M UFCH

Ústav fyzikální chemie Jaroslava Heyrovského, AVČR v.v.i. Dolejškova 3, 182 23 Praha 8

Mikroskopie rastrovací sondou

Pavel Janda

Laboratoř mikroskopie rastrovací sondou Odd. elektrochemických materiálů http://www.jh-inst.cas.cz/ <u>http://www.jh-inst.cas.cz/~janda</u> pavel.janda@jh-inst.cas.cz

Rozdělení mikroskopických metod podle rozlišení

 10^{3}

 \bullet

۲

۲

OPT: optická mikroskopie SNOM: mikroskopie blízkého pole SEM: elektron.rastr.mikroskopie HRTEM: transmisní el.mikroskopie STM,AFM: Tunelová mikroskopie,

mikroskopie atomárních sil

Z, nm 10^{1} - (HR)TEM 10^{-1} - STM, AFM0 10^{-1} 10^{1} 10^{3} X, Y nm

OPT

Mikroskopie rastrovací sondou – uspořádání Scanning Probe Microscopy

۲

۲

Rozdělení SPM podle druhu přenášené informace

Přenos náboje Elektrony - tunelová mikroskopie **STM Ionty -** elektrochemická mikroskopie **ECM**

Silové interakce - mikroskopie atomárních sil AFM
Dlouhého dosahu: magnetické, kulombické
Středního dosahu: van der Waals (dipol-dipol, indukce dipol-nepolar., kapilární síly:kapalina-sonda...)
Krátkého dosahu: vazebné interakce (atraktivní) repulzívní (deformační)

 \bullet

Přenos elektromagnetického záření

-IČ - Termální mikroskopie ThM

-UV/Vis/IČ - optická mikroskopie/spektr. blízkého pole SNOM

- Hrotem zesílená optická mikroskopie/spektr. TERS/TEFS

- •
- •

Tunelová mikroskopie a spektroskopie Scanning Tunneling Microscopy, Scanning Tunneling Spectroscopy

•

Tunelová mikroskopie

Binning, Rohrer, IBM, 1981, Nobelova cena 1986

Aproximace tunelového proudu $I_{\rm T} \sim V_{\rm B} f_{\rm mTS}(V_{\rm B}) \exp \left[-2 \sqrt{(2 {\rm m} \Phi_{\rm ST} / \hbar^2)}\right]$

 $h = h/2\pi$, $f_{mTS}(V_B)$...redukovaná Planck.konst. závislost I_T na V_B daná e-strukturou hrotu a vzorku, z...vzdálenost hrot-vzorek (~ 10⁻¹ nm), V_B do ±1-2 V, I_T ~ nA-pA

Tunelová spektroskopie

Bariérová (distanční) spektroskopie:

pro nízké $V_{\rm B}$ je ($dI_{\rm T}/dZ$)/ $I_{\rm T} \sim (2\sqrt{2m_{\rm e}})/\hbar \sqrt{(\Phi_{\rm S} + \Phi_{\rm T})}$

kde $\Phi_{\rm S}$, $\Phi_{\rm T}$ lokální výstupní práce, $I_{\rm T}$ tunelový proud, Z vzdálenost hrotu od vzorku, $m_{\rm e}$ hmota e-

provedení: modulace VVVVV Z-pieza a záznam d I_T /d $Z \Rightarrow \Phi_{S,T}$ zjednodušení: $\Phi_T \approx$ konst., laterální variace v měřené výšce bariéry ~ lokální Φ_S

Si-povrch, W-hrot

D.A. Bonnel: Scanning Tunneling Microscopy and Spectroscopy VCH 1993

Tunelová spektroskopie

Napěťová spektroskopie :

Pro V_B < výst. práce hrotu a vzorku (typicky 10 mV), výraz dI_T/dV_B ~<u>lokální povrchové</u> <u>hustotě stavů (skutečných nebo</u> <u>pocházejících z uspořádání vnitřní pásové</u> <u>struktury vzorku</u>)

Provedení: Modulace VVVVV $V_{\rm B}$, záznam $I_{\rm T}$ - $V_{\rm B}$ křivky, obvykle v podobě d $(\log I_{\rm T})/d(\log V_{\rm B})$ vs $V_{\rm B}$

Poskytuje: mapu povrchových stavů (v UHV) používá se k zobrazení zaplnění stavů, adatomů a volných vazeb (*dangling bonds*) ...

*I*_T-*V*_B křivky na monokryst Si (UHV) při průchodu hrotu nad defektem [B. Persson, A. Baratoff, Phys.Rev.Lett. 59, 339]

(Frank, L. - Král, J., Ed.), : Metody analýzy povrchů. Iontové, sondové a speciální metody Academia, Praha 2002

- •
- •

Electrochemical Scanning Tunneling Microscopy

 \bullet

 \bullet

 \bullet

EC STM – uspořádání detekce tunelových proudů

۲

- •

Elektrochemická mikroskopie SECM Scanning Electrochemical Microscopy

 \bullet

Sonda SECM - detekce Farad. proudů

۲

 \bullet

۲

۲

Režimy SECM - detekce Farad. proudů! zpětnovazebný detekční

Hrot:generujeSubstrát:zpětná reakceDetekce katalytické aktivity substrátu

Substrát: generuje Hrot: detekuje

۲

- •

Mikroskopie atomárních sil Stomic Force Microscopy

۲

AFM

 \bullet

 \bullet

 \bullet

 \bullet

 \bullet

۲

Hooke: F(repulse) = -k xk...konst.pružiny 0,01-1 N/m

AFM kontaktní režim

AFM - adhesivní síly

۲

• • • • • • •

lacksquare

Adsorpce proteinů na zubní sklovině

N. Schwender, M. Mondon, K. Huber, M. Hannig, C. Ziegler Department of Physics, University of Kaiserslautern, Department of Operative Dentistry and Periodontology, Saarland University

AFM: Chemická identifikace atomů

silová křivka před normalizací

normalizovaná na maximum interakce substrát-hrot

<u>Dynamic Force Spectroscopy silová spektroskopie</u> <u>sil blízkého dosahu – chemické interakce</u>

Yoshiaki Sugimoto, Pablo Pou, Masayuki Abe, Pavel Jelinek, Rubén Pérez, Seizo Morita & Óscar Custance: Nature Letters Vol. 446 March 2007

Mikroskopie laterálních sil

Lateral Force Microscopy

 \bullet

۲

Mikroskopie laterálních sil LFM

۲

۲

Teflon na skle: -AFM topografie -rozložení frikčních sil (vlevo)

Vodivostní AFM

AFM semikontaktní režim

mechanický oscilátor vstupní parametry: $f_{rez} A_{sp}$

výstupní parametry $A, \Delta f, \Delta \theta, d$ (*deflexe*)

AFM – semikontaktní režim: deflexní signál

P. Janda, O. Frank, Z. Bastl, M. klementová, H. Tarábková, L. Kavan : Nanotechnology 21 (2010) 095707

AFM s modifikovaným hrotem – vazebné interakce

Monoklonální antigen 1RK2 k A-řetězci ricinu (hrot-IgG1). Viditelná je Y-struktura antigenu. **AFM-semikontaktní režim na vzduchu**. [*Veeco*]

- •
- •

AFM: bezkontaktní režim

 \bullet

 \bullet

•

۲

AFM: bezkontaktní režim

Bezkontaktní AFM: Mikroskopie magnetických sil Magnetic Force Microscopy

۲

•

AFM: artefakty

• • • • • •

•

Mikroskopie (a spektroskopie) blízkého pole Scanning Near-field Optical Microscopy/Spectroscopy SNOM

 \bullet

lacksquare

Mikroskopie vzdáleného pole

Mikroskopie blízkého pole

$$d = \lambda/(\theta \sin \alpha) \approx \lambda/N_{\rm a}$$

d... rozlišení (min. vzdálenost)
λ... vlnová délka světla
θ... index lomu prostředí
α... úhel paprsku (k opt. ose)
N_a... numerická apertura

konstrukce obrazu bod po bodu z fragmentu vlnoplochy <u>Rozlišení</u> ⇒ apertura sondy, vzdálenost od povrchu vzorku

<u>Rozlišení</u> ⇒ *Abbeho*, *Rayleighovo* kriterium index lomu, vstupní úhel, difrakční limit

Mikroskopie a spektroskopie blízkého pole

۲

۲

۲

 \bullet

۲

Reflexní SNOM

 \bullet

NT MDT

Fluorescenční SNOM Zobrazení jednotlivých molekul

(a) (b) 4.88 ŝ Photon Count [kCPS] Distance [nm] 500 nm 500 nm 2.5^(c) (d) 25 nm Height [nm] 22 nm kcPS 0ò 335 Distance [nm] Distance [nm] 1480 0

Alexa 532 (Exmax 532 nm/Emmax 554 nm, Molecular Probe Inc) v PMMA

۲

H. Muramatsu: Surface Science, Vol. 549, 273, 2004

SNOM

۲

AFM Topografie

- •
- •
- •

Mikroskopie rastrovací sondou

 \bullet

Povrchová plasmonová resonance Surface Plasmon Resonance

Plasmonika

Povrchově zesílená Ramanova SP/spektroskopie Surface Enhanced Raman Spectroscopy SERS

Hrotem zesílená Ramanova spektroskopie Tip Enhanced Raman Spectroscopy/Microscopy TERS

Povrchové plasmony

Povrchový Plasmon - polariton = <u>koherentní "kolektivní" oscilace elektronů</u> <u>ve vodivostním pásu</u>

tvořen : nábojem v kovu (e⁻) a elmg. polem v obou fázích

- projevy: spojené oscilace e-hustot a elmg. pole
 (= "hladiny" oscilací elektronových hustot)
- Intenzita pole exponenciálně klesá se vzdáleností od povrchu kovové fáze => lokalizace v mezifází - šíří se jako podélné vlny na mezifází
 Elektromagnetické stavy vázané k rozhraní kov/dielektrikum
 Vlastnosti plasmonu závisí na složení mezifází (= světlovod, detekce chem. vazeb, nanostruktur)

Interakce s elmg. polem: Povrchový plasmon a plasmonová resonance

 E_{p} elmg. pole: el. složka polarizovaná paralelně s mezifázím, $\theta_{dopad} > \theta_{odraz}$. K_{i} , K_{p} vlnové vektory dopadajícího pole a plasmonu.

Interakce s elmg. polem: Nanočásticový plasmon a plasmonová resonance

Nanočásticový plasmon: Min. rozměr částic: > 2 nm => neexistují lokalizované energetické hladiny (pás/oblak)

$$\omega_{\rm P} \sim \sqrt{(n \ {\rm e}^2/\varepsilon_0 \ m^*)}$$

 $\omega_{\rm P}$ plasmonová frekvence m^* ef.hmota vodiv.e- ε_0 permitivita prostředí

Interakce se světlem => excitace oscilací e-oblaku => polariton (el.polarizace) Interakce malé nanočástice se světlem => dipólová radiace (a, b) emise hv větší nanočástice => kvadrupólová radiace (c)

Optický mikroskopický snímek (temné pole) světla rozptýleného nanočásticemi Ag (nanosféry) Au (nanosféry) nanotyčky

C. Soennischen: Plasmons in metal nanostructures. Disertace. L.-M. Universiat Mnichov 2001

Využití plasmonové resonance

-zvětšení citlivosti spektroskopických technik

vč. fluorescence, Ramanovy spektroskopie ... (povrchové zesílení Ramanovy spektroskopie ~ 10¹⁴ – 10¹⁵x umožňuje identifikaci jediné molekuly)

-posun resonance v důsledku adsorpce molekul na mezifází
-měření tloušť ky adsorbovaných vrstev, vazebné konstanty ligandů...

Povrchově zesílená Ramanova spektroskopie Surface Enhanced Raman Spectroscopy

Max. zesílení - dopadající i rozptýlené světlo - (Raman) jen pro frekvence s minimálním posunem (velmi posunuté nemohou být obě v rezonanci => menší zesílení)

kombinuje výhody fluorescence => vysoký světelný zisk + Ramanovy spektroskopie => strukturní informace

-nanostruktury Au, Ag, Cu (NIR-Vis) -,,
-Hot-Spots" (signál není reprezentativní vzhledem k povrchu)

Hrotem zesílená Ramanova spektroskopie

Tip Enhanced Raman Spectroscopy

Od nanočásticové plasmonové resonance (SE) k hrotovému zesílení (TE)

P. Hewageegana, M. I. Stockman: Plasmonics enhancing nanoantennas Infrared Physics & Technology 50 (2007) 177–181

Řez oblastí TER(S) (A = $I_{\text{RT}}/I_{\text{R0}}$) $\lambda = 541 \text{ nm}, d_{\text{T-S}} = 4 \text{ nm}$

význam TERS

- + Plasmonová resonance lokalizovaná na povrchu kovového hrotu (anténa, max.intenzita el.pole na hrotu) => hrot funguje jako téměř ideální bodový zdroj světla.
- + Mobilní "hot spot" snímání reprezentativního signálu z celého povrchu vzorku
- + Proces může být laděn (z/do resonance) vkládáním napětí na hrot

 \bullet

- + umožňuje práci in situ
- + zesílení ~ 10^7

 Vývojové stadium, neúplně definované podmínky: vliv tvaru hrotu, složení hrotu, elektrolytu...

Surface-enhanced and STM-tip-enhanced Raman Spectroscopy at Metal Surfaces Bruno Pettinger, Gennaro Picardi, Rolf Schuster, Gerhard Ertl Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany Single Molecules, Volume 3, Issue 5-6, Pages 285 - 294

S. Kuwata: Near Field Optics and Surface Plasmon Polariton Springer Verlag, 2001

TERS instrumentace

 \bullet

příklady použití TERS

Brilliant Cresyl Blue (BCB) Dye on Gold

Monovrstva barviva adsorbovaného na Au filmu, STM Ag-hrot

۲

G. Picardi, K. Domke, D.Zhang, B. Ren, J. SteidtnerB. Pettinger Fritz-Haber-Institut der Max-Planck-Gesellschaft

•

Zobrazení v režimu TERS

zobrazení svazku SWCNT ve vibračních modech RBM (290 cm⁻¹) D ("disorder" 1300 cm⁻¹) G+ tangenciální C-C stretching (1594 cm⁻¹)

I... "tip off" ("far-field" konfokál) II... "tip on" (TERS)

Nanotechnology 18 (2007) 315502

AFM-TERS: zobrazení + analýza

TERS spectroscopic examination of a single tobacco mosaic virus. (A) Before each TERS measurement, an AFM scan with the silver coated AFM tip is performed in order to position the AFM tip directly on a virus. (B) The TERS spectroscopic fingerprint of a tobacco mosaic virus shows that all TERS bands can be assigned protein and RNA contributions.

Metalizovaný (Au) AFM hrot for TERS/AFM

- •
- •
- •

SPM nanomanipulace & nanostrukturování SPM UFCH-JH

 \bullet

 \bullet

 \bullet

Interakce sonda-povrch vzorku

۲

 \bullet

 \bullet

 \bullet

 \bullet

 \bullet

۲

 \bullet

Interakce sonda-povrch vzorku

Manipulace na molekulární úrovni

DNA Manipulation: Pushing

DNA Manipulation: Cutting

Ning Xi Department of Electrical and Computer Engineering Michigan State University

Nanostruktury vytvářené hrotem (EC)STM

Cu nanočástice vytvořené hrotem STM

P. Janda, K. Kojucharow, L. Dunsch: Copper deposition on fullerene nanostructures. Surface Science 597 (2005) 26-31

Cu nanočástice vytvořené hrotem EC STM

Hrotem indukované rozpouštění

Z. X. Xie, D. M. Kolb: J.Electroanal.Chem. 481 (2000), 177.

۲

۲

۲

۲

۲

•

 \bullet

•

Mikroskop rastrovací mikropipetou

 \bullet

lacksquare

Nanolithografie SPM s rastrovací µ-pipetou

•

•

SNOM lithografie

Zdroj: Veeco

۲

۲

Ústav fyzikální chemie Jaroslava Heyrovského, AVČR v.v.i. Dolejškova 3, 182 23 Praha 8

Laboratoř mikroskopie rastrovací sondou

AFM/STM Nanoscope Illa Multimode Pro práci v kapalinách a plynech Rozlišení ~ 0,1 nm

AFM/STM TopoMetrix TMX 2010 Pro práci v kapalinách a plynech Rozlišení ~ 0,1 nm

http://www.jh-inst.cas.cz/~janda pavel.janda@jh-inst.cas.cz

