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Explaining papers to theory and numerics:

@ Carsten Carstensen, Martin Brokate, Jan Valdman, A quasi-static
boundary value problem in multi-surface elastoplasticity. I: Analysis.
Math. Methods Appl. Sci. 27, No.14, 1697-1710 (2004)

@ Carsten Carstensen, Martin Brokate, Jan Valdman, A quasi-static
boundary value problem in multi-surface elastoplasticity. Il: Numerical
solution. Math. Methods Appl. Sci. 28, No.8, 881-901 (2005)

@ Andreas Hofinger, Jan Valdman, Numerical solution of the two-yield
elastoplastic minimization problem. Computing 81, No. 1, 35-52 (2007)

Elastoplasticity solver can be downloaded at

http://www.mathworks.com/matlabcentral/fileexchange/authors /37756
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http://www.mathworks.com/matlabcentral/fileexchange/authors/37756

Rheological models

The tensile test

P

Figure: The tensile test: an increasing stress 0 = P/A is applied to the
specimen.
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Rheological models

The tensile test: stress-strain relation

O €

Figure: The tensile test: the resulting stress-strain relation.

@ elasticity in the region O — /
@ plasticity with hardening after the elastic limit (point /)
@ softening after necking (point /I) untill fractures occur (point ///)
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Rheological models

Time dependent 2D problem in Matlab

elastoplastic zones hysteresis: displacement versus surface force
: ; 15 T
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Rheological models
Rheological elements

AMMM T ]

Figure: The elastic, kinematic and rigid-plastic element.
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Rheological models
Rheological elements

Every element is characterized by its (internal) stress and strain tensors.
We denote the stress by o and the strain by €.

The elastic element

The kinematic element

o = He,

where H is a positive definite matrix, for instance H = hl, where h > 0 is
a hardening coefficient and T represents the identical matrix.
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Rheological models
Rheological elements

The rigid-plastic element

ce”/
(¢,g—0) <0 forallge Z

with a convex set Z C RZ.

Example: 1D
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Rheological models
Kinematic hardening model

o,e€ .
o,p

E=e+p

oc=0%+oP

o ="Hp

oc=Ce

ocPe”z

(p,g—0P) <0 forall ge Z
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Rheological models

Hysteresis property of the kinematic hardening model

Figure: Stress-strain relation in case of linear kinematic hardening model and
the cyclic stress o = Asin(t).
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Rheological models

Motivation for the multi-yield model

Figure: single-yield (left), multi-yield (middle) and realistic model (right) -
stress-strain relation.
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The M-yield hardening model

ol,pl oMlpM
P P
Gl’pl O-M’pM
M
e=e+p, p=) pr
r=1
oc=o;+0f forallr=1,..., M,
of e 7,
(pryqr— 0Py <0 forallg € Z,r=1,...,M,
o=Ce,

ot =H,p,, r=1,...,M.
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Rheological models

Hysteresis property of the 2-yield hardening model

Figure: Stress-strain relation in case of two-yield model and cyclic stress
o = Asin(t).
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Rheological models
Books on hysteresis

@ Visintin, A., Differential models of hysteresis, Springer, 1994

@ Brokate, M. and Sprekels, J., Hysteresis and Phase Transitions,
Springer-Verlag New York, 1996

o Krejei, P., Hysteresis, Convexity and Dissipation in Hyperbolic
Equations, GAKUTO International Series, Mathematical Sciences
and Applications, 1996
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Variational inequalities

Yield criterion

von Mises criterion

Z={oe€ ngfnd ;|| deval||r < 0¥},

where || - ||¢ denotes the Frobenius matrix norm ||a|[# = a:a = Z:’jjzl -
devo = o — L tr(o)l is the deviatoric operator (deviator),

tro = o:1 is the trace operator.
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Variational inequalities
Dissipation functional

Let (p,oP) € RE< x REXI. Then

sym sym

oPeZ p:(r—0oP)<0 forallTeZ (%)
together with tr p = 0 hold if and only if
0”1 (9= p) <D(q) = D(p) VqeRYT (x+)

sym

where D : R9X9 — RU {0},

sym
_J llgll iftrq=0,
D(q) = { +00 otherwise.

Proof: together only implication (%) = ().
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Variational inequalities
Some convex analysis

Definition (indicator function)

For any set Z C X, the indicator function Iz of Z is defined by

0 ifxez
'Z(X):{ too fxgZ. (1)

Definition (subdifferential)

Let f be a convex function on X. For any x € X the subdifferential
Of (x) of x is the possibly empty subset of X* defined by

of(x) ={x" e X*: (x",y —x) < f(y) — f(x) Vye X} (2)

It means that
p € dlz(aP).

Jan Valdman Computational elastoplasticity



Variational inequalities
Some convex analysis

Definition (conjugate function)

For a function f : X — [—o00, o0] we define the conjugate function
f*: X* — [—o0, 00] by

() = sup((x*, ) = £(x). (3)

Let X be a Banach space, f : X — [—00, 0] be a proper, convex, lower
semicontinuous function. Then

x* € Of (x) & x € OF*(x*). (4)

Therefore,
p € dlz(oP) & aP € dI7(p)

and
D() = Iz(-).

Jan Valdman Computational elastoplasticity



Variational inequalities
Equilibrium and its weak formulation

The equilibrium between external and internal forces is given by
divo(x,t) +f(x,t) =0, xe€Q, te(0,T). (5)
With the assumption of small deformations

1 0v; Oy
“(1) = 550 + 50

the variational formulation of (25) becomes (why?)

/a:s(v)dx:/f-vder/g-vds, (6)
Q

Q Iy

valid for all t € [0, T] and all v € H}(Q).

Jan Valdman Computational elastoplasticity



Variational inequalities

Weak formulation of rigid-plastic elements

We express constitutive laws
o (ar— ) < D)~ Dilp) Ya €@, rel,  (7)

where (note that we only consider arguments with zero trace here)

Di(qr) = oYllarl| -

The integral form of (7) over Q is given by

[otsta—h)ax< ! Da)dx— [ Do) dx (@

Q Q
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Variational inequalities
Variational inequality

We sum the inequalities (8) over r
and subtract (6) in which we equivalently replace v by v — i

to obtain
/ (e(v) — Zq, dx—/ Zpr dx+2/o, (gr — pr) dx
rel rel rel Q
+Z/D (gr) dx — /D(p, dx—/ (v—il)dx—/g-(v—u)dsZO.
rel rel B

Next, we eliminate
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Variational inequalities
Variational inequality

We collect vectors of functions

w = (u,(pr)rer), z=(v,(qr)rer)-

to obtain

Problem (BVP of quasi-static multi-surface elastoplasticity)

For given ¢ € HY(0, T; H*) with £(0) = 0,
find w € H(0, T;'H) with w(0) = 0, such that

a(w(t), 2 — (1)) + $(2) — D((1)) > (U(e), 2 — i(t), forall z € H,
holds for almost all t € (0, T).
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Variational inequalities
Variational inequality

A bilinear form a(+, ), a linear functional ¢(-) and a nonlinear functional
¥(+) are defined as

a:HxH—-R, a(w,z) :/C(e(u)—Zp,) : (a(v)—Zq,) dx+
Q

rel rel

+Z/Hrpr L qr dx,
rel Q

U(t) - H—-R, {(t),z) :/f(t)-vdx+/g(t)~vds,

v H—=R, Y(z) :Z/D,(q,) dx.

rel

and H = H5(Q) x [T, Q.

Jan Valdman Computational elastoplasticity



Variational inequalities
Literature

@ Glowinskii, R., Lions J. L. and Trémoliéres R., Numerical analysis of
Variational Inequalities, North-Holland, Amsterdam, 1981

@ Han, W. and Reddy, B., Plasticity: Mathematical Theory and
Numerical Analysis, Springer-Verlag New York, 1999
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Existence
Material assumptions

We pose the natural assumption that the elastic and hardening tensors
are symmetric and positive definite,

E:CA=C¢: X forall &, X e RI¥Y, ©
EHA=HE: N forall EXe R r=1,... M,

and there exist constants ¢, h, > 0 such that

CE:€>cllg|]? for all € € RY*9,

10
HE: > h|E|)? forall e eR>Y r=1,...,M (10)
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Abstract theorem on solvability

Assume that (9) and (10) hold, let ¢ € H*(0, T; H*) with £(0) = 0.
Then there exists a unique solution w € H(0, T;'H) of BVP of
quasi-static multi-surface elastoplasticity.

based on
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Abstract theorem on solvability

Theorem (Han, Reddy, 1999)

Let H be a Hilbert space, a: H x H — R be a bilinear form that is
symmetric, bounded, and H-elliptic; ¢ € H'(0, T; H*) with £(0) = 0; and
1 : H — R nonnegative, convex, positively homogeneous, and Lipschitz
continuous. Then there exists a unique w € H*(0, T;H) with w(0) = 0
which satisfies the variational inequality

a(w(t), z — w(t)) + ¥(2) — b(w(t)) > (U(t),z — w(t)), forallzeH,

for almost all t € (0, T).
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Remark on ellipticity

To prove that

a(w,z) = [ C(ew) = Y p): () = X a) dx+ 3 [ Hopr g, ax

rel rel rel

is elliptic, the following partial result is important:

Problem
To determine the largest constant k(M), M € N, such that

(Xo—i/l:x,)z—i—iw:xf > k(/\/l)i/,:x,_2 (11)
r=1 r=0

r=1

holds for all xg, x1, -..,xy € R.
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Algebraic inequality

We refolmulate

M
(XO—ZX,)z—i—Zxrz = xT Ax, (12)
r=1

r=1 ]

where
A=D+a®a, D=diag(0,1,...,1), a=(1,-1,...,-1). (13)

Thus, the optimal constant k(M) is equal to the smallest eigenvalue of Al
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Algebraic inequality

The analytical computation shows

M 1
k(M) =Amin=1+ — — =V4M + M?

2 2
Properties:
i, M) =C
and
lim Mk(M) =1
M— oo
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FE Discretization
Backward Euler scheme

In the first time step t;, the time derivative X(t;) is approximated by the
backward Euler method as

Xl _ Xl _ XO

kk

where X% = 0. The Hilbert space H is approximated by the conforming
finite element (FEM) subspace

§ = 8§p(7) x [ [ dev(8%(T)gn"),
rel

which is a product space of 7- piecewise affine functions that are zero on
b by

§p(7) :={v e Hp(Q) : YT € T,v|r € P(T)’}.
(P1(T) denotes the affine functions on T) and the space of 7- piecewise
constant functions

dev(§(T)9l) == {a € L2(Q)?*? :VT € T, a|r € devRS !

sym
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FE Discretization
Backward Euler scheme

The first time step problem

Find X! = (U, (P}),er) := (U, P) € § such that

X1_Xo X1_Xo Pl_PO
) <alxhy - S .
1 1

holds for all Y = (V, Q) = (V,(Q/):e1) € §.

{e(tr), (Y =

After introducing an incremental variable X := (U, P) = X! — X°
and a linear functional L(Y) = ({(t1), Y) — a(X°,Y)
we obtain a one-time step incremental problem

LY = X)<a(X,Y = X)+4(Q) —(P) forall Y =(V,Q)cs.
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FE Discretization
Introducing the energy functional

Lemma (Equivalent Reformulations)

For each X = (U, P) € § the following three conditions (a)-(c) are
equivalent:

(a) LY—=X)<a(X,Y—-X)+¢(Q)—y(P) forall Y =(V,Q)ct.

(b) L(Y=X)=a(X,Y=X) forallY=(V,P)e§ and
LY = X) < a(X,Y — X) +0(Q) —(P) forall Y =(U,Q) €§.

YEeS

(c) ®(X)=min®d(Y) with d(Y) = %a(Y, Y) +4(Q) — L(Y).
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FE Discretization
Abreviations

The following matrix notation allows for a brief formulation of the
discrete problem. Let

P P? @ Ce(V)
P=|:|,PP=]:],@=|:1|2=[ : |,
Pwm P Qum Ce(V)
Ce(U°) C C Hy 0
Y = : Ci=1 , H:i=
Ce(U°) C C 0 Hu
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FE Discretization
Abreviations

Then there holds

—a(X,Y - X) = / (i—(@+ﬁ)P) £ (Q — P) dx,
Q
LY - X) = / (io - (@+7%)P°) 1 (Q — P) dx,
Q
w(Y) = / Qlov dx.
Q
Since the plastic yield parameters o7, ..., 07}, are positive, the expansion

|(Q13"'7QM)T|0'Y = a{lQl| + +UJ[\\//,|QM|

Rded

defines a norm in , Where | - | denotes the Frobenius norm.
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FE Discretization
Coupled problem

Problem (Discrete problem)

Given (U°, P%) € §, seek U' € §}(T) such that for all V € SL(T),

Y

M
/udwaZEydwm;/#mvw_/ng:o(m
Q r=1 Q

Here P = (Py1,...,Pu)T = (PL,...,PL)T — (PY,...,P%)T satisfies
(A—(C+T)P): (Q — P) <|Qlor — |Plov (15)
for all Q = (Q1,...,Qu)" with Q1,..., Qu € dev(§°(T)3xd) and

S

A= 3 (UY) 4+ 2°(U°% — (€ + R)PO.
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FE Discretization

Theorem (Moreau, 1965)

Let the function F : H x H — R be defined

Flxy) = 5 lly = xIBy () (16)

wheri 1 is a convex, proper and lower semi continuous mapping of H
into R. Then
F(y) := inf F
(v) = inf F(x,y)

is well defined as a functional from H into R and there exists a unique
mapping X : H — H such, that

F(y) = F(x(y),y)

holds for all y € H. Moreover, F is strictly convex and Fréchet
differentiable with the derivative

DF(y)=(y—X(y), )Jn€H* VyeH. (17) |



FE Discretization
Moreau regularization

Theorem of Moreau implies for elastoplasticity

Theorem

There is a unique function
P = P(e(U))
and the energy functional
(V) = %B(U7 P(e(V)): U, P(e(U))) + ¢(P(e(V))) — L(V)

is strictly convex and differentiable!

more details in

@ Peter Gruber, Jan Valdman, Solution of one-time-step problems in
elastoplasticity by a Slant Newton Method. SIAM J. Scientific
Computing 31, No. 2, 1558-1580 (2009)
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FE Discretization

Analysis of single-yield model (M=1)

Localization to one element T € 7:

One plastic strain
PeRIZ, trP =0,

sym )

the elastic matrix C with the (positive) Lamé coefficients p and A
CP =2uP + \trP)L = 2uP,
the hardening matrix H with
HP = hP,

the matrix norm
|Ploy = o”|P|

and the matrix

A:= A := Ce(U) + Ce(U°) — (C + H)P°.
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FE Discretization

Analysis of single-yield model (M=1)

Lemma (Alberty, Carstensen, Zarrabi, 1999)

Given A € R and 0¥ > 0. There exists exactly one P € devRZ)?
that satisfies

{A=(C+H)P}:(Q—P) <{[Q| - |P[}

for all Q@ € dev ngfnd. This P is characterized as the minimiser of

1
§(C+H)Q:Q—Q:A+UV|Q| (18)

(amongst trace-free symmetric d x d-matrices) and is given by

(|devAl — oY) devA
[P = 1
2+ h | dev Al (19)

where (-)4 := max{0, -} denotes the non-negative part.
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FE Discretization

Analysis of two-yield model (M=2

60

50

40 —

30 q

20 q

10 q

0 L L L L L L L L L
[ 5 10 15 20 25 30 35 40 45

Figure: Cook’s membrane problem in the first time step. The black colour
shows elastic upgrade zones (where P, = P>, = 0), brown and lighter gray
colours shows the first plastic upgrade (P1 # 0, P, = 0) and the both plastic
upgrades (P1 # 0, P> # 0) zones.
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FE Discretization

Analysis of two-yield model (M=2)

Two plastic strains Py, P> coupled in a generalized plastic strain
P=(P,P)".
The generalized elasticity matrix and the generalized hardening matrices
read
A~ _(C C ~._ (Hi O
C = ((C C) and H = (0 H2>’
the generalized loading matrix reads
- A1\ _ [(Ce(V) n Ce(U) _(C+H;y C P9
“\A)  \Ce(U) Ce(U°) C C+Ha) \ P2
and the matrix norm is defined by

|Plor = o7 |P1| + 03| Pa|.
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FE Discretization

Analysis of two-yield model (M=2)

Given A = (A1, A2)7, Ay, Ay € RI%9  there exists exactly one

P = (Py,P,)", Py, Py € dev ngﬁ:’yr;hat satisfies
(A= (C+T)P): (Q = P) < |Qlor — |Plov (20)
for all @ = (Q1, &) 7, Q1, @ € dev deyﬁd. This P is characterized as the
minimiser of
Q) = 5E+RQ: @~ Q: A+]Ql (21)

(amongst trace-free symmetric d x d matrices Q1, Q).

Exact minimizer?
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FE Discretization

Analysis of two-yield model (M=2)

We introduce the operator

M| —0)+ﬂ

F(M,o,h):= ( 2th M’ (22)

Algorithm (Iterative calculation of Py, P,)

Input w, hy, hy, oy, o3, dev Ay, dev Ay and tol > 0.
Set i := 0 and set the initial approximation P] = P} = 0.
Update Pj via Pyt = F(dev Ay — 2uPj, o}, hy).
Update Pj via PI™* = F(dev A; — 2uP5™, oY, hy).

© 0 C O

If the desired accuracy is reached, i. e., if
[P = il +P5* = P3| < tol-(|P{*| + |P]| + |P§*"| + )

then output solution (Py, Py) = (Pit, Pitl). Otherwise, set
i :=1i+1 and go to step 2.
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FE Discretization

Analysis of two-yield model (M=2

261 —

15 2
X

Figure: The approximations P} = (x',0;0, —x'), Ps = (y',0;0, —y"),
i =0,...,34 computed by the iterative algorithm and displayed as the points
(x',¥") in the x — y coordinate system.

Jan Valdman Computational elastoplasticity



FE Discretization
Newton method

A nonlinear system of equations for 2/N displacement unknowns
Ul =(Ui,..., 03"

Fi(U) =0 forall i=1,...,2N. (23)
We use the Newton-Raphson method for the iterative solution of (23).

Algorithm (Newton-Raphson Method)

(a) Choose an initial approximation U} € RN, set k := 0.
(b) Let k := k + 1, solve U} from

DF(Ui_1)(Ui — Uy_y) = —F(Uic_y)-

(c) If UL — UL _, is sufficiently small then output UL, otherwise goto (b).
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FE Discretization
Newton method

In order to incorporate the Dirichlet boundary conditions properly, the
linear system in the step (b) is extended,

(PR BTY (U= ) _ (<R,

with some matrix B and the vector of Lagrange parameters A. Here,
DF(U}) € R2V*2N represents a sparse tangential stiffness matrix

DF(U)U ~ F(Ul,...,Uj+€j,...,U2[\/),'276 F(Ul,...,ljj*Ej,...,UQN),‘
J

approximated by a central difference scheme with small parameters
€>0,j=1,...,2N.
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FE Discretization

Matlab simulations: two-yield 2D beam model
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FE Discretization

Matlab simulations: two-yield 2D beam model
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FE Discra tio

Matlab simulations: two-yield 2D beam

Computational elastoplasticity



FE Discretization

Matlab simulations: two-yield 2D beam model
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FE Discretization

Matlab simulations: two-yield 2D beam model
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FE Disci

Matlab simulations: two-yield 2D beam model

Jan Valdman Computational elastoplasticity



FE Discretization

Matlab simulations: two-yield 2D beam
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FE Discretization

Matlab simulations: two-yield 2D beam model
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FE Discretization

Matlab simulations: single-yield model

-15 L L L L L
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
u

Figure: Displayed loading-deformation relation in terms of the uniform surface
loading g«(t) versus the x-displacement of the point (0, 1) for problem of the
single-yield beam with 1D effects.
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FE Discretization

Matlab simulations: two-yield model

-15 L L L L L
-0.06 -0.04 -0.02 0 0.02 0.04 0.06
u

Figure: Displayed loading-deformation relation in terms of the uniform surface
loading g«(t) versus the x-displacement of the point (0, 1) for problem of the
two-yield beam with 1D effects.
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Concept of adaptivity

An h—finite element adaptive algorithm consists of successive loops of
the form:
SOLVE — ESTIMATE — MARK — REFINE
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Numerical example: Adaptive meshes
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The SOLVE & ESTIMATE step in elastoplaticity

Reliability

1/2
lo = oell < c(ni +osc%)

o ESTIMATE (edge-based residual):

g = Z Mg with g = hE/ [Jel*ds, Je = [od]eve
Ec&,

o Data (node-patchwise) oscillation:

: 2 2 2112
oscs = E osc with oscj, = hi ||f — ﬂ-HLz(QM;Rd)
JEK,
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Main results

Oscillation reduction

Jpp<1: OSC%H < pposcs

Energy reduction

Ip1<1,C>0: o1 < p16e+ Coscs  where §p = H(wp) — H(w)

R-linear convergence of stresses

3 (ay) linearly convergent:
lo = oel| < v
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Numerical example: Convergence rates

10 T T T T T
—8— AFEM based on bulk criterion (Alg7.1)
v— AFEM based on max refinement rule (Alg7.2]
=107 i
10’3 I I I I I I I I vy

0 5 10 15 20 25 30 35 40 45
Number of refinements loops

Bulk-criterion more efficient than max-criterion!
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Numerical example: Convergence rates

10 T
—©— Uniform refinement
—&— AFEM based on bulk criterion (Alg7.1)
v— AFEM based on max refinement rule (Alg7.2]
=107 b
1073 1 : 2 : 3 : 4 : 5 6
10 10 10 10 10 10

Degrees of freedom, N
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@ C. Carstensen, A. Orlando, J. Valdman, A convergent adaptive finite
element method for the primal problem of elastoplasticity,
International Journal for Numerical Methods in Engineering 67, No.
13, 1851-1887 (2006)
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Basic estimate of the deviation from exact solution

For any w € H it holds

1
Sl =v.p—gll* < H(v,q) = H(u, p),

where z = (u, p) is an exact elastoplastic solution
and w = (v, q) is a discrete approximation.

where

llu—v,p—gqll| == |Cle(u—v) = (p— @) |e—s + o2H?||q — pl|* .

Note, H > O represents a hardening parameter (done for isotropic
hardening model).
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Perturbed problem

Original problem

1
H(v,q) == 5a(v, g v, q)—/(V)+/Uy|q| dx
Q

Perturbed problem

1
Hr(v, q) = Ea(v, q;v,q) — I(v) + /ay/\ :qdx
Q

where A € A := {\ € L(Q,RI*9) : |A| < 1,tr(\) =0 a. e. in Q}.

sup Ha(v, q) = H(v, q)
AEA
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Lagrangian

Clir:7 £|?
La(v,q;7,€) : / -~ 5 +§;q—2(|72H2—fv)dx
A y
+/oy)\:qu,
Q

where 7 € Q := L2(Q;R:), 6 € Qo:={q€ Q:tr(g) =0 a. e.in Q}.

sym

sup L)\(Vaq;T7§) :H/\(V7 q)
TER,EEQ
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First estimate

It holds for all A € A

H(u, p) = inf H(v, ) > inf Ha(v, q) > inf Lr(v, ¢ 7, €)
v,q v,q v,q

which yields the estimate

1= ). (= DIIP < H(v. 0) = inf La(v, 057 )

How to compute inf, 4 Lx(v, g; T,&)?
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Majorant estimate for equilibrated fields

=), (=l < _inf M(v,q,7,E N,

(Tf)EQ
where
1 1
M(v,q,7,8N) = 5 )—q—C'7):(e(v) —q—C17)dx
L1 1,
5 W&) dx + [ (oylq] —oyA: q)dx
Q Y Q

and

QR ={(1,) €Qx Q:divr +f=0,7" =¢ + o \ a. e. in Q}.

Jan Valdman Computational elastoplasticity



Structure of Functional Majorant

M(v,q,7,&,\) =0 if and only if

7 =C(e(v) —9), (24)
divr+f =0, (25)
A:ig=]lql, A EN, (26)
P =¢+a,), (27)
£ =0 Hq. (28)

These are conditions for the exact solution (u, p) of the elastoplastic
minimization problem! The majorant naturally reflects properties of the
original problem.
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Majorant estimate for nonequilibrated fields

1
§|\|(U—V) (r—9)lll (gl)nefQ M(v,q; 7, ), B3,0),

where

UV, 0i,3,8,8) = 31+ ) [ Ce(v) —a =€) (e(v) — g = € F) o
Q

1 1 D >
+§(1+5)/ aﬁHz(T —Q) dx+/(ay\q|—ay)\:q)dx

Q

1+ )] C?||div 7 + f?

{(1+ )+

1
5 2H2

and 7 € Quv == {7 € Q : divr € >(Q,RY)}, (: =0 H’q+ o,



Sergey Repin, Jan Valdman, Functional a posteriori error estimates for
incremental models in elasto-plasticity. Cent. Eur. J. Math. 7, No. 3,
506-519 (2009)
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Papers on Matlab Implementation

@ Jochen Alberty, Carsten Carstensen and Stefan A. Funken, Remarks
around 50 lines of Matlab: short finite element implementation,
Numerical Algorithms 20 (117), 117-137 (1999)

o Alberty, Carstensen, Funken, Klose, Matlab implementation of the
finite element method in elasticity, Computing 69 (3), 239 — 263
(2002)

@ Carstensen C., Klose R., Elastoviscoplastic Finite Element Analysis
in 100 lines of Matlab, J. Numer. Math., 10 (3), 157-192 (2002)

@ Rahman T., Valdman J., Fast MATLAB assembly of FEM stiffness-

and mass matrices in 2D and 3D: nodal elements, Proceedings of
conference PARA 2010 (submitted)
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Computer exercises

computation of triagulation areas
uniform refinement in 2D
generation of a stifness matrix
generation of a right-hand side

a posteriori computation of a plasticity strain from a given stress

¢ © 6 ¢ ¢ ¢

alternating directions iteration over equilibrium and plasticity
inequality
@ extension to time-dependent problems
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Thank you for your attention!
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