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Abstract Problems of identification of material parameters e there exists a solution of the problem,

(mostly parameters appearing in constitutive relations) have ap- o )

plications in many fields of engineering including investigation ~ ® the solution is unique,

of processes in a rock mass. This paper outlines the structure of L. .
parameter identification problems, methods for their solution and  ® the solution is stable under small changes of input
describes an identification (calibration) problem from geotech- data.

nics, which will serve as a realistic benchmark problem for il- Althouah the properties of the minimization problems
lustration of the behaviour of selected parameter identification ug propert inimization p

methods. can be difficult to analyse, a lot of different iterative tech

niques can be used for the minimization (1) (mostly with-
Keywords inverse problems, identification of material parame- out theoretical proof of convergence). The range of appli-
ters, Nelder-Mead method, genetic algorithms, rock mechanics cable methods includes

e gradient methods, e.g. Gauss-Newton, Levenberg-
1 Introduction Marquardt, conjugate gradients, see [3], [4], [6], [7],

Generally, the identification problems appear in investiga gradient-free direct method, e.g. Nelder-Mead sim-
tion of physical processes in material environment. The plex method [3] ’

processes are described by the state variabdesl driven
by the control variables. The material is characterized e stochastic methods e.g. [5], genetic algorithms e.g.
by parameterg € % C RP. [6], [9] and [8].

Direct problems focus on computation @f= up(K) =
un(K,x,t), where &, t) gives space and time localization,
if f andk are known. On the opposite, identification
problems use the knowledge éfand some partial apri-
ori knowledge on the state variahlefor (partial or full)
determination ok.

In this paper, we discuss the use of these methods also
from the point of view of parallelization. Some of the ap-
proaches are illustrated by numerical experiments, imple-
mentation of the other methods is in progress.

Note also that the identification problem is very close to
If the apriori information about the state variahlds Fh? calibration of a mathematical model. The diﬁerenge

is if we stress the computed material parameters or coin-

i — . m
given by the vectod = (d) €R ofmeasured values, then cidence of values predicted by the model with measured
the search for the unknown material parameters can be fOETata

mulated as the following minimization problem
, 2 A Benchmark Problem
F (k) =| A un(k)—d | — min. )

KeHX The in-situAspd Pillar Stability Experiment (APSE) has

Above,.# is an observation operator, which computesbeen performed at SKB&spd Hard Rock Laboratory in

from up, values corresponding to the measured data fron§outh eastern Sweden with the aid Qf investigation of gran-
d. In the simplest case, it just select the valugs,t;) ite mass damage due to mechanical and thermal load-

corresponding tal. ing. The measured data are now used for validation of
In contrary to direct problems, it is known that some mathematical models within the DECOVALEX 2011 in-
identification problems are not well posed [4], which ternational project. APSE used electrical heaters to in-

means that some of the following properties can be viocrease temperatures and induce stresses in a rock pillar
lated: between deposition holes (Fig. 1) until its partial failure

To determine accurately the temperature changes, a heat
“Email: blahetaGuga. cas. ¢z flow model is 'f(.)rm.ulated and monitored temperatures are
TEmail: kohutGugn. cas . cz _used for |dent|f|ca_1t|on of he_za_lt flow parameters _(hea_lt capac-
*Email: jakl@ugn.cas.cz ity, heat conduction coefficient, heat convection into the
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holes). The identification should provide parameters tak- = (3 [un(x,t) — di%)%° — min. )
ing into account water bearing fractures and water flow and [
calibrate the model. More details and another approach t

the model calibration can be found in [1]. The material parameters represent different conductivity

and heat capacity for dry and wet side of model (accord-
ing to Fig/ 1). The rock in the right hole had yielded from
a depth of approximately 0.5 m down to 3 m which moti-
vates to introduce a third type of material with different
A andc for the damaged part of the pillar. We supposed
heat conduction between rock and air in excavated holes
determined by different values of the heat conduction co-
efficientH for individual holes with third coefficient cor-
responding to surface for the above mentioned damaged
part of the pillar. It gives 9 material parameters of the cost
functionalF in (2).

3 Nelder-Mead Optimization

The first optimization algorithm, which we describe in this
paper, is the Nelder-Mead algorithm, which maintains a
simplexS¥ in the space of parameter vectors. This sim-
plex locally approximates the objective functiéh and
serves for getting information about its behaviour and get-
ting approximation to the optimal point. F = F(k) and
K € RP then the k-th step simpleS¥ is determined by
p+ 1 vectors of parameters (verticasfV, ... k(&P+D),
We assume that the object function values are evaluated
and vertices are sorted, so that

F(k®D) <F(k®2) <. <Fk&P)y,
Thek-th step then continues by evaluation of the stop cri-
terion and if the approximation is not found to be satisfac-
Rl B tory, then the worst vertex & P*1) s replaced by a new
04m sl e one or, in a specific case, the whole simplex is shrunk.
In any case, first, the new vertex is sought in the form

A a
le— 1.7 m —»
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= k
Figure 1. The APSE model - detail of the FE grid around the K(U) = (1+p)K - NK( P
pillar (GEM software|[2]) and plan view on the pillar, holes,
location of heaters and points of temperature measurement  wherek = ( (kU 4 ...+ k&™1)) /m) is the barycentre

andp is equal tqu; = 1 for reflection,ue = 2 for extension,
The exploited APSE model, realized by GEM soft- po. = 1/2 for outer contraction angdjc = —1/2 for inner
ware [2], considers domain of 1056125x 118 m and contraction.
99 x 105x 59 nodes. The grid is refined around the pillar, The k-th step always begins with evaluation Bf =
see Fig. 1. The heaters are producing heat which varies iR (k (). If F (k&) <F < F (k&™) then we takex ()
time. The model assumes original temperatur&X on  as the new point, otherwise we gradually test for the ex-
the outer boundaries, zero flux onto the tunnel and nonzerpansion, outside and inside contraction and take the se-
flux given the convection onto the holes. The initial condi- lected case. It means that thah step typically contains
tion is given again by the temperature 34C. one or two evaluations of the object functions. In the case
Monitoring of the temperatures during two month heat-of contractions, we can also decide for shrinking the sim-
ing phase of APSE is essential for calibration of the therplex, which is more expensive and cosigvaluations of
mal model. There are 14 temperature monitoring positionghe object function. The details can be found in [3].
and temperatures are measured in 12 time moments. Alto- The optimization is stopped when both decrease of the
gether 168 values of temperature measurement (vegtor cost functionalF is small (belowet) and changes of pa-
are used for parameter identification, which according toameters are small (belogy) or if too many evaluations
(1) can be written as follows of the cost function are required.
Our experience with the Nelder-Mead method is de-
F = F(A1,c1,A2,C2,A3,¢3,H1, Ho, H3) scribed in the next Section.
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Figure 2: The convergence of the cost functioia(left), parametei, (center) and; (right)

As concerns the parallelization, the Nelder-Mead5 Stochastic and Evolution Methods
method is in principle sequential, which means that parTo get a larger space for parallelization we shall consider
allelization can be involved only in evaluation of the cost stochastic and evolution methods for optimization. In this
function and eventually in realization of the shrinking of section, we shall consider a constrained search space for

simplex in some steps. parameters, i.& € # = 1% (Ki min, Ki.max). The the sim-
plest stochastic (Monte Carlo) algorithm is then as follows
4 Numerical Results MC algorithm with N = Ny individuals

Let us consider numerical solution of the benchmark prob-(l) generateN_random vect%x('_) €X,i=1...N,
lem from Section 2, i.e. finding of various heat transfer co-(2) evaluate (in par_allel}% ) i=1...N,
efficients, by the Nelder-Mead method. Note that we use(?’) selectk = argmin F (™).
method of unconstrained optimization, but to guarantee the Genetic algorithms (GA) enrich the selection by opera-
positivity of the parameters, we use exponential transfortions of crossing and mutation. It provides the following
mation, i.e. findingx such thatk = €* is the required pa- algorithm
rameter. As the parameters h_ave quite different prders, WEA with N = Nga individuals
scale_ the heat capacityfor having all parameters in order (1) generat& random vectorg ) € %, i=1,...,N
of units. (2) for given generation, evaluate (in parallel)
The Nelder-Mead iterations are stopped when both de- i = F(k"), if F is not known yet,
crease of the cost functiond is small (belowes) and  (3) selectrN parameter vectors) with smallest values

changes of parameters are small (bekg To find very Fi; so called parents. Then credfe- )N new
accurate approximation of the parameters, we stop itera-  Vectors (childrens) by crossing randomly selected
tions wither = 0.001 ande, = 0.01. With a physical ini- parents,

tial guess, the stop occurred after 764 iterations, for a nof4) create a new generation by taking the selected
physical initial guess surprisingly less iterations wege r parents and created childrens with mutating some of
quired. The convergence behaviour is illustrated in Fig. 2. them,

But the stopping test could be fulfilled much earlier (say(5) evaluate stopping test and GOTO (2) if results are
after 100 iterations) if we weaken the requirement on small  still not satisfactory.

changes in all parameters. This is also due to the fact that In our case, the Crossing and mutation acts on parameter
the objective function depends only mildly on some of theyectors and can be described as algebraic (not binary) rule,
parameters, see [11]. see e.g. [8], [9]. For example:

Note also that computation @f = u(k,x,t) represents Cr_ossmg of vectorsx andy is a new vectog, which can
here the solution of an evolution parabolic heat transfeP€ given by
problem, which is solved by linear finite element dis- Z =X +ai(yi — %),
cretization in space and backward Euler method in timewhere for discrete crossirg is selected fron{0, 1} with
Linear systems appearing in each time step are solved iprobability 1/2, but als@; can be selected randomly in the
eratively by conjugate gradient method preconditioned byange(—9, 1+ &) for e.g.6 = 0.25,
one-level additive Schwarz method, which is efficient it Mutation of the vectorx concerns its components.
this case, see [10]. Of course the parallel computing caftach component is mutated with probability, which is usu-
be also used for assembling the finite element matrices. ally 1/p. Mutation uses a rang®, for X € (Ki min, Ki max)



it is typically Aj = 0.1(Ki max— Ki.min). Mutation ofxthen  of the Czech Republic.

gives a new vectaz, e.g.
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still reasonable efficiency, see [6].

6 Conclusions

The paper describes the philosophy of the solution of the[3]
identification problems and numerical realization of the
method. Optimization with the Nelder-Mead and genetic 4
algorithms are discussed in more detail. At present, we
have experience with numerical behaviour of the Nelder-
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well as by the gradual improvement of the discretization
accuracy during optimization. Implementation and testing
of the genetic methods are in progress now. We suppose[6]
that parallel computations based on GA will be efficient
even on parallel systems with larger number of processing
elements.

In this paper, we omit the discussion on the gradient al-
gorithms, which can be efficient and involving some par-
allelism for computing the Jacobian by either finite differ-
ences or a semianalytic approach.

For the future, similar identification problems will be (8]
applied to another geotechnical problems including the de-
velopment of in-situ rock mass tests and testing samples of
geocomposites in the laboratory scale. There are also an-
other aspects, which will be considered, such as selectior{g]
of parameters, regularization of the cost function, appli-
cation to nonlinear problems and automatic problem and
computer oriented choice of the optimization method. [10]
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