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Motivation
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

• Mathematical modelling of nanotechnological processes of
creating thin films of materials

–
– possible further research

• Analysis of models based on stochastic partial differential
equations driven by fractional Brownian motion

– parameter estimates
– general framework: equations in Hilbert spaces
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Outline
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

• Stochastic equations in Hilbert spaces

• Parameter estimates

– estimates based on ergodicity
– estimates based on exact variations

• Numerical simulations

– Linear SDE
– Parabolic SPDE
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Stochastic evolution equations driven by
fractional Brownian motion
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Stochastic equations in Hilbert spaces
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

We consider the linear equation

dX (t) = AX (t) dt + Φ dBH(t),

X (0) = x0,
(1)

where (BH(t), t ≥ 0) is a standard U-valued cylindrical fractional
Brownian motion with Hurst parameter H ∈ [1/2, 1) and U is a
separable Hilbert space, A : Dom(A) → V , Dom(A) ⊂ V , A is the
infinitesimal generator of a strongly continuous semigroup
(S(t), t ≥ 0) on the separable Hilbert space V , Φ ∈ L(U,V ) and
x0 ∈ V is in general random.
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Solution
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

A solution (X x0(t), t ≥ 0) is considered in the mild form, i.e. for
all t ∈ [0,T ]

X x0(t) = S(t)x0 +

∫ t

0
S(t − r)Φ dBH(r). (2)

[20] T. E. Duncan, B. Maslowski, and B. Pasik-Duncan, Fractional
Brownian motion and stochastic equations in Hilbert spaces,
Stoch. Dyn. 2 (2002), no. 2, 225–250.

• if there is a T0 > 0 such that∫ T0

0

∫ T0

0
|S(r)Φ|L2(U,V )|S(s)Φ|L2(U,V )φ(r − s) dr ds < ∞,

(A1)
then the solution exists as a V -valued process

• if the semigroup is exponentially stable then there exists a
Gaussian centred limiting measure µ∞ for the solution
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Strictly stationary solution
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

A measurable V -valued process (X (t), t ≥ 0) is said to be strictly
stationary, if for all k ∈ N and for all arbitrary positive numbers
t1, t2, . . . , tk , the probability distribution of the V k -valued random
variable (X (t1 + r),X (t2 + r), . . . ,X (tk + r)) does not depend on
r ≥ 0, i.e.

Law(X (t1+r),X (t2+r), . . . ,X (tk+r)) = Law(X (t1),X (t2), . . . ,X (tk))

for all t1, t2, . . . , tk , r ≥ 0

Theorem
If (A1) is satisfied and the semigroup (S(t), t ≥ 0) is exponentially
stable, then there exists a strictly stationary solution to (1), i.e.
there exists x̃ , a random variable on (Ω,F , P), such that
(X x̃(t), t ≥ 0) is a strictly stationary process with
Law(X x̃(t)) = µ∞, t ≥ 0. In particular Law(x̃) = µ∞.
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Ergodic theorem for arbitrary solution
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Theorem
Let (A1) be satisfied and let (X x0(t), t ≥ 0) be a solution to (1)
with initial condition X (0) = x0 ∈ V , generally random. Let
ϕ : R → R be a real function satisfying the following local
Lipschitz condition: let there exists a real constant K > 0 and an
integer m > 1 such that

|ϕ(x)− ϕ(y)| ≤ K |x − y |(1 + |x |m + |y |m) (3)

for all x , y ∈ R. Let z ∈ Dom(A∗) be arbitrary. Then

lim
T→∞

1

T

∫ T

0
ϕ
(
〈X x0(t), z〉

)
dt =

∫
V

ϕ
(
〈y , z〉

)
µ∞(dy), a.s.-P.

(4)
for all x0 ∈ V .
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Parameter estimates
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Parameter estimates: main results
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

• Parameter estimates based on exact variations

– possible from one path observation on a finite interval
– suitable for diffusion estimates
– applicable also for drift estimates in one-dimensional equation

with space-time white noise

• Parameter estimates based on ergodicity

– consistent results only for T →∞
– suitable for drift estimates
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Parameters estimates based on ergodicity
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Consider the linear equation

dX (t) = α AX (t) dt + Φ dBH(t),

X (0) = x0,
(5)

where α > 0 is a real constant parameter. Obviously the operator
αA is the infinitesimal generator of the semigroup (S(αt), t ≥ 0)
that is also exponentially stable and there is a limiting measure
µα
∞ = N (0,Qα

∞), where

Qα
∞ =

∫ ∞

0

∫ ∞

0
S(αu)QS∗(αv)φ(u − v) du dv

=
1

α2

∫ ∞

0

∫ ∞

0
S(u)QS∗(v)φ

(u

α
− v

α

)
du dv

=
1

α2

1

α2H−2

∫ ∞

0

∫ ∞

0
S(u)QS∗(v)φ(u − v) du dv =

1

α2H
Q1
∞.
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Parameters estimates based on ergodicity
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Theorem
Let (A1) be satisfied and let (X x0(t), t ≥ 0) be a V -valued
solution to (5). Let z ∈ Dom(A∗) be arbitrary and let the limiting
measure µ∞ exists with covariance Q∞ such that

〈Q∞z , z〉V > 0.

Define

α̂T :=

(
〈Q∞z , z〉V

1
T

∫ T
0 | 〈X x0(t), z〉V |2 dt

) 1
2H

. (6)

Then
lim

T→∞
α̂T = α, a.s.-P,

for all x0 ∈ V .
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Parameters estimates based on ergodicity
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Theorem
Let (A1) be satisfied and let (X x0(t), t ≥ 0) be a V -valued
solution to (5) with initial condition x0 ∈ V such that
E|x0|2V < ∞. Let the limiting measure µ∞ exists with covariance
Q∞ such that Tr Q∞ 6= 0. Define

α̂T :=

(
Tr Q∞

1
T E
∫ T
0 |X x0(t)|2V dt

) 1
2H

. (7)

Then
lim

T→∞
α̂T = α.
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Parameters estimates based on variations
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Theorem
Let (X x0(t), t ≥ 0) be a V -valued solution to (1). Fix
0 < T1 < T2. Define, for j = 0, 1, . . . , n, a time grid by
tj = T1 + jδ, where δ = 1

n (T2 − T1). Let z ∈ Dom(A∗) be
arbitrary. Then the following limit holds in mean square for all
x0 ∈ V

lim
n→∞

n∑
i=0

|〈X x0(ti+1), z〉V − 〈X
x0(ti ), z〉V |

1/H

= cH [〈Qz , z〉V ]1/(2H) (T2 − T1), (8)

where

cH =
21/(2H)

√
π

Γ
(

H+1
2H

)
. (9)
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Parameters estimates based on variations
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

In particular, if we denote by

f̂n(z) :=
1

cH(T2 − T1)

n∑
i=0

|〈X x0(ti+1), z〉V − 〈X
x0(ti ), z〉V |

1/H ,

then

lim
n→∞

E
[
f̂n(z)− [〈Qz , z〉V ]1/(2H)

]2
= 0. (10)
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Numerical simulations
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Example: fractional Brownian motion
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

0 5 10
−5

0

5
H = 0.1

t

βH
(t)

0 5 10
−5

0

5
H = 0.2

t

βH
(t)

0 5 10
−5

0

5
H = 0.3

t

βH
(t)

0 5 10
−4

−2

0

2
H = 0.4

t

βH
(t)

0 5 10
−4

−2

0

2
H = 0.5

t
βH

(t)
0 5 10

−2

0

2

4
H = 0.6

t

βH
(t)

0 5 10
−5

0

5

10
H = 0.7

t

βH
(t)

0 5 10
−10

−5

0

5
H = 0.8

t

βH
(t)

0 5 10
−10

−5

0

5
H = 0.9

t

βH
(t)

Nine different sample paths of fractional Brownian motion each
with a different value of Hurst parameter H. The roughness of the

paths decreases for higher values of H.
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Example: Linear SDE
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Consider the following one-dimensional linear stochastic differential
equation

dX (t) = −αX (t) dt + σ dβH(t)

X (0) = x0,
(11)

where α > 0 and σ > 0 are real constant parameters and
(βH(t), t ≥ 0) is a standard fractional Brownian motion with Hurst
parameter H ∈ (1/2, 1).
Modified Euler-Maruyama method, explicit scheme:

Y0 = x0

Yj+1 = Yj − αYjh + σwH
j , j = 1, . . . ,N,

(12)

where wH
j = βH(tj+1)− βH(tj) is the increment of fractional

Brownian motion
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Solution: nonzero initial condition
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion
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A solution X (t) of stochastic differential equation (11) with
nonzero initial condition. Only two individual paths are drawn.
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Diffusion estimate σ̂N

Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion
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Convergence of σN to the true value σ for particular values of x0,
T and H.
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Drift estimate α̂T

Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion
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Convergence of α̂T computed using 1 path observation to the true
value α for particular values of x0, σ and H (same trajectory

viewed in a different time interval).
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Drift estimate α̂T

Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

0 10 20 30 40 50 60 70 80 90
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

H = 0.7, x
0
 = 1.1, α = 2.3, σ = 0.9

T

α
T

0 10 20 30 40 50 60 70 80 90
2

2.5

3

3.5

4

4.5

H = 0.7, x
0
 = 1.1, α = 2.3, σ = 3.9

T

α
T

Convergence of α̂T computed using 50 paths observation to the
true value α for particular values of x0, σ and H.
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Example: Linear SPDE
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Consider the following initial boundary value problem for linear
stochastic heat equation

dX (t, x) = α∆X (t, x) dt + σ dBH(t), t ≥ 0, x ∈ [0, L], L > 0

X (0, x) = x0(x), x ∈ [0, L],

X (t, 0) = X (t, L) = 0, t ≥ 0,
(13)

where α > 0 and σ > 0 are real constant parameters,
x0 ∈ L2([0, L]) and (BH(t), t ≥ 0) is a standard cylindrical
fractional Brownian motion with Hurst parameter H ∈ (1/2, 1).
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Finite difference for Laplacian
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Space grid xi = ik, k = L/M, i = 0, 1, . . . ,M,

dX (t, xi ) =
α

k2
(X (t, xi+1)− 2X (t, xi ) + X (t, xi−1)) dt+σ dβH

i (t),

where βH
i (t) are stochastically independent. In matrix form:

dX (t) = AX (t) dt + σ dBH(t),

where X (t) is now an M × 1 matrix (vector) with elements
X (t, xi ), A is an M ×M matrix and BH(t) an M × 1 vector of the
form

A =
α

k2



−2 1 0 · · · 0

1 −2 1
...

0
. . .

. . .
. . . 0

... 1 −2 1
0 · · · 0 1 −2


, BH(t) =


βH

1 (t)
βH

2 (t)
...

βH
M(t)

 .
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Euler-Maruyama method
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Implicit scheme:

Y0 = x0

Yj+1 = Yj + AYj+1h + σW H
j , j = 1, . . . ,N

(14)

where W H
j = BH(tj+1)− BH(tj) are the increments of fBm. We

calculate Yj+1 by solving the following systems of equations

(I − Ah)Yj+1 = Yj + σW H
j , j = 1, . . . ,N,

where I denotes the identity matrix.
Observation: it is necessary to control some relation between time
and space steps. For a deterministic PDE, i.e. when σ = 0, and an
explicit scheme the relation is α h

k2 ≤ 1/2. Here dependance on H?
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One path of the solution
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion
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One path of the solution; H = 0.8, α = 2, σ = 15, L = 10, T = 10, x
0
(x) = x(L−x).
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One path solution to (13) with initial condition
x0(x) = x(L− x), x ∈ [0, L], and particular values of H, α, σ, L

and T .
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Mean of 10 paths of the solution
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Mean of P = 10 paths of the solution.
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Solution for large time interval
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

Mean of 10 paths of the solution to (13) with initial condition
x0(x) = x(L− x), x ∈ [0, L], for large time interval.
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Diffusion estimate σ̂N

Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion
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Convergence of σ̂N to the true value σ for particular values of H
and T .
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Drift estimate α̂T

Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion
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Convergence of α̂T computed using 1 path observation to the true
value α for particular value of H (σ and L appears in the solution).
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Drift estimate α̂T

Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion
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Convergence of α̂T computed using 10 paths observation to the
true value α for particular values of σ, H and L.
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Revision
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

3 Stochastic equations in Hilbert spaces

3 Parameter estimates

• estimates based on ergodicity
• estimates based on exact variations

3 Numerical simulations

• Linear SDE
• Parabolic SPDE

Programs and Algorithms of Numerical Mathematics 13, Prague, May 28 - 31, 2006 32/34



Acknowledgement
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion

• RNDr. Bohdan Maslowski, DrSc. - Mathematics Institute,
Czech Academy of Sciences, Prague, Czech Republic

• founded by the Ministry of Education
programme Research Centres, subprogramme B,
no. LN00B084

• Grant Agency of the Czech Republic,
project no. 201/04/0750

Programs and Algorithms of Numerical Mathematics 13, Prague, May 28 - 31, 2006 33/34



Award
Numerical approaches to parameter estimates in stochastic evolution equations driven by fractional Brownian motion
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