Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary

Krein Spaces in de Sitter Quantum Theories

Petr Siegl

Laboratoire Astroparticules et Cosmologie, Université Paris 7, Paris Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University

joint work with J.-P. Gazeau and A. Youssef

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
Motivatio	on			

De Sitter solution of Einstein equations

- corresponds to the experimental observation of accelerated expansion of the Universe
- approximates the inflation period in the early Universe
- positive cosmological constant
- maximally symmetric solution
- $SO_0(1,4)$ invariance

Quantum field theory

- quantum elementary systems are associated with unitary irreducible representations of $SO_0(1,4)$
- classification of UIR 1961 Dixmier, 1963 Takahashi
- unsolved problem quantization of fields for $\Pi_{p,0}$

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
Structure	e of the talk			
Suructure	tor the tark			

- some de Sitter basics
- origins of "zero-mode problem" and possible ways out
- Gupta-Bleuler like quantization
 - indecomposable representations on Krein space
 - Gupta-Bleuler triplet in the standard form
 - G-R-T construction
 - description of cohomology
- generalization of method to "higher" representations

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	0000	00	000000000	00
de Sitter	basics			

Space-time and coordinates

• hyperboloid embedded in a 4+1-dimensional Minkowski space \mathbb{M}_5

$$\begin{split} M_H &\equiv \{ x \in \mathbb{M}_5; \ x^2 := x \cdot x = \eta_{\alpha\beta} \ x^{\alpha} x^{\beta} = -H^{-2} \}, \\ \alpha, \beta &= 0, 1, 2, 3, 4, \quad (\eta_{\alpha\beta}) = \text{diag}(1, -1, -1, -1, -1), \\ x &:= (x^0, \vec{x}, x^4) \quad \text{ambient coordinates} \end{split}$$

• conformal coordinates

$$x = (H^{-1} \tan \rho, (H \cos \rho)^{-1} u), \quad \rho \in] -\frac{\pi}{2}, \frac{\pi}{2}[, \quad u \in S^3]$$

- $SO_0(1,4)$ (or Sp(2,2)) ten parameters
- classification of representations using Casimir operators
- in Dixmier notation, parameters p, q:

$$C_2 = (-p(p+1) - (q+1)(q-2))\mathbb{I},$$

$$C_4 = (-p(p+1)q(q-1))\mathbb{I}$$

- p, q represent spin and mass
- our interest discrete scalar representations $\Pi_{p,0} \ p \in \mathbb{N}$

Introduction	de Sitter basics 0000	Zero-mode problem	G-B quantization	$\mathbf{Summary}$
Wave equ	lation and n	nodes		

- scalar representation $q = 0 \Rightarrow C_4 = 0$
- wave equation $C_2 = -p(p+1)\mathbb{I}$

 \mathcal{C}_2 is proportional to Laplace-Beltrami operator on dS space

• in conformal coordinates:

$$\Box = \frac{1}{\sqrt{g}} \partial_{\nu} \sqrt{g} g^{\nu \mu} \partial_{\mu} = H^2 \cos^4 \rho \frac{\partial}{\partial \rho} (\cos^{-2} \rho \frac{\partial}{\partial \rho}) - H^2 \cos^2 \rho \Delta_3$$
$$\Delta_3 = \frac{\partial^2}{\partial \alpha^2} + 2 \cot \alpha \frac{\partial}{\partial \alpha} + \frac{1}{\sin^2 \alpha} \frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{1}{\sin^2 \alpha} \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \alpha \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

 Δ_3 is Laplace operator on S^3

• solutions of wave equation - carrier space of the representation

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
TT 7		,		
M_{9} M_{9}	ustion and n	nodog		

Wave equation and modes

• separation of variables

$$\psi(x) = \chi(\rho)D(u), \quad u \in S^3$$

$$[\Delta_3 + L(L+1)]D(u) = 0,$$

$$(\cos^4 \rho \frac{d}{d\rho} \cos^{-2} \rho \frac{d}{d\rho} + L(L+1) \cos^2 \rho + (p+2)(1-p))\chi(\rho) = 0.$$

- solutions of wave equation $\phi^p_{Llm}(x) = \chi^p_L(\rho)Y_{Llm}(u)$
- Klein-Gordon inner product

$$\langle \Phi_1, \Phi_2 \rangle = rac{i}{H^2} \int_{
ho=0} \overline{\Phi_1(
ho, u)} \stackrel{\leftrightarrow}{\partial}_{
ho} \Phi_2(
ho, u) \, du \,,$$

where $du = \sin^2 \alpha \, \sin \theta \, d\alpha \, d\theta \, d\phi$ is the invariant measure on S³

- Klein-Gordon inner product is dS invariant $\langle \pi(g) \cdot, \pi(g) \cdot \rangle = \langle \cdot, \cdot \rangle$
- we need $\langle \phi^p_{Llm}, \phi^p_{L'l'm'} \rangle = \delta_{LL'} \delta_{ll'} \delta_{mm'}$
- orthogonality is satisfied, normalization?

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	0	000000000	00
Normalis	ation			

Normalization

•
$$\|\phi_{Llm}^p\|^2 = \frac{2^3}{H^2} \frac{\Gamma(L+p+2)}{(\Gamma(p+2))^2 \Gamma(L-p-1)}$$

• for
$$p = 0$$
 and $L = 0$: $\|\phi_{000}^0\| = 0$

- for p > 1 we have p(p+1)(2p+1)/6 zero norm solutions
- origin of so-called "zero-mode" problem
- no-go result by Allen, 1985
- we need non-degenerate, $SO_0(1, 4)$ -invariant set of modes

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
Set of me	odog			
	JUES			

- for p = 0: $\phi_{000} \equiv \psi_g = const$.
- $\{\phi_{Llm}\}_{L>0}$ is not dS invariant
- $\{\phi_{Llm}\}_{L\geq 0}$ is degenerate (for K-G product)
- possible ways out:
 - only O(4)-invariance Allen 1985
 - Gupta-Bleuler like quantization Gazeau, Renaud, Takook 2000

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
0	tion of comi			

Construction of carrier space

• to obtain zero mode with non-zero K-G norm - add the second solution of wave equation (L = 0)

$$\begin{split} \psi_g &= \frac{H}{2\pi} \\ \psi_s &= -i \frac{H}{2\pi} \left(\rho + \frac{1}{2} \sin 2\rho \right) \end{split}$$

- $\phi_0 := \psi_g + \psi_s/2, \langle \psi_g, \psi_s \rangle = 1 \Rightarrow ||\phi_0|| = 1$
- $\{\phi_{Llm}\}_{L>0} \cup \{\phi_0\}$ is non-degenerate and orthonormal
- $\{\phi_{Llm}\}_{L>0} \cup \{\phi_0\}$ is not dS invariant!
- it is necessary to include $\{\overline{\phi_{Llm}}\}_{L>0} \cup \{\overline{\phi_0}\}$
- $\|\overline{\phi_{Llm}}\| < 0, \|\overline{\phi_0}\| < 0$
- we change the notation $\{\phi_{Llm}\}_{L\geq 0} \rightarrow \{\psi_n\}_{n\in\mathbb{N}_0}$

Introduction 00	de Sitter basics 00000	Zero-mode problem	G-B quantization	Summary 00
0	· · · · ·			

Construction of carrier space

• dS invariant, non-degenerate carrier space $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$

$$\begin{aligned} \mathcal{H}_{+} &:= \big\{ \sum_{n \in \mathbb{N}_{0}} c_{n} \psi_{n} \big| \sum_{n \in \mathbb{N}_{0}} |c_{n}|^{2} < \infty \big\} \\ \mathcal{H}_{-} &:= \big\{ \sum_{n \in \mathbb{N}_{0}} d_{n} \overline{\psi_{n}} \big| \sum_{n \in \mathbb{N}_{0}} |d_{n}|^{2} < \infty \big\} \end{aligned}$$

• subspaces

$$\begin{split} \mathcal{N} &:= \mathbb{C}\psi_g, \quad \psi_g = 1/2(\psi_0 + \overline{\psi_0}), \qquad \|\psi_g\| = 0, \\ \mathcal{S} &:= \mathbb{C}\psi_s, \quad \psi_s = 1/(2i) \left(\psi_0 - \overline{\psi_0}\right), \qquad \|\psi_s\| = 0, \\ \mathcal{K}_+ &:= \big\{ \sum_{n \in \mathbb{N}} c_n \psi_n \big| \sum_{n \in \mathbb{N}} |c_n|^2 < \infty \big\}, \qquad \|\psi_n\| > 0, \quad n \in \mathbb{N}, \\ \mathcal{K}_- &:= \big\{ \sum_{n \in \mathbb{N}} d_n \overline{\psi_n} \big| \sum_{n \in \mathbb{N}} |d_n|^2 < \infty \big\}, \qquad \|\psi_n\| < 0, \quad n \in \mathbb{N} \end{split}$$

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	00000000	00

Construction of carrier space

 $\bullet~\mathcal{H}$ is a Krein space

$$egin{aligned} J\psi_n &:= \psi_n, & n \in \mathbb{N}, & J\psi_g &:= \psi_s \ J\overline{\psi_n} &:= -\overline{\psi_n}, & n \in \mathbb{N}, & J\psi_s &:= \psi_g \end{aligned}$$

•
$$J^2 = I, \, \forall \psi, \phi \in \mathcal{H}, \, \langle \psi, J\phi \rangle = \langle J\psi, \phi \rangle$$

- $(\cdot, \cdot) := \langle \cdot, J \cdot \rangle$ is a positive inner product on \mathcal{H}
- $\mathcal{H} = \mathcal{N} \oplus_J \mathcal{S} \oplus_J \mathcal{K}_+ \oplus_J \mathcal{K}_- = (\mathcal{N} \dotplus \mathcal{S}) \oplus \mathcal{K}_+ \oplus \mathcal{K}_-$

• n.b.
$$\langle \psi_g, \psi_s \rangle = 1$$

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
Curata D	lordon trialet			
Gunta-B	leuler triplet			

• Gupta-Bleuler triplet

$$egin{array}{c} \pi_3 o \pi_2 o \pi_1 \ \mathcal{H}_3 \supset \mathcal{H}_2 \supset \mathcal{H}_1 \end{array}
ight)$$

• Indecomposable representation

$$\pi(g) = \begin{pmatrix} \pi_1(g) & c_{12}(g) & c_{13}(g) \\ 0 & \pi_2(g) & c_{23}(g) \\ 0 & 0 & \pi_3(g) \end{pmatrix}$$

• π_j is a representation on $\mathcal{R}_j := \mathcal{H}_{j+1}/\mathcal{H}_j$ $\mathcal{H}_3 := \mathcal{H}$ and $\mathcal{R}_1 := \mathcal{H}_1$

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00		00
		1 1 0		

G-B triplet in the standard form

• definition by Araki (1985)

$$egin{array}{c} \pi_1^{\#} o \pi_2 o \pi_1 \ \mathcal{H}_3 \supset \mathcal{H}_2 \supset \mathcal{H}_1 \end{array}
ight)$$

• π_3 is a conjugate of π_1

$$\forall g \in G, \ \phi \in \mathcal{H}_1^{\#}, \ \psi \in \mathcal{H}_1, \ \langle \pi_1^{\#}(g^{-1})\phi, \psi \rangle = \langle \phi, \pi_1(g)\psi \rangle$$

• for mmcf

$$\begin{aligned} \mathcal{H}_1 &= \mathcal{N}, \quad \mathcal{H}_2 := \mathcal{H}_1^{\perp} = \mathcal{N} \oplus \mathcal{K}_- \oplus \mathcal{K}_+, \quad \mathcal{H} \equiv \mathcal{H}_3 = (\mathcal{N} \dotplus \mathcal{S}) \oplus \mathcal{K}_- \oplus \mathcal{K}_+ \\ \mathcal{R}_1 &= \mathcal{N}, \qquad \mathcal{R}_2 = \mathcal{H}_2 / \mathcal{H}_1 \simeq \mathcal{K}_- \oplus \mathcal{K}_+, \quad \mathcal{R}_3 = \mathcal{H}_3 / \mathcal{H}_2 \simeq \mathcal{S} \end{aligned}$$

• 'one particle sector' (\mathcal{R}_2) contains also modes with negative norm

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
Modified	G-B triplet			

• structure of the G-R-T construction

 $\left. \begin{array}{c} \pi_3 \to \pi_2 \to \pi_1 \\ \mathcal{H}_3 \supset \mathcal{H}_2 \supset \mathcal{H}_1 \end{array} \right\}$

- π_3 is not a conjugate of π_1
- $\mathcal{N} \oplus \mathcal{K}_+$ is an invariant subspace

 $\begin{aligned} \mathcal{H}_1 &= \mathcal{N}, \quad \mathcal{H}_2 := \mathcal{N} \oplus \mathcal{K}_+ \subset \mathcal{H}_1^{\perp}, \quad \mathcal{H} \equiv \mathcal{H}_3 = (\mathcal{N} \dotplus \mathcal{S}) \oplus \mathcal{K}_- \oplus \mathcal{K}_+ \\ \mathcal{R}_1 &= \mathcal{N}, \qquad \mathcal{R}_2 = \mathcal{H}_2 / \mathcal{H}_1 \simeq \mathcal{K}_+, \quad \mathcal{R}_3 = \mathcal{H}_3 / \mathcal{H}_2 \simeq \mathcal{S} \oplus \mathcal{K}_- \end{aligned}$

• only modes with positive norm in 'one particle sector' (\mathcal{R}_2)

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	0000000000	00

Cohomology - definitions

Definition

A representation π on \mathcal{H} is called irreducible if there is no non-trivial closed invariant subspace.

$$\mathcal{W} \subset \mathcal{H}, \ \pi(G)\mathcal{W} \subset \mathcal{W} \Rightarrow \mathcal{W} = \mathcal{H} \text{ or } \mathcal{W} = 0.$$

 π is called topologically indecomposable if there are no non-zero closed invariant subspaces \mathcal{U} and \mathcal{V} of \mathcal{H} such that $((\mathcal{U} + \mathcal{V})^{\perp})^{\perp} = \mathcal{H}$ and $\mathcal{U} \cap \mathcal{V} = 0$

$$\left(\begin{array}{cc} \pi_1 & c_{12} \\ 0 & \pi_2 \end{array}\right)$$

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00		00
Cohomo	logy - definit	ions		

Definition

Let π_1, π_2 be representations on $\mathcal{H}_1, \mathcal{H}_2$. A function $c(g_1, ..., g_n)$ of $g_k \in G$ with values in $\mathscr{L}(\mathcal{H}_1, \mathcal{H}_2)$, *i.e.* in the set of everywhere-defined linear mappings from \mathcal{H}_1 into \mathcal{H}_2 , is called *n*-cochain. The set of all *n*-cochains is denoted by $C^n(\pi_1, \pi_2)$.

Definition

The coboundary operation δ (satisfying $\delta^2 = 0$)

$$(\delta c_n)(g_1, ..., g_{n+1}) := \pi_2(g_1)c_n(g_2, ..., g_n) + \sum_{i=1}^n (-1)^n c_n(g_1, ..., g_i g_{i+1}, ..., g_{n+1}) + (-1)^{n+1} c_n(g_1, ..., g_n) \pi_1(g_{n+1}),$$

where $c_n \in C^n(\pi_1, \pi_2), g_1, ..., g_n \in G$.

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
<u> </u>	1.0.10			

Cohomology - definitions

Definition

Cocycle: $Z^{n}(\pi_{1}, \pi_{2}) := \{c_{n} \in C^{n} | \delta c_{n} = 0\}$ Coboundary: $B^{n}(\pi_{1}, \pi_{2}) := \delta C^{n-1}(\pi_{1}, \pi_{2}), \quad B^{0}(\pi_{1}, \pi_{2}) := 0$ Cohomology: $H^{n}(\pi_{1}, \pi_{2}) := Z^{n}(\pi_{1}, \pi_{2})/B^{n}(\pi_{1}, \pi_{2})$

Definition

Let $c_1 \in C^m(\pi_2, \pi_3)$ and $c_2 \in C^n(\pi_1, \pi_2)$ we define \times operation as

$$(c_1 \times c_2)(g_1, ..., g_{m+n}) := c_1(g_1, ..., g_m)c_2(g_{m+1}, ..., g_{m+n})$$

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
C 1	1 101			
Cohomo	low and C 1	D triplat		

Cohomology and G-B triplet

$$\pi(g) = \begin{pmatrix} \pi_1(g) & c_{12}(g) & c_{13}(g) \\ 0 & \pi_2(g) & c_{23}(g) \\ 0 & 0 & \pi_3(g) \end{pmatrix}$$

π is a representation

•
$$\delta c_{12} = \delta c_{23} = 0$$

•
$$\delta c_{13} = -c_{12} \times c_{23}$$

Invariant complements

- \mathcal{H}_1 does not have any invariant complement iff $c_{12} \notin B^1(\pi_2, \pi_1)$.
- the existence of G-B triplet implies $H^1(\pi_2, \pi_1) \neq 0, H^1(\pi_3, \pi_2) \neq 0$

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
a				
Summary	V			

Results

- Zero mode problem can be solved by Gupta-Bleuler like quantization
- G-R-T construction is not Gupta-Bleuler triplet in the standard form
- the existence of Gupta-Bleuler triplet can be formulated in cohomological conditions

Open questions

- the second solution (construction of ϕ_0)
- relation of G-R-T construction and Gupta-Bleuler triplet in the standard form
- can be the method for p = 0 extended to higher representations? $\dim(\mathcal{N}) > 1$

Introduction	de Sitter basics	Zero-mode problem	G-B quantization	Summary
00	00000	00	000000000	00
Reference	es			

• de Sitter group, $SO_0(1,4)$

• 1961 Dixmier, Représentations intégrables du groupe de de Sitter, Bulletin de la S.M.F.

• 1963 Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés,

Bulletin de la S.M.F.

• Zero-mode problem

- 1985 Allen, Vacuum states in de Sitter space, Phys. Rev. D
- 1987 Allen and Folacci, Massless minimally coupled scalar field in de Sitter space, Phys. Rev. D
- 2000 Gazeau, Renaud, and Takook, Gupta-Bleuler quantization for minimally coupled scalar fields in de Sitter space, Class. and Quant. Grav.
- 2010 Gazeau, Siegl, and Youssef, Krein Spaces in de Sitter Quantum Theories, SIGMA

• Gupta-Bleuler triplet

- 1985 Araki, Indecomposable Representations with Invariant Inner Product, Comm. in Math. Phys.
- 1990 Pierotti, Some remarks on the Gupta-Bleuler triplet, JMP