthermore, there holds for ¢ < k

’uﬁiﬁﬁ(@h) = hn/2_£’U’H‘45(Q)§ (2.1)
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Approximation in the Jacobi-weighted spaces on ()},

(i) v € H>P(Qy,) with noninteger s > 0 if U (&) € H>P(Q), visa
versa. There holds for ¢/ < s

ulges@,) = hn/2_£’U’HW(Q)§ (2.2)

(iii) w € BS?(Q),) with real s > 0 and interger v > 0 if
U(€) € BSP(Q), visa versa.
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Approximation in the Jacobi-weighted spaces on ()},

Theorem 2.1 Let u, be the Jacobi projection of u on P,(Qx)
with p > 1, Then for 0 <[ <k,

hH!
Ju — upl| 518 (Q,) < C—HUHHM (Qn)> (2.3)
for0 <l < s,
hH!
Ju — up || gr8(Q,) < CﬁHUHHs B(Qn) (2.4)
and
h!
Hu — upHHl,ﬁ(Qh) < Cp log” (1 + h)Hu‘ B2 (Qn) (2.5)

where ;. = min{k,p + 1};
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Approximation in the Jacobi-weighted spaces on ()},

(i) Ifk >n/2,0ors>n/2and G, < —1/2,1 < ¢ < n, then for
T € Qp

h,u—n/2
(u —up)(z)] < Cpk_n/g [wllzes Q) (2.6)
[(u — up)(@)| < Cp~ 2R | s, (2.7)
and
h,u—n/Q

v p
[(u —up)(x)| < C log” (1 + E)H’U,HBS,B(Qh) . (2.8)

ps—n/2
(i) Forp > k£ — 1 and k£ > 1, there hold

h

k—I1
]u — ’U,p‘Hl,ﬁ(Qh) <C (;) "U/‘Hk,B(Qh) (2.9)
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Approximation in the Jacobi-weighted spaces on ()},

2.2 Regularity and Approximability of singular

functions in Jacobi-weighted Besov spaces over
Qh — (_h7 h)2
Consider typical singular function on Q;, = (—h, h)? :

u(z) =717 log” r x(r) ®(0) (2.11)

Theorem 2.2 Fory>0andv >0, u € B,ﬁ’f(Q) with
s =24 2v+ B+ B2 and v* given in (1.10).
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Approximation in the Jacobi-weighted spaces on ()},

Theorem 2.3 Let u(x) be given in (2.11). Then there exist
polynomials iy, () and oy, (x) in P,(Q), p > 1 such that

h\ ;
Hu - wthLQ(Qh) <C (?) F,/(p, h)HuHij(Qh) (2.12)

with 6 = (0,0),s = 2(1 + ), and

h 8
o= ol < € (25 ) Blp Wl g, @19

with 6 = (—1/2,—1/2),s = 1 + 2+, where F,(p,h) is a
log-polynomial,
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Approximation in the Jacobi-weighted spaces on ()},

( log” £ for non-integer ~,
F,(p,h)={ log" ' Z for integer v and r7®(0) € P,
| max{ log" ' £, log” + } for integer v and r7®(0) ¢ P,
(2.14)
Furthermore, for = € Q);,, there holds
h 8
u(z) — pnp(x)| < C (}?) F,(p, h). (2.15)

The constant C' in (2.12) -

2.15) is independent of h and p.

7~

Approximation Theory in Jacobi-weighted Spaces and Its Application to h-p FEM — p. 21/



3 The optimal convergence of the  h-p

version of FEM
Consider a boundary value problem:

{ “Autu =f inQ, .

du =g on 9.

where €2 be a polygon.
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The optimal convergence of the h-p -version of FEM

Fig. 3.1 Polygonal domain (2

Approximation Theory in Jacobi-weighted Spaces and Its Application to h-p FEM — p. 23/



The optimal convergence of the h-p -version of FEM

Recent progresses

* h-p FEM
Babuska and Suri (1987): for = min = wi v = maxv; 2 0
= unplls @) < CHTp~log" (7).
Guo and Sun (2005): for v = miin Vi = g, v = maxv; >0

Coh"p=*VF, (b, p) < llu — unpll iy < C1h'p~*VF, (h, p)
where
[ log”(2), ~is notinteger,

—1

Fy(h,p) = log" (%), ~isinteger, r7®(0) is not polynomial
max{log”~'(2),log”(+)}, otherwise .
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The optimal convergence of the h-p -version of FEM

Let ST, (2; Ap; M) be the finite element spaces. Here

M = {M;,1 < j < J} denotes a mapping vector and M, is an
affine mapping of standard triangle 7" or square S onto (2;. Let
SP(Q; Ap, M) = {qb(ac) = Hl(ﬂ) ’ 0 \Qj: Pj o Mj_l,qu c

Pp(T) or Pp(S),7=1,2,...,J} and

S%(Q, Ap; ./\/l) = SP(Q; Ap; ./\/l) M H})(Q)
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The optimal convergence of the h-p -version of FEM

3.1 The h-p-version finite element method for

problems with smooth solutions

Lemma 3.1 Letu € H*?(Qp,),k >0, and let U(¢) = u(hf).
Then

U = Upllges@) < Ch*Hlull grs(q,) (3.2)

where ¢ = min{k,p + 1}, and C depends on k, but is
Independent of p, h and w.

Lemma 3.2 Let +; be an edge of T}, which is a triangle or a
guadrilateral, and let i) be a polynomial of degree p on ~;
vanishing at the ending points of +;,. Then there exists an
extension ¥(x) € P,(1}) such that ¥(x) |, = % and vanishes at
other edges of 7}, and

H\IJHHl(Th) < C’|¢’|H§(§2(7h)‘ (3.3)
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The optimal convergence of the h-p -version of FEM

Lemma 3.3 Letu € H*(;),k > 1, where €; is a curved
triangular or quadrilateral element of the mesh A;, with size h.
Then there exists a polynomial ¢ € P,(£2;) such that

it
|u = @l ) <C 1 [ wl] () (3.4)

with = min {p + 1, k}, and u(V;) = ¢(V}),1 <1 <3 or4,V; are
the vertices of ();.

Proof Assume that (; is a curved quadrilateral. Let M; be a
mapping of Q2 = (—h/2,h/2)? onto Q;. If Q; is a curved
triangle, the mapping M; maps 1}, /5 = {x = (v1,72) |

h xo+h/2 h xo+h/2 h V3—1 '
_§_|_ 73 §331§§_ 73 ,—§§332§—2 h}OntOQZ.
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The optimal convergence of the h-p -version of FEM

+ + o+

+ + o+

—h/2

+ + 4+

+ o+ +

+ + o+

Fig. 3.2 Mapping of quadrilateral
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The optimal convergence of the h-p -version of FEM

++| ++
++Th/2+
T S T T 1

Fig. 3.3 Mapping of triangle
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The optimal convergence of the h-p -version of FEM

Then @ = uo M; € H*(Qy/2), and it can be extended to Qy,
such that the extended function has a support contained In
Q213 and preserves the norm. Furthermore, @ € H*?(Qy,) with
The Jacobi weight 5 = (—-1/2,—1/2), and

Jallieo@) < Cllallir @ < Clullmgy. — @5)

Then using approximation in H*4(€);), we get the results. []
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The optimal convergence of the h-p -version of FEM

Theorem 3.4 Let A, = {Qj, 1 <5< J} be a quasi-uniform

mesh with element size h over () containing triangular and
quadrilateral elements, and let S7,(2; Ap; M) be the finite
element space defined as above. The data functions f and ¢ are
assumed such that the solution « of (3.1)) is in H*(Q) with & > 1.
Then the finite element solution w,,, € ST,(Q2; Ap; M) with p > 1

satisfies

I
Ju = up,ll 1) < C P || g () (3.6)

where 1 = min {p + 1, k} and the constant C' is independent of p
and wu.

Approximation Theory in Jacobi-weighted Spaces and Its Application to h-p FEM — p. 31/



The optimal convergence of the h-p -version of FEM

3.2 The h-p version finite element method for

problems with singular solutions

We assume that f and g are such that the solution « of (3.1) is In

H"*(Qg),k > 1, and in each neighborhood Ss., u have an
expansion in terms of singular functions of 7 log” r -type

. [7] 3 . .
Ul =g — Z cl rI™ | log ri]V’[’”] ol (6;) X(Ti)—l—ug] (3.7)
0<’y£;i]§k—1
where (r,, 6,) are polar coordinates with the vertex A;,
u([)i] - H’“(S&.) IS the smooth part of w, %[f@] > (), and VLQ] > (0 are
Integers.
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The optimal convergence of the h-p -version of FEM

A . r

I 5.

Fig. 3.4 A neighborhood of the vertex A;
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The optimal convergence of the h-p -version of FEM

We assume that 1% > ]+1 and ) < %[TJH , x('rz-) and ¢g(9i)

are C functions, x(r,) = 1for 0 < r, < §; < 3, x(r;) = 0 for
Y = min ygi], vy = max Vp. (3.8)

771 ]—7

There exists ¢y such that ﬁo] =y and v, = VW.
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The optimal convergence of the h-p -version of FEM

Theorem 3.5 LetQ;, = {Q;, 1 <j < J} be a quasi-uniform
mesh over () containing triangular and parallelogram elements,
and let S%,(Q; Ap; M) with p > ~ be the finite element space
defined as above. The data functions f and g are assumed such
that the solution v of (3.1) is in H*() with k& > 1 + 27, and u
has the expansion (3.7) with u([)i] c H"(Ss,) in each
neighborhood Ss.. Then the finite element solution

Uy, € Sp(Q; A; M) for the problem (3.1) satisfies

h?
HU — uth[_Il(Q) S Clﬁ F,/,y (p, h) (3.9)

with the constant C; depending on u,~y and v.,, but not on p and
h, where v and and v, are given in (3.8), and F,_(p, h) given in

(2.14).
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The optimal convergence of the h-p -version of FEM

proof For elements €); contains no vertices, by Lemma 3.3,
there exist a polynomial ©l!l € P,(€2;) such that ¢! = v at the
vertices of €2;, and

hi—1 h

<C —
.pk—l .p27

lu — || 1,y < C

with i = min{p + 1,k} > 1 4 7. Let the element {2, contain a
vertex A; of Q. Then (3.7) holds with i = 1in Ss,. By
Lemma 3.3, there exist a polynomial iy € P,(£2;) such that
Yo = u at the vertices of 2;, and

!

pk—l

Juo — Yol < C
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The optimal convergence of the h-p -version of FEM

with . = min{p + 1, k} > 1 + ~. For a sharp approximation to w1,
we map €2; onto Ry C @, by an affine mapping £ such that
Ay o F; = (—h,—h) and that €2; is contained in Ry ;. Due to
Theorem 2.3, there exist polynomials v,,, € P,(£2;) such that

vm = ¥, at the vertices of €2;, and

h/y[l]
va _ meHl(Qj) <C ony[1] FI/E] (pa h)
p=rm

[1] i '
where v, = 7™ |logr|["" ®1(6;) x(r,). Let

=30 0oy Ot and Ul = 4+ . Then uy = v at the
vertices of (2, and
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The optimal convergence of the h-p -version of FEM

ek B
lur = Ylle) <C Y o Lo (p, h) < Cﬁ Ey (p, h).
O<7f£ﬁ]§k—1 p

which implies that v = ¢l at the vertices of ©;, and

h” hA—1 h7
]ﬁ Fl/»y(p7 h) + pk—l) < Cﬁ Fvﬂy(pa h)

o2,y < ©
Adjust ©Ul as in the proof of Theorem 3.4/ to achieve the
continuity across internal edges ~ of elements and
homogeneous Dirichlet boundary condition on the edges
~ C T'p. Let o = ¢l on each Q;,1 < i < J, then
pp € ST(2; A; M) and satisfies (3.9). []
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The optimal convergence of the h-p -version of FEM

A X,
h
o, Q
—h 0
o
0% §
o
O RO,h
o o
—h

Fig. 3.5 Mapping of element with a vertex of 2
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4  Concluding Remarks

1. Effectiveness of functional spaces for approximation

Table 4.1. The value of £ and s in Sobolev,

Besov and weighted Besov spaces for functions of

r7-type and " log” r-type

Space | H*(Q) | H*?(Q) | H*(Q) B*(Q) | B*(Q) | B;*(Q)
P 14 | 142y | 14v—e| 147 142y | 1429
rilog"r | 14+[y] | 1+2y] | 1+v—€|14+y—€| 1+2y—€| 142y
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Concluding Remarks

Table 4.2. Accuracy of approximation of the »- and

p-version to functions of 7 10g” r-type

based on Sobolev, Besov and weighted Besov spaces

h Version h-p VErsion
Space | H:(Q) | B*(Q) | H*(Q) | B*(Q) B*f(Q) B>*(Q)
r e hr () (3) (2)" (52)"
Y log? 1 Y€ hY—€ (%)v—e (%)fy—e (pgh_e)ﬂy\log%I” p%)”Fy(h,p)
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Concluding Remarks

2. Optimal Convergence

If u be the solution of the model problem in a polygonal domain,
u, € SPH(Q, A) be FEM solution. Then

lu — upllgra) < Cp~ > (1 + log p)”
IS the optimal rate, i.e. 3C1, s.t.

lu — up|| g1 () = Cip~?" (1 + log p)”
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Concluding Remarks

3. Generalization and Application

Jacobi-weighted Besov spaces can be generalized to all
dimensions :

In One Dimensions :

0;
In Two Dimensions : § = (—

In One Dimension :
B =(-1/3,-1/3,—1/3), in nbhd of vertex;
B =(-1/2,-1/2,0), in nbhd of vertex-edge;
B =(-1/2,-1/2,33), in nbhd of edge, 53 > —1, arbitrary.
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Concluding Remarks

Applicable to the p and h-p (with quasiuniform mesh) version of
FEM/BEM for problems with singular as well smooth solutions.

Approximation theory in the framework of the Jacobi-weighted
spaces provides a theoretical foundation of the modern p and
h-p (with quasiuniform mesh) version of FEM/BEM.
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