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Prediction problem:

Does the displacement δP exceed a given limit (3 mm)?
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We know:

• the geometry

• the load

• the mathematical model

We have limited information

about E, the modulus of

elasticity.
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Information provided about E:
• five local values E0
• five averaged values E20

inferred from the elongation
of sample rods 20 cm long

• two averaged values E80
inferred from the elongation
of sample rods 80 cm long

• δQ, a displacement of
a “similar” structure nicknamed

the accreditation problem

The prediction problem was proposed by Ivo Babuška, Fabio Nobile,
and Raul Tempone as one of the uncertain input data problems to

challenge the participants of Validation Challenge Workshop, Sandia
National Laboratories, Albuquerque, NM, USA, May 21-23, 2006.
In the problem, three levels of information (i.e., sets of measurements) are offered.

We use the poorest set.
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Difficulties:

• insufficient number

of experiments

• uncertain probability distribution

• poor estimates

of probability-related parameters
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Stochastic process

E ≡ E(x, ω) is a stationary random field (w.r.t. x); x ∈ [0, Li] where

Li is the length of the i-th rod. For some purposes, E(x, ω) can be

reduced to E0(ω), the field independent of x.

The expected value of E (the mean): Em = E(E0(ω)) = constant

independent of x and i.

We have to assume that E(x, ω) and E(y, ω) are not independent –

especially if x is “close” to y.
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Idea:

• Choose intervals I0 and I20 such that they contain the measured

values of E0 and E20, respectively.

• Assume a probability distribution of E0.

• For 1/E, assume a covariance function with an unknown correlation

length Lcorr.

• Calculate the correlation length Lcorr.

• By knowing Lcorr, infer an interval for E80 and check it against the

measured values of E80.

• Infer an interval for δQ and check it against the value of δQ coming

from the accreditation test.

• Infer an interval for δP and check it against the 3 mm limit given

in the prediction problem. Try to make a conclusion.

Much space for expert opinion!

Remark: B.&N.&T. call the measured E20 values calibration data and

the measured E80 values validation data.
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The intervals are constructed around a central value (dashed)

and interpreted as either the respective intervals in which both E0 and

E20 are uniformly distributed or the intervals covering 95% of normally

distributed values E0 and E20.
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Let us recall that E0(ω) is a random field of local values of E, that is,

a field identical to E(x, ω) except for the localization at a particular x.

We assume

cov

(

1

E

)

= E

[

1

E(x, ω)

1

E(y, ω)

]

−

(

E

[

1

E0(ω)

])2

= var

(

1

E0

)

g(x, y, Lcorr),

where

g(x, y, Lcorr) = exp

(

−
|x− y|

Lcorr

)

.

Other choices of g are possible. Take g(x, y, Lcorr) = exp
(

−
|x−y|2

L2
corr

)

, for

instance.
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Equation for Lcorr

If a uniform rod of length L and cross section area A is axially loaded

by a force F , then δL, its elongation, is a random variable:

δL(ω) =
F

A

∫ L

0

1

E(x, ω)
dx.

Then

var(δL) = E

[

δ2L

]

− (E[δL])
2 = . . . after some algebra . . .

=
F2

A2

∫ L

0

∫ L

0
E

[

1

E(x, ω)

1

E(y, ω)

]

−

(

E

[

1

E0(ω)

])2
dx dy

=
F2

A2

∫ L

0

∫ L

0
cov

(

1

E

)

dx dy

=
F2

A2
var

(

1

E0

)
∫ L

0

∫ L

0
exp

(

−
|x− y|

Lcorr

)

dx dy.
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However, if we define EL as the effective modulus of elasticity inferred

from the prolongation of the rod of length L, we obtain

δL(ω) =
FL

A

1

EL(ω)

var(δL) =
F2L2

A2
var

(

1

EL

)

.

By comparing both equations, we eliminate var(δL) and arrive at

var(1/EL)

var(1/E0)
=

1

L2

∫ 2

0

∫ 2

0
exp

(

−
|x− y|

Lcorr

)

dx dy. (1)

To solve (1), we evaluate var(1/E0) by means of the assumed probabil-

ity distribution of E0 in the interval I0. We evaluate var(1/EL), where

L = 20 cm, in a similar way using I20. After exact integration of the

r.h.s. of (1) (done by Maple), the r.h.s. becomes a function of Lcorr,

and (1) can be solved numerically for Lcorr.
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As soon as var(1/E0) is fixed by assumption and Lcorr is known from

(1), we can use (1) to directly calculate var(1/EL) for L = 80 cm

and other lengths. We assume that var(1/E80) corresponds to either

a uniform or normal distribution of E80. Under these assumptions, we

can infer I80 and check whether or not the validation data lie in I80.

In a similar way but with much less effort, we can infer

E[δL] =
FL

A
E

[

1

E0

]

.
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Since δQ, see the accreditation problem,

can be expressed as a linear combination

of δLi, i = 1,2,3,4, the same technique

enables us to obtain the mean value

of δQ and var(δQ).
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Similarly, we infer the mean value

of δP and var(δP ), the quantities

important for addressing the prediction

problem.
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Remark: The bending of transversaly loaded beams is expressed through

the Green function. To compute the corresponding variation of the

vertical displacements, integrals such as

∫ L

0

∫ L

0
φ(x)ψ(y) exp

(

−
|x− y|

Lcorr

)

dx dy, (2)

have to be evaluated. In (2), the product φψ is a continuous piece-

wise quadratic or cubic function. Again, Maple is able to analytically

integrate expression (2) and convert the resulting formulae into Matlab

code.
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To get an insight, it also helps to apply the Monte Carlo method

to both structures, though it simulates partly different mathematical

model. Indeed, sample structures are generated with effective elasticity

moduli (ELi) that are used even in the beam loaded by the transversal

force; this is not exactly the model that we have studied.
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The results of our calculations will be presented in graphs that, we

believe, can help the analyst to get some insight into the response of

the prediction problem to the assumptions made.
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Observations

• The most important quantity is Em = E[E0]. The smaller Em, the

greater probability that δP exceeds the limit.

• If Em becomes too small, say less than 0.98EM, where EM is the

mean of measured E, then it is harder to comply with the validation

and accreditation data.

• The greater Em (above EM), the smaller δP (good news). How-

ever, it is harder to comply with the calibration tests. Moreover the

calibration dataset then becomes more and more “one-sided”, which

is less and less probable.

• Although, at the first glance, the predictions based on E uniformly

distributed seems to be worse (closer to 3 mm) than the predictions

based on the Gaussian distribution of E, they are not that much dif-

ferent because the uniform distribution leads to short “tails”, see the

histograms of δP .
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Answers to dilemma Yes (δP ≥ 3) No (δP < 3)

1) If you follow the rule that a model both strict and fitting to the

data is the best choice, say No. You will sleep like an innocent baby.

2) If you are a realist but if you believe that things mostly end in good,

say No. You will sleep well.

3) If you know the harsh side of life, say No. You will feel that you

have more than a fifty-fifty chance to be right.

4) If it is a matter of life and death, say No. Simply try to believe in

my sixth sense.

5) If you do not feel any inclination to yes or no and if you do not hear

an inner voice, quit problems with uncertain data.

I thank Ivo Babuška, Fabio Nobile, and Raul Tempone for inventing

this puzzle and for giving me lectures on variance, covariance, and

loaded beams.
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