Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
	00000			0000000	

Krein spaces in de Sitter quantum theories

Petr Siegl

Laboratoire Astroparticules et Cosmologie, Université Paris 7, Paris, France Nuclear Physics Institute ASCR, Řež, Czech Republic FNSPE, Czech Technical University in Prague, Czech Republic

joint work with J.-P. Gazeau and A. Youssef

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
0	00000	00	000	00000000	00
Motivation	L				

De Sitter solution of Einstein equations

- corresponds to the experimental observation of accelerated expansion of the Universe
- approximates the inflation period in the early Universe
- positive cosmological constant
- maximally symmetric solution
- $SO_0(1,4)$ invariance

Quantum field theory

- quantum elementary systems are associated with unitary irreducible representations of $SO_0(1, 4)$
- classification of UIR 1961 Dixmier, 1963 Takahashi, ...
- unsolved problem quantization of fields for $\Pi_{p,0}$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
0	00000	00	000	0000000	00
Motivation	L				

De Sitter solution of Einstein equations

- corresponds to the experimental observation of accelerated expansion of the Universe
- approximates the inflation period in the early Universe
- positive cosmological constant
- maximally symmetric solution
- $SO_0(1,4)$ invariance

Quantum field theory

- quantum elementary systems are associated with unitary irreducible representations of $SO_0(1, 4)$
- classification of UIR 1961 Dixmier, 1963 Takahashi, ...
- unsolved problem quantization of fields for $\Pi_{p,0}$

Introduction $\odot \bullet$	de Sitter basics 00000	Zero-mode problem	Krein space 000	Summary 00
Structure	of the talk			

- de Sitter basics
- origins of "zero-mode problem" and possible ways out
- Gupta-Bleuler like quantization
 - indecomposable representations on Krein space
 - Gupta-Bleuler triplet in the standard form
 - G-R-T construction
 - description of cohomology
- conclusions and references

Introduction 00	de Sitter basics	Zero-mode problem 00	Krein space 000	Summary 00
de Sitter b	asics			

Space-time and coordinates

 \bullet hyperboloid embedded in
a $4{+}1{\text{-}}{\rm dimensional}$ Minkowski space \mathbb{M}_5

$$\begin{split} M_H &\equiv \{x \in \mathbb{M}_5; \ x^2 := x \cdot x = \eta_{\alpha\beta} \ x^{\alpha} x^{\beta} = -H^{-2}\},\\ \alpha, \beta &= 0, 1, 2, 3, 4, \quad \left(\eta_{\alpha\beta}\right) = \text{diag}(1, -1, -1, -1, -1)\\ x &:= (x^0, \vec{x}, x^4) \text{ ambient coordinates} \end{split}$$

• conformal coordinates

$$x = (H^{-1} \tan \rho, (H \cos \rho)^{-1} u), \quad \rho \in (-\frac{\pi}{2}, \frac{\pi}{2}), \quad u \in S^3$$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	0000	00	000	0000000	00
De Sitter g	group $SO_0(1, 4)$	L)			

- $SO_0(1,4)$ ten parameters
- classification of representations using Casimir operators
- in Dixmier notation, parameters p, q:

$$C_2 = (-p(p+1) - (q+1)(q-2))\mathbb{I}$$

$$C_4 = (-p(p+1)q(q-1))\mathbb{I}$$

- p, q represent spin and mass
- our interest discrete scalar representations $\Pi_{p,0} \ p \in \mathbb{N}$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	00000	00	000	00000000	00
Wave equa	tion and mod	es			

Wave equation

- scalar representation $q = 0 \Rightarrow C_4 = 0$
- wave equation $C_2 = -p(p+1)\mathbb{I}$

 \mathcal{C}_2 is proportional to Laplace-Beltrami operator on dS space

• in conformal coordinates:

$$\Box = \frac{1}{\sqrt{g}} \partial_{\nu} \sqrt{g} g^{\nu\mu} \partial_{\mu} = H^2 \cos^4 \rho \frac{\partial}{\partial \rho} (\cos^{-2} \rho \frac{\partial}{\partial \rho}) - H^2 \cos^2 \rho \Delta_3$$

• $\Delta_3 = \frac{\partial^2}{\partial \alpha^2} + 2 \cot \alpha \frac{\partial}{\partial \alpha} + \frac{1}{\sin^2 \alpha} \frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{1}{\sin^2 \alpha} \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \alpha \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$
• Δ_3 is Laplace operator on S^3

• solutions of wave equation - carrier space of the representation

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	0000	00	000	00000000	00
Wave equa	ation and mod	es			

Wave equation

- scalar representation $q = 0 \Rightarrow C_4 = 0$
- wave equation $C_2 = -p(p+1)\mathbb{I}$

 \mathcal{C}_2 is proportional to Laplace-Beltrami operator on dS space

• in conformal coordinates:

$$\Box = \frac{1}{\sqrt{g}} \partial_{\nu} \sqrt{g} g^{\nu\mu} \partial_{\mu} = H^2 \cos^4 \rho \frac{\partial}{\partial \rho} (\cos^{-2} \rho \frac{\partial}{\partial \rho}) - H^2 \cos^2 \rho \Delta_3$$

• $\Delta_3 = \frac{\partial^2}{\partial \alpha^2} + 2 \cot \alpha \frac{\partial}{\partial \alpha} + \frac{1}{\sin^2 \alpha} \frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{1}{\sin^2 \alpha} \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \alpha \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$
• Δ_3 is Laplace operator on S^3

• solutions of wave equation - carrier space of the representation

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	00000	00	000	00000000	00
Wave equa	tion and mod	es			

Wave equation

• separation of variables

$$\phi(x) = \chi(\rho)D(u), \ \ \rho \in (-\frac{\pi}{2}, \frac{\pi}{2}), \ u \in S^3$$

• system of equations

$$[\Delta_3 + L(L+1)]D(u) = 0,$$

$$(\cos^4 \rho \frac{d}{d\rho} \cos^{-2} \rho \frac{d}{d\rho} + L(L+1) \cos^2 \rho + (p+2)(1-p))\chi(\rho) = 0.$$

Modes

•
$$D(u) = Y_{Llm}(u) = C_{Ll}2^{l}l! (\sin \alpha)^{l} C_{L-l}^{l+1} (\cos \alpha) Y_{lm}(\theta, \phi)$$

for $(L, l, m) \in \mathbb{N}_{0} \times \mathbb{N}_{0} \times \mathbb{Z}$ with $0 \le l \le L$ and $-l \le m \le l$.
• $\chi(\rho) = e^{-i(L+1-p)\rho} (\cos \rho)^{1-p} {}_{2}F_{1}(-p, L-p+1; L+2; -e^{-2i\rho})$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	00000	00	000	00000000	00
Klein-Goro	lon inner prod	luct			

- solutions of wave equation $\phi^p_{Llm}(x) = \chi^p_L(\rho) Y_{Llm}(u)$
- Klein-Gordon inner product

$$\langle \Phi_1, \Phi_2 \rangle = \frac{i}{H^2} \int_{\rho=0} \overline{\Phi_1(\rho, u)} \stackrel{\leftrightarrow}{\partial}_{\rho} \Phi_2(\rho, u) \, du \,,$$

where $du = \sin^2 \alpha \, \sin \theta \, d\alpha \, d\theta \, d\phi$ is the invariant measure on S³

- Klein-Gordon inner product is dS invariant $\langle \pi(g)\cdot,\pi(g)\cdot\rangle=\langle\cdot,\cdot\rangle$
- \bullet we need $\langle \phi^p_{Llm}, \phi^p_{L'l'm'} \rangle = \delta_{LL'} \delta_{ll'} \delta_{mm'}$
- orthogonality is satisfied, normalization?

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	00000	●0	000		00
Normalizat	tion				

•
$$\|\phi_{Llm}^p\|^2 = \frac{2^3}{H^2} \frac{\Gamma(L+p+2)}{(\Gamma(p+2))^2 \Gamma(L-p-1)}$$

• for
$$p = 0$$
 and $L = 0$: $\|\phi_{000}^0\| = 0$

- for p > 1 we have N = p(p+1)(2p+1)/6 zero norm solutions (L < p)
- origin of so-called "zero-mode" problem
- no-go result by Allen, 1985
- we need non-degenerate, $SO_0(1, 4)$ -invariant set of modes

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	00000	00	000	00000000	00
Set of mod	les				

- for p = 0: $\phi_{000} \equiv \psi_g = const$.
- $\{\phi_{Llm}\}_{L>0}$ is not dS invariant
- $\{\phi_{Llm}\}_{L>0} \cup \{\psi_g\}$ is degenerate (for K-G product)
- possible ways out:
 - only O(4)-invariance Allen 1985
 - Gupta-Bleuler like quantization Gazeau, Renaud, Takook 2000

Introduction			Krein space	G-B triplets	
00	00000	00	000	00000000	00
Constructi	on of carrier s	space			

 $\bullet\,$ to obtain zero mode with non-zero K-G norm - add the second solution of wave equation (L=0)

$$\begin{split} \psi_g &= \frac{H}{2\pi} \\ \psi_s &= -i \frac{H}{2\pi} \left(\rho + \frac{1}{2} \sin 2\rho \right) \end{split}$$

•
$$\phi_0 := \psi_g + \psi_s/2, \langle \psi_g, \psi_s \rangle = 1 \Rightarrow ||\phi_0|| = 1$$

- $\{\phi_{Llm}\}_{L>0} \cup \{\phi_0\}$ is non-degenerate and orthonormal
- $\{\phi_{Llm}\}_{L>0} \cup \{\phi_0\}$ is not dS invariant!
- it is necessary to include $\{\overline{\phi_{Llm}}\}_{L>0} \cup \{\overline{\phi_0}\}$
- $\|\overline{\phi_{Llm}}\| < 0, \|\overline{\phi_0}\| < 0$
- change of notation $\{\phi_{Llm}\}_{L\geq 0} \rightarrow \{\psi_n\}_{n\in\mathbb{N}_0}$

Introduction 00	de Sitter basics 00000	Zero-mode problem 00	Krein space ○●○	G-B triplets	Summary 00
Constructi	on of carrier s	space			

• dS invariant, non-degenerate carrier space $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$

$$\begin{split} \mathcal{H}_+ &:= \big\{ \sum_{n \in \mathbb{N}_0} c_n \psi_n \big| \sum_{n \in \mathbb{N}_0} |c_n|^2 < \infty \big\} \\ \mathcal{H}_- &:= \big\{ \sum_{n \in \mathbb{N}_0} d_n \overline{\psi_n} \big| \sum_{n \in \mathbb{N}_0} |d_n|^2 < \infty \big\} \end{split}$$

 ${\ensuremath{\,\circ\,}}$ subspaces

$$\begin{split} \mathcal{N} &:= \mathbb{C}\psi_g, \ \psi_g = 1/2(\psi_0 + \overline{\psi_0}), & \|\psi_g\| = 0, \\ \mathcal{S} &:= \mathbb{C}\psi_s, \ \psi_s = 1/(2i) (\psi_0 - \overline{\psi_0}), & \|\psi_s\| = 0, \\ \mathcal{K}^+ &:= \big\{ \sum_{n \in \mathbb{N}} c_n \psi_n \big| \sum_{n \in \mathbb{N}} |c_n|^2 < \infty \big\}, & \|\psi_n\| > 0, \ n \in \mathbb{N}, \\ \mathcal{K}^- &:= \big\{ \sum_{n \in \mathbb{N}} d_n \overline{\psi_n} \big| \sum_{n \in \mathbb{N}} |d_n|^2 < \infty \big\}, & \|\overline{\psi_n}\| < 0, \ n \in \mathbb{N} \end{split}$$

		Zero-mode problem			
00	00000	00	000	00000000	00
Constructi	on of carrier s	pace			

Krein space

• \mathcal{H} is a Krein space $(\mathcal{H}, \langle \cdot, \cdot \rangle, J), J$ - fundamental symmetry

- $\langle \cdot, \cdot \rangle$ is indefinite product (K-G)
- $\langle \cdot, J \cdot \rangle$ is positive product and

$$J^2 = I, \ \langle \cdot, J \cdot \rangle = \langle J \cdot, \cdot \rangle, \ |\langle \cdot, \cdot \rangle| \le \langle \cdot, J \cdot \rangle$$

• $(\mathcal{H}, \langle \cdot, J \cdot \rangle)$ is a Hilbert space

Krein space as a carrier space

• fundamental symmetry J

$$\begin{aligned} J\psi_n &:= \psi_n, \quad n \in \mathbb{N}, \\ J\overline{\psi_n} &:= -\overline{\psi_n}, \quad n \in \mathbb{N}, \end{aligned} \qquad \qquad J\psi_g &:= \psi_g \\ J\psi_s &:= \psi_g \end{aligned}$$

•
$$\mathcal{H} = \mathcal{N} \oplus_J \mathcal{S} \oplus_J \mathcal{K}^+ \oplus_J \mathcal{K}^- = (\mathcal{N} \dotplus \mathcal{S}) \oplus \mathcal{K}^+ \oplus \mathcal{K}^-$$

• n.b.
$$\langle \psi_g, \psi_s \rangle = 1$$

		Zero-mode problem			
00	00000	00	000	00000000	00
Constructi	on of carrier s	pace			

Krein space

• \mathcal{H} is a Krein space $(\mathcal{H}, \langle \cdot, \cdot \rangle, J), J$ - fundamental symmetry

- $\langle \cdot, \cdot \rangle$ is indefinite product (K-G)
- $\langle \cdot, J \cdot \rangle$ is positive product and

$$J^2 = I, \ \langle \cdot, J \cdot \rangle = \langle J \cdot, \cdot \rangle, \ |\langle \cdot, \cdot \rangle| \leq \langle \cdot, J \cdot \rangle$$

• $(\mathcal{H}, \langle \cdot, J \cdot \rangle)$ is a Hilbert space

Krein space as a carrier space

• fundamental symmetry J

$$\begin{split} J\psi_n &:= \psi_n, \quad n \in \mathbb{N}, \\ J\overline{\psi_n} &:= -\overline{\psi_n}, \quad n \in \mathbb{N}, \end{split} \qquad \qquad J\psi_g &:= \psi_g \\ J\psi_s &:= \psi_g \end{split}$$

•
$$\mathcal{H} = \mathcal{N} \oplus_J \mathcal{S} \oplus_J \mathcal{K}^+ \oplus_J \mathcal{K}^- = (\mathcal{N} \dotplus \mathcal{S}) \oplus \mathcal{K}^+ \oplus \mathcal{K}^-$$

• n.b. $\langle \psi_g, \psi_s \rangle = 1$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	00000	00	000	0000000	00
Cohomolog	gy - definitions				

A representation π on \mathcal{H} is called irreducible if there is no non-trivial closed invariant subspace.

$$\mathcal{W} \subset \mathcal{H}, \ \pi(G)\mathcal{W} \subset \mathcal{W} \Rightarrow \mathcal{W} = \mathcal{H} \text{ or } \mathcal{W} = 0.$$

 π is called topologically indecomposable if there are no non-zero closed invariant subspaces \mathcal{U} and \mathcal{V} of \mathcal{H} such that $((\mathcal{U} + \mathcal{V})^{\perp})^{\perp} = \mathcal{H}$ and $\mathcal{U} \cap \mathcal{V} = 0$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	00000	00	000	0000000	00
Cohomolog	gy - definitions				

A representation π on \mathcal{H} is called irreducible if there is no non-trivial closed invariant subspace.

$$\mathcal{W} \subset \mathcal{H}, \ \pi(G)\mathcal{W} \subset \mathcal{W} \Rightarrow \mathcal{W} = \mathcal{H} \text{ or } \mathcal{W} = 0.$$

 π is called topologically indecomposable if there are no non-zero closed invariant subspaces \mathcal{U} and \mathcal{V} of \mathcal{H} such that $((\mathcal{U} + \mathcal{V})^{\perp})^{\perp} = \mathcal{H}$ and $\mathcal{U} \cap \mathcal{V} = 0$

Example			
	$\pi(g) = \begin{pmatrix} \pi_1(g) \\ 0 \\ 0 \end{pmatrix}$	$c_{12}(g) \\ \pi_2(g) \\ 0$	$\begin{pmatrix} c_{13}(g) \\ c_{23}(g) \\ \pi_3(g) \end{pmatrix}$

		Zero-mode problem		- · · ·	
00	00000	00	000	0000000	00
Cohomology - definitions					

Let π_1, π_2 be representations on $\mathcal{H}_1, \mathcal{H}_2$. A function $c(g_1, ..., g_n)$ of $g_k \in G$ with values in $\mathscr{L}(\mathcal{H}_1, \mathcal{H}_2)$, *i.e.* in the set of everywhere-defined linear mappings from \mathcal{H}_1 into \mathcal{H}_2 , is called *n*-cochain. The set of all *n*-cochains is denoted by $C^n(\pi_1, \pi_2)$.

Definition

The coboundary operation δ (satisfying $\delta^2 = 0$)

$$(\delta c_n)(g_1, ..., g_{n+1}) := \pi_2(g_1)c_n(g_2, ..., g_n) + \sum_{i=1}^n (-1)^n c_n(g_1, ..., g_i g_{i+1}, ..., g_{n+1}) + (-1)^{n+1}c_n(g_1, ..., g_n)\pi_1(g_{n+1}),$$

where $c_n \in C^n(\pi_1, \pi_2), g_1, ..., g_n \in G$.

2-cochain

$$(\delta c_1)(g_1, g_2) = \pi_2(g_1)c_1(g_2) + c_1(g_1)\pi_1(g_2)$$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary	
00	00000	00	000	0000000	00	
Cohomolog	Cohomology - definitions					

Cocycle:

$$Z^{n}(\pi_{1}, \pi_{2}) := \{c_{n} \in C^{n} | \delta c_{n} = 0\}$$

Coboundary:
 $B^{n}(\pi_{1}, \pi_{2}) := \delta C^{n-1}(\pi_{1}, \pi_{2}), \quad B^{0}(\pi_{1}, \pi_{2}) := 0$
Cohomology:
 $H^{n}(\pi_{1}, \pi_{2}) := Z^{n}(\pi_{1}, \pi_{2})/B^{n}(\pi_{1}, \pi_{2})$

Definition

Let $c_1 \in C^m(\pi_2, \pi_3)$ and $c_2 \in C^n(\pi_1, \pi_2)$ we define \times operation as

 $(c_1 \times c_2)(g_1, ..., g_{m+n}) := c_1(g_1, ..., g_m)c_2(g_{m+1}, ..., g_{m+n})$

ті	11	1 1	1		
00	00000	00	000	0000000	00
Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary

Indecomposable representation and cohomology

Example

$$\pi(g) = \left(\begin{array}{ccc} \pi_1(g) & c_{12}(g) & c_{13}(g) \\ 0 & \pi_2(g) & c_{23}(g) \\ 0 & 0 & \pi_3(g) \end{array} \right)$$

π is a representation

•
$$\delta c_{12} = \delta c_{23} = 0$$

•
$$\delta c_{13} = -c_{12} \times c_{23}$$

Invariant complements

- \mathcal{H}_1 does not have any invariant complement iff $c_{12} \notin B^1(\pi_2, \pi_1)$.
- the existence of indecomposable representation implies $H^1(\pi_2, \pi_1) \neq 0$, $H^1(\pi_3, \pi_2) \neq 0$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets $0000 \bullet 000$	Summary
00	00000	00	000		00
Gupta-Bleuler triplet					

Gupta-Bleuler triplet

• Gupta-Bleuler triplet

$$\pi_3 o \pi_2 o \pi_1$$

 $\mathcal{H}_3 \supset \mathcal{H}_2 \supset \mathcal{H}_1$

• Indecomposable representation

$$\pi(g) = \begin{pmatrix} \pi_1(g) & c_{12}(g) & c_{13}(g) \\ 0 & \pi_2(g) & c_{23}(g) \\ 0 & 0 & \pi_3(g) \end{pmatrix}$$

• π_j is a representation on $\mathcal{R}_j := \mathcal{H}_{j+1}/\mathcal{H}_j$ $\mathcal{H}_3 := \mathcal{H}$ and $\mathcal{R}_1 := \mathcal{H}_1$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary		
00	00000	00	000		00		
G-B triplet	G-B triplet in the standard form						

• definition [1985 Araki, Comm. Math. Phys.]

$$\begin{array}{c} \pi_1^{\#} \to \pi_2 \to \pi_1 \\ \mathcal{H}_3 \supset \mathcal{H}_2 \supset \mathcal{H}_1 \end{array} \right)$$

• π_3 is a conjugate of π_1

$$\forall g \in G, \ \phi \in \mathcal{H}_1^{\#}, \ \psi \in \mathcal{H}_1, \ \langle \pi_1^{\#}(g^{-1})\phi, \psi \rangle = \langle \phi, \pi_1(g)\psi \rangle$$

Massless minimally coupled field

• for mmcf

$$\mathcal{H}_1 = \mathcal{N}, \quad \mathcal{H}_2 := \mathcal{H}_1^{\perp} = \mathcal{N} \oplus \mathcal{K}^- \oplus \mathcal{K}^+, \quad \mathcal{H} \equiv \mathcal{H}_3 = (\mathcal{N} + \mathcal{S}) \oplus \mathcal{K}^- \oplus \mathcal{K}^+$$

$$\mathcal{R}_1 = \mathcal{N}, \qquad \mathcal{R}_2 = \mathcal{H}_2/\mathcal{H}_1 \simeq \mathcal{K}^- \oplus \mathcal{K}^+, \ \mathcal{R}_3 = \mathcal{H}_3/\mathcal{H}_2 \simeq \mathcal{S}$$

• 'one particle sector' (\mathcal{R}_2) contains also modes with negative norm

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary			
00	00000	00	000		00			
G-B triplet	G-B triplet in the standard form							

• definition [1985 Araki, Comm. Math. Phys.]

$$\begin{array}{c} \pi_1^{\#} \to \pi_2 \to \pi_1 \\ \mathcal{H}_3 \supset \mathcal{H}_2 \supset \mathcal{H}_1 \end{array} \right)$$

• π_3 is a conjugate of π_1

$$\forall g \in G, \ \phi \in \mathcal{H}_1^{\#}, \ \psi \in \mathcal{H}_1, \ \langle \pi_1^{\#}(g^{-1})\phi, \psi \rangle = \langle \phi, \pi_1(g)\psi \rangle$$

Massless minimally coupled field

• for mmcf

$$\begin{aligned} \mathcal{H}_1 &= \mathcal{N}, \quad \mathcal{H}_2 := \mathcal{H}_1^{\perp} = \mathcal{N} \oplus \mathcal{K}^- \oplus \mathcal{K}^+, \quad \mathcal{H} \equiv \mathcal{H}_3 = (\mathcal{N} \dotplus \mathcal{S}) \oplus \mathcal{K}^- \oplus \mathcal{K}^+ \\ \mathcal{R}_1 &= \mathcal{N}, \qquad \mathcal{R}_2 = \mathcal{H}_2 / \mathcal{H}_1 \simeq \mathcal{K}^- \oplus \mathcal{K}^+, \quad \mathcal{R}_3 = \mathcal{H}_3 / \mathcal{H}_2 \simeq \mathcal{S} \end{aligned}$$

• 'one particle sector' (\mathcal{R}_2) contains also modes with negative norm

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
	00000			00000000	

Proposition

The representation of the de Sitter group corresponding mmc in the Krein space \mathcal{H} defines a Gupta-Bleuler triplet in the standard form

$$\pi(g) = \pi_1^{\#}(g) \to \pi_2(g) \to \pi_1(g)$$

on the space

$$\mathcal{H} = \mathcal{N} \oplus_J \left(\mathcal{K}^+ \oplus_J \mathcal{K}^- \right) \oplus_J \mathcal{S},$$

with subspaces \mathcal{H}_j and \mathcal{R}_j

$$\begin{aligned} \mathcal{H}_1 &= \mathcal{N}, \ \mathcal{H}_2 = \mathcal{N} \oplus_J \left(\mathcal{K}^+ \oplus_J \mathcal{K}^- \right), \ \mathcal{H}_3 = \mathcal{H} = \mathcal{N} \oplus_J \mathcal{K}^+ \oplus_J \mathcal{K}^- \oplus_J \mathcal{S} \\ \mathcal{R}_1 &= \mathcal{H}_1 = \mathcal{N}, \ \mathcal{R}_2 = \mathcal{H}_2 / \mathcal{H}_1 \simeq \mathcal{K}^+ \oplus_J \mathcal{K}^-, \ \mathcal{R}_3 = \mathcal{H}_3 / \mathcal{H}_2 \simeq \mathcal{S} \end{aligned}$$

Operator valued matrix elements act as

$$\begin{split} &\pi_1(g)\psi_g = \psi_g, \\ &\pi_2(g)\psi_2 = P_2(\pi(g)\psi_2), \ \psi_2 \in \mathcal{R}_2 \\ &\pi_3(g)\psi_s = \langle \psi_g, \pi(g)\psi_s \rangle \psi_s = \psi_s, \\ &c_{12}(g)\psi_2 = \langle \psi_s, \pi(g)\psi_2 \rangle \psi_g, \ \psi_2 \in \mathcal{R}_2 \\ &c_{23}(g)\psi_s = P_2(\pi(g)\psi_s - \psi_s), \\ &c_{13}(g)\psi_s = \langle \psi_s, \pi(g)\psi_s \rangle \psi_g, \end{split}$$

where $\pi(g)\psi(x) := \psi(g^{-1}.x)$, P_2 denotes the OG (in $\langle \cdot, J \cdot \rangle$) projector on \mathcal{R}_2 .

	de Sitter basics 00000	Zero-mode problem 00	Krein space 000	- · · ·	Summary 00	
GRT construction						

Other invariant subspaces

 $\bullet \ \mathcal{N} \oplus \mathcal{K}^+$ is invariant

•
$$(\mathcal{N} \oplus \mathcal{K}^+)^{\perp} = \mathcal{N} \oplus \mathcal{K}^-$$
 is also invariant

Matrix representation

$$\pi(g) = \begin{pmatrix} \pi_1(g) & c_{12}^+(g) & c_{12}^-(g) & c_{13}(g) \\ 0 & \pi_2^+(g) & 0 & c_{23}^+(g) \\ 0 & 0 & \pi_2^-(g) & c_{23}^-(g) \\ 0 & 0 & 0 & \pi_1^+(g) \end{pmatrix}$$

• Krein space decomposition

$$\begin{aligned} \mathcal{H}_1 &= \mathcal{N}, \ \mathcal{H}_2^+ = \mathcal{N} \oplus_J \mathcal{K}^+, \ \mathcal{H}_2^- = \mathcal{N} \oplus_J \mathcal{K}^+ \oplus_J \mathcal{K}^-, \ \mathcal{H}_3 = \mathcal{H} \\ \mathcal{R}_1 &= \mathcal{N}, \ \mathcal{R}_2^+ = \mathcal{H}_2^+ / \mathcal{H}_1 \simeq \mathcal{K}^+, \ \mathcal{R}_2^- = \mathcal{H}_2^+ / \mathcal{H}_2^- \simeq \mathcal{K}^-, \ \mathcal{R}_3 = \mathcal{H}_3 / \mathcal{H}_2^- \simeq \mathcal{S} \end{aligned}$$

• Matrix elements

$$\begin{aligned} \pi_{2}^{\pm}(g)\psi_{2}^{\pm} &= P_{2}^{\pm}(\pi(g)\psi_{2}^{\pm}), \ \psi_{2}^{\pm} \in \mathcal{R}_{2}^{\pm} = \mathcal{K}^{\pm} \\ c_{12}^{\pm}(g)\psi_{2}^{\pm} &= \langle \psi_{s}, \pi(g)\psi_{2}^{\pm} \rangle \psi_{g}, \ \psi_{2}^{\pm} \in \mathcal{R}_{2}^{\pm} = \mathcal{K}^{\pm} \\ c_{23}^{\pm}(g)\psi_{s} &= P_{2}^{\pm}(\pi(g)\psi_{s} - \psi_{s}) \end{aligned}$$

Introduction	de Sitter basics	Zero-mode problem	Krein space	G-B triplets	Summary
00	00000	00	000	00000000	0
Summary					

Results

- Zero mode problem can be solved by Gupta-Bleuler like quantization
- G-R-T construction is Gupta-Bleuler triplet in the standard form with richer inner structure
- the existence of Gupta-Bleuler triplet can be formulated in cohomological conditions
- the method for p = 1 can be extended to higher representations, $\dim(\mathcal{N}) > 1$

Next direction

- detailed study of finite dimensional representations on zero-norm subspaces
- quantum field theory based on indecomposable representations

	de Sitter basics	Zero-mode problem		G-B triplets	
00	00000	00	000	00000000	00
References					

• de Sitter group, $SO_0(1,4)$

- 1961 Dixmier, Représentations intégrables du groupe de de Sitter, Bulletin de la S.M.F.
- 1963 Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bulletin de la S.M.F.

• Zero-mode problem

- 1985 Allen, Vacuum states in de Sitter space, Phys. Rev. D
- 1987 Allen and Folacci, Massless minimally coupled scalar field in de Sitter space, Phys. Rev. D
- 2000 Gazeau, Renaud, and Takook, Gupta-Bleuler quantization for minimally coupled scalar fields in de Sitter space, Class. and Quant. Grav.
- 2010 Gazeau, Siegl, and Youssef, Krein Spaces in de Sitter Quantum Theories, SIGMA

• Gupta-Bleuler triplet

- 1985 Araki, Indecomposable Representations with Invariant Inner Product, Comm. in Math. Phys.
- 1990 Pierotti, Some remarks on the Gupta-Bleuler triplet, JMP
- 2010 Gazeau, Siegl, and Youssef, in preparation