Introdu	\mathbf{iction}

Classes and examples 000000

Irregular \mathcal{PT} BC

 \mathcal{PT} RBC 000000

Open problems in \mathcal{PT} -symmetry

Petr Siegl

FNSPE, Czech Technical University in Prague, Nuclear Physics Institute ASCR, Řež, Laboratoire Astroparticules et Cosmologie, Université Paris 7, Paris,

based on the joint work with and David Krejčiřík (NPI ASCR), Hector Hernandez-Coronado (CTU in Prague), and Jakub Železný (CTU in Prague)

Introduction	Classes and examples	Irregular \mathcal{PT} BC	\mathcal{PT} RBC
0000	000000		000000
Outline			
Outime			

- **2** Classes of operators and counter-examples
- $\textcircled{\textbf{@} \mathcal{PT}-symmetric Robin boundary conditions}}$

Introduction	Classes and examples	Irregular \mathcal{PT} BC	$\mathcal{PT} \mathbf{RBC}$
$\mathcal{PT} ext{-symme}$	etrv		

\mathcal{PT} -symmetric Hamiltonians

•
$$H = -\frac{d^2}{dx^2} + V(x), V(x) = \overline{V(-x)}$$

• bounded perturbations: bounded potentials \mathcal{PT} -symmetric square well: V(x) = iZsgnx

2001 Znojil, 2001 Znojil and Lévai, ...

• non-perturbative approach: unbounded potential $V(x) = ix^3$

1998, Bender, Boettcher, 2003 Dorey, Dunning, Tateo, ...

 relatively (form) bounded perturbations: *PT*-symmetric point interactions (boundary conditions) two δ potentials with complex coupling, *PT*-symmetric Robin boundary conditions

2002 Albeverio, Fei, Kurasov, 2005 Albeverio, Kuzhel, 2005 Jakubský, Znojil,

2009 Albeverio, Gunther, Kuzhel, 2006 Krejčiřík, Bíla, Znojil, 2008 Borisov,

Krejčiřík, 2010 Krejčiřík, Siegl, ...

Introduction
0000

Reality of the spectrum and metric operator

Spectrum

- $\left.\begin{array}{l} \mathcal{PT} \text{symmetry } (\mathcal{PT})H \subset H(\mathcal{PT}) \\ \text{pseudo-Hermiticity } H^* = \eta^{-1}H\eta \end{array}\right\} \Rightarrow \lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$
- $\bullet\,$ pseudo-Hermiticity \Leftrightarrow self-adjointness in Krein space
- not sufficient for real spectrum, only complex conjugated pairs
- 1D systems: the crossing of real eigenvalues is necessary to produce complex conjugated pair

Introduction	Classes and examples 000000	Irregular \mathcal{PT} BC	\mathcal{PT} RBC 000000
Metric oper	ator		

Metric operator

- $\Theta H = H^* \Theta$
 - $\Theta, \Theta^{-1} \in \mathscr{B}(\mathcal{H})$
 - $\Theta^* = \Theta$
 - $\Theta > 0$
- necessary condition: $\sigma(H) \subset \mathbb{R}$

Existence of metric operator

- H possesses a metric operator Θ
- *H* is self-adjoint in $\langle \cdot, \Theta \cdot \rangle$
- *H* is similar to a self-adjoint operator $h = \varrho^{-1} H \varrho = h^*$, $\Theta = \varrho \varrho^*$
- *H* possesses a *C*-symmetry: $C^2 = I$, $\eta C > 0$, CH = HC

Introduction $000 \bullet$	Classes and examples 000000	Irregular \mathcal{PT} BC	\mathcal{PT} RBC 000000
Metric oper	ator		

Operators with discrete spectrum

• *H* with discrete spectrum: eigenfunctions $\{\psi_n\}$ form a Riesz basis

•
$$\Theta = \operatorname{s-lim}_{N \to \infty} \sum_{j=1}^{N} c_j \langle \phi_j, \cdot \rangle \phi_j,$$

where ϕ_j are eigenfunctions of H^* and $m < c_j < M$

Examples

- existence results: perturbation theory for spectral operators
- few explicit examples:
 - point interactions

2005 Albeverio, Kuzhel, 2008 Siegl

• \mathcal{PT} -symmetric Robin b.c.

2006 Krejčiřík, Bíla, Znojil, 2008 Krejčiřík, 2010 Krejčiřík, Siegl, Železný

O000	Classes and examples	Irregular PT BC	000000
Classes of	operators		

Antilinear symmetry

- $LH\psi = LH\psi$ for all $\psi \in \text{Dom}(H)$
- L is antilinear bounded operator with bounded inverse
- spectrum: $\lambda \in \sigma_{p,c,r}(H)$ iff $\overline{\lambda} \in \sigma_{p,c,r}(H)$

• example:
$$L = \mathcal{PT}, H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x), \overline{V(-x)} = V(x)$$

Pseudo-Hermiticity

• weak pseudo-Hermiticity:

•
$$H = \eta^{-1} H^* \eta$$

•
$$\eta, \eta^{-1} \in \mathscr{B}(\mathcal{H})$$

- pseudo-Hermiticity: $\eta = \eta^*$
- $\bullet\,$ pseudo-Hermiticity $\Leftrightarrow\,$ self-adjointness in Krein space

• spectrum:
$$\sigma_{p,c,r}(H) = \sigma_{p,c,r}(H^*)$$

Classes and examples

Irregular \mathcal{PT} BC

 \mathcal{PT} RBC 000000

C-symmetric operators

Definition

Let $A \in \mathscr{L}(\mathcal{H})$ be densely defined. Let C be an antilinear isometric involution, i.e. $C^2 = I$ and $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$. A is called C-symmetric if $A \subset CA^*C$. A is called C-self-adjoint if $A = CA^*C$.

Lemma

Let A be a C-self-adjoint operator. Then (i) dim(Ker $(A - \lambda)$) = dim(Ker $(A^* - \overline{\lambda})$), (ii) $\sigma_r(A) = \emptyset$.

Introduction	Classes and examples	Irregular \mathcal{PT} BC	\mathcal{PT} RBC
0000	00000		000000
Finite dim	ension		
I IIII UU UIIII			

Lemma

Every $A \in \mathscr{L}(V_n)$ is similar to the *C*-self-adjoint operator, i.e. there exists invertible $X \in \mathscr{L}(V_n)$ such that XAX^{-1} is *C*-self-adjoint.

Proposition

Let $A \in \mathscr{L}(V_n)$. Then A is pseudo-Hermitian if and only if it possesses an antilinear symmetry.

Introduction
0000Classes and examples
00000Irregular PT BC
00000PT RBC
000000Antilinear symmetry without pseudo-Hermiticity

Example

- $\{e_n\}_{n=1}^{\infty}$ standard orthonormal basis of $\mathcal{H} = l_2(\mathbb{N}), e_n(m) = \delta_{mn}$
- $Te_n := e_{n-1}, n \in \mathbb{N}, e_0 := 0$

•
$$T^*e_n := e_{n+1}, n \in \mathbb{N}$$

• $T = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \\ 0 & 0 & 0 & 1 & 0 & \\ 0 & 0 & 0 & 0 & 1 & \\ \vdots & & \ddots & \ddots & \ddots \end{pmatrix}$

 Introduction
 Classes and examples
 Irregular PT BC
 PT RBC

 0000
 00000
 00000
 00000

Example

- $\bullet\,$ antilinear symmetry ${\cal T}$
- every $|\lambda| < 1$ is in the point spectrum $\sigma_p(T)$, $x_{\lambda} = \sum_{n=1}^{\infty} \lambda^{n-1} e_n$
- $\sigma_p(T^*) = \emptyset$, point spectrum of T^* is empty
- $\{\lambda \in \mathbb{C} | |\lambda| < 1\} \subset \sigma_r(T^*)$, residual spectrum is non-empty
- T is not pseudo-Hermitian, $\sigma_p(T) \neq \sigma_p(T^*)$

Introduction
0000Classes and examples
0000Irregular PT BCPT RBC
000000Pseudo-Hermiticity without antilinear symmetry

Example

• $\{e_i\}_{-\infty}^{\infty}$ orthonormal basis of $\mathcal{H} = l^2(\mathbb{Z}), e_n(m) = \delta_{mn}$

•
$$Te_i := \begin{cases} \lambda_0 e_i + e_{i+1}, & i \ge 1, \\ 0, & i = 0, \\ \overline{\lambda}_0 e_{-1}, & i = -1, \\ \overline{\lambda}_0 e_i + e_{i+1}, & i < -1, \end{cases}$$

• $\lambda_0 \in \mathbb{C}, \text{ Im } \lambda_0 > \frac{1}{2}$

Introduction 0000	Classes and examples 000000	Irregular \mathcal{PT} BC	\mathcal{PT} RBC 000000
Pseudo-Herm	iticity without an	tilinear symmetry	,

Introduction 0000	Classes and examples	Irregular \mathcal{PT} BC	\mathcal{PT} RBC 000000
Pseudo-Herm	iticity without an	tilinear symmetry	7

Example

• T is pseudo-Hermitian, $\mathcal{P}e_i := e_{-i}, T = \mathcal{P}T^*\mathcal{P}$

•
$$\overline{\lambda}_0 \in \sigma_p(T) = \sigma_p(T^*)$$

•
$$\lambda_0 \in \sigma_r(T) = \sigma_r(T^*)$$

• T has not any antilinear symmetry, $\lambda \in \sigma_p(T) \Leftrightarrow \overline{\lambda} \in \sigma_p(T^*)$

 Introduction
 Classes

 000
 000000

Irregular \mathcal{PT} -symmetric boundary conditions7

$\mathcal{PT} ext{-symmetric}$ irregular boundary conditions

- parametrization of \mathcal{PT} -symmetric b.c. 2002 Albeverio, Fei, Kurasov
- \mathcal{PT} -symmetric b.c. are strongly regular except one case (irregular)

•
$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2}$$
 on $L_2(-1,1)$
 $\psi(-1) = \psi(1) = 0$, $\psi(0+) = e^{\mathrm{i}\tau}\psi(0-)$ and $\psi'(0+) = e^{-\mathrm{i}\tau}\psi'(0-)$

• irregular for $au=\pm\pi/2$: $\sigma(H)=\mathbb{C}$ 2005 Albeverio, Kuzhel

• for
$$\tau \neq \pm \pi/2$$
: $\sigma(H) = \left\{ \left(\frac{n\pi}{2}\right)^2 \right\}$

- $\Theta = I i \sin \tau P_{sgn} \mathcal{P}$ 2009 Siegl
- dim Ker(Θ) = ∞ for $\tau = \pm \pi/2$
- can we approximate irregular case with regular ones?
 - resolvent does not exists
 - strong graph limit: $H_{\pi/2} = \text{str. gr. lim} H_n$
 - $\bullet\,$ str. gr. limit preserves $\mathcal{PT}\text{-symmetry}$ and $\mathcal{P}\text{-self-adjointness}$

Classes and examples 000000

\mathcal{PT} -symmetric Robin boundary conditions

1D model

2006 Krejčiřík, Bíla, Znojil, 2010 Krejčiřík, Siegl

- $\mathcal{H} = L^2((-a,a), \mathrm{d}x)$
- $H = -\frac{d^2}{dx^2}$
- $Dom(H) = W^{2,2}((-a, a)) + boundary conditions$

•
$$\psi'(-a) + (i\alpha - \beta)\psi(-a) = 0$$
, $\psi'(a) + (i\alpha + \beta)\psi(a) = 0$
 $\alpha, \beta \in \mathbb{R}$

1D model - \mathcal{PT} -symmetry

- $\forall \psi \in \text{Dom}(H), \ \psi \in \text{Dom}(H) \Leftrightarrow \mathcal{PT}\psi \in \text{Dom}(H)$
- $\forall \psi \in \text{Dom}(H), \quad H\mathcal{PT}\psi = \mathcal{PT}H\psi$
- $H(\alpha,\beta)^* = H(-\alpha,\beta)$
- $H = \mathcal{P}H^*\mathcal{P}, H = \mathcal{T}H^*\mathcal{T}$

Classes and examples

\mathcal{PT} -symmetric Robin boundary conditions

Spectrum of 1D model: I. $\beta = 0$

- $\psi'(-a) + i\alpha\psi(-a) = 0$, $\psi'(a) + i\alpha\psi(a) = 0$
- $\sigma(H) = \sigma_d(H) \subset \mathbb{R}$, crossings

Spectrum of 1D model: I. $\beta = 0$

$$\sigma(H) = \{\alpha^2\} \cup \left\{ \left(\frac{n\pi}{2a}\right)^2 \right\}_{n \in \mathbb{N}}$$

$$\psi_0(x) = e^{-i\alpha x}$$

$$\psi_n(x) = \cos(\frac{n\pi}{2a}x) - i\alpha \frac{2a}{n\pi} \sin(\frac{n\pi}{2a}x)$$

Classes and examples

Irregular \mathcal{PT} BC

 \mathcal{PT} RBC 000000

\mathcal{PT} -symmetric Robin boundary conditions

Spectrum of 1D model: I. $\beta = 0$, metric operator

• $\Theta H = H^* \Theta$

•
$$\Theta = I + \phi_0 \langle \phi_0, \cdot \rangle + \Theta_0 + i\alpha \Theta_1 + \alpha^2 \Theta_2$$

where

•
$$\phi_0 = \sqrt{\frac{1}{2a}} \exp(i\alpha x),$$

• $(\Theta_0 \psi)(x) = -\frac{1}{2a}(J\psi)(2a),$
• $(\Theta_1 \psi)(x) = 2(J\psi)(x) - \frac{x}{2a}(J\psi)(2a) - \frac{1}{d}(J^2\psi)(2a),$
• $(\Theta_2 \psi)(x) = -(J^2\psi)(x) + \frac{x}{2a}(J^2\psi)(2a),$
• with $(J\psi)(x) = \int_{-a}^{x} \psi$. 2006 Krejčiřík, Bíla, Znojil

• $\Theta = I + K$,

where K is an integral operator with kernel

$$\begin{split} K(x,y) &= \\ \frac{e^{\mathrm{i}\alpha(x-y)} - 1}{2a} + \mathrm{i}\frac{\alpha(y-x)}{2a} - \alpha^2 \frac{xy}{2a} + \begin{cases} -\mathrm{i}\alpha + \alpha^2 x, & x < y \\ \mathrm{i}\alpha + \alpha^2 y, & y < x \end{cases} \end{split}$$

2010 Krejčiřík, Siegl, Železný

Introduction 0000	Classes and examples 000000	$\mathbf{Irregular} \ \mathcal{PT} \ \mathbf{BC}$	\mathcal{PT} RBC 000000
$\mathcal{PT} ext{-symme}$	etric Robin bounda	ry conditions	

Equivalent self-adjoint Hamiltonian

- $\beta = 0$ and α small, notation $H_{\alpha} \equiv H(\alpha, 0)$
- approximative formula for $\rho \approx \sqrt{\Theta}$
- equivalent self-adjoint Hamiltonian $H^F_{\alpha} = \rho H_{\alpha} \rho^{-1}$
- $h\psi = -\psi'' + \frac{1}{4}\alpha^2(\psi(-a) + \psi(a)) + O(\alpha^3)$
- $\operatorname{Dom}(H^F_{\alpha}) = \left\{ \psi \in W^{2,2}((-a,a)) | \psi'(a) = -\psi'(-a) = \frac{1}{4}\alpha^2 \int_{-a}^{a} \psi(y) \mathrm{d}y \right\}$

Intro 0000	duction	Classes and examples	Irregular \mathcal{PT} BC	$\mathcal{PT} \mathbf{RBC}$
$\mathcal{P}\mathcal{T}$	7 -symmetrie	e Robin bou	ndary conditions	
	Spectrum of 1D	model: II. $\beta > 0$		
	• $\psi'(-a) + (ia)$	$\alpha - \beta)\psi(-a) = 0,$	$\psi'(a) + (i\alpha + \beta)\psi(a) = 0$	

- $\sigma(H) = \sigma_d(H) \subset \mathbb{R}, \ (k^2 \alpha^2 \beta^2) \sin 2ka 2\beta k \cos 2ka = 0$
- metric operator exists for every α, β , no crossings

Petr Siegl Open problems in \mathcal{PT} -symmetry

Introduction	
0000	

\mathcal{PT} -symmetric Robin boundary conditions

Spectrum of 1D model: III. $\beta < 0$

- $\psi'(-a) + (i\alpha \beta)\psi(-a) = 0$, $\psi'(a) + (i\alpha + \beta)\psi(a) = 0$
- $\sigma(H) = \sigma_d(H), (k^2 \alpha^2 \beta^2) \sin 2ka 2\beta k \cos 2ka = 0$
- either one or any complex conjugated pair
- known localization: $\Re \lambda$ in neighborhood of $\alpha^2 + \beta^2$
- metric operator exists if $\sigma(H) \subset \mathbb{R}$

