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1 Introduction

PT -symmetry is a very new conception which gives rise to questions in the founda-

tions of Quantum Mechanics. Traditionally, only self-adjoint operators are treated as

admissible observables. However, PT -symmetric operators may possess a real spec-

trum and new questions arise [1, 2, 3]. In their light a new, so-called PT -symmetric

Quantum Mechanics has been proposed by C. Bender et al [4].

The reality of the spectrum is not the only important property of self-adjoint

operators. Further aspects of the formulation of PT -symmetric Quantum Mechanics

had to be developed concerning new physical scalar product, time evolution etc. In

this context, one may return to the older, nice review of Quantum Mechanics by

Scholtz et al [5] to find a few key answers to the related questions.

PT -symmetry itself may be easily understood either as a standard pseudo-

Hermiticity property of operators [6] or, if needed, its suitable alternatives [7]. Its

current applications within Quantum Mechanics [4, 8, 9, 10, 11] may also find fur-

ther close parallels in quantum cosmology [6], in classical magnetohydrodynamics

[12] etc. The aim of our present work is to review and to describe certain particularly

interesting applications of PT -symmetry in the context of supersymmetry.

The latter concept itself appeared in the context of physics in 1971 [13]. Unfortu-

nately, the ambitious predictions based on the standard assumptions of Hermiticity

and leading to the existence of the bosonic-fermionic multiplets still wait for their

experimental verification. In this sense we feel strongly motivated by the new pos-

sibilities opened by the new mathematical PT −symmetric framework.

All four parts of our text lead us from a brief formulation of the theoretical idea

to the explicit and concrete examples. The appropriately modified infinite square

well and harmonic oscillator are used as an illustration of the characteristic features

of the theory.
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2 PT -symmetry

2.1 The origin of PT -symmetry

In 1998, Bender and Boettcher [4] demonstrated numerically that the spectrum of

a non-Hermitian Hamiltonian

H = − d2

dx2
+ x2(ix)ν , ν ∈ R+ (1)

is real, positive and discrete. Later, this result has been rigorously proved by P.

Dorey et al [14]. The initial impulse for examination of such Hamiltonians (1)

was apparently given by D. Bessis who numerically studied (1) with ν = 1 and

conjectured that the spectrum is real and positive. Bender and Boettcher suggested

that the spectral properties of (1) have roots in PT -symmetry of H,

[PT , H] = 0. (2)

In physics, the parity P reflects the spatial symmetry, while the complex conjugation

T represents the time symmetry. Formally, P and T satisfy P2 = I, T 2 = I and

(P(αψ + ϕ))(x) = αψ(−x) + ϕ(−x), (T (αψ + ϕ))(x) = α∗ψ∗(x) + ϕ∗(x), (3)

where ψ, ϕ ∈ H, α ∈ C. From the mathematical point of view, the transition from

Hermiticity to the PT -symmetry is not too drastic since the eigenvalues of H are

real or coming in the complex conjugate pairs. An eigenvalue E of H corresponding

to the eigenvector ψE is real, if we have

PT ψE = ψE. (4)

It is easy to prove this proposition. Let us take the vector PT ψE and with the help

of (2), (4) we arrive at the relations

HPT ψE = PT HψE = E∗PT ψE (5)

and

HPT ψE = EψE = EPT ψE. (6)

This implies that E = E∗ [15].
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Of course, the symmetry of eigenvectors is not ensured in general case. The

reality of eigenvalues is guaranteed in the case of the symmetry of Hamiltonian and,

simultaneously, of the symmetry of eigenvectors. One often speaks about unbroken

PT -symmetry [16].

2.2 Pseudo-Hermiticity

Let H be a separable Hilbert space. Then a linear operator A : H → H is said to

be pseudo-Hermitian if there exists an invertible, bounded, self-adjoint operator η:

H → H satisfying [6, 17]

A† = ηAη−1. (7)

The class of PT -symmetric Hamiltonians

H = − d2

dx2
+ V (x), (8)

where the potential V is PT -symmetric, is P-pseudo-Hermitian,

H† = − d2

dx2
+ V ∗(x) = PHP = PHP−1. (9)

Nevertheless, P-pseudo-Hermiticity and PT -symmetry are distinct properties. Con-

sider the non-Hermitian Hamiltonians

H1 := P 2 + x2P, H2 := P 2 + i(x2P + Px2), (10)

where P is a momentum operator. H1 is PT -symmetric, but it is not P-pseudo-

Hermitian, whereas H2 is P -pseudo-Hermitian and not PT -symmetric [6]. Al-

though H1 is not P-pseudo-Hermitian, the existence of operator η for which H1

is η-pseudo-Hermitian, is not excluded. The relation between PT -symmetric and

pseudo-Hermitian Hamiltonians is studied in [18].

We restrict ourselves to the operators having a discrete nondegenerate spectrum

and we assume that their eigenvectors form a biorthonormal set

A|n〉 = En|n〉, A†|n〉〉 = E∗
n|n〉〉

〈〈n|m〉 = δmn,
(11)

which is complete [6] ∑
n

|n〉〈〈n| =
∑

n

|n〉〉〈n| = I. (12)
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Theorem 1. LetA be an operator with a discrete spectrum and a complete biorthonor-

mal set of eigenvectors. Then A is pseudo-Hermitian if and only if one of the fol-

lowing conditions hold

1. The spectrum of H is real

2. The complex eigenvalues come in a complex conjugate pairs and the multi-

plicity of complex conjugate eigenvalues are the same.

The proof may be found in [6]. The consequence of this theorem is that every PT -

symmetric operator with a discrete spectrum and a complete biorthonormal set of

eigenvectors is pseudo-Hermitian.

When we return to the the original concept of PT -symmetry, the symbol T
denotes the complex conjugation and P denotes the parity. The transition from the

PT symmetry to the P-pseudo-Hermiticity and then to the η-pseudo-Hermiticity [6]

may be understood as a shift from parity P , with properties P2 = I, P = P−1 = P†,

to the Hermitian operator η. A next step lies in admitting non-Hermitian version

of η

H† = RHR−1, (13)

where R 6= R†. The last formulation is proposed in [7] and the properties of such

Hamiltonians are studied with the help of schematic examples there.

2.3 Quasi-Hermiticity

The most important subset of pseudo-Hermitian operators, studied in [5], are quasi-

Hermitian operators. A linear operator A : H → H is said to be quasi-Hermitian

if there exists an invertible, bounded, self-adjoint, positive operator Θ: H → H
satisfying A† = ΘAΘ−1 [5, 17]. An important theorem was proved in [15].

Theorem 2. LetA be an operator with a discrete spectrum and a complete biorthonor-

mal set of eigenvectors. Then the a spectrum of A is real if and only A is quasi-

Hermitian.

Let us take a quasi-Hermitian operator A. By definition, there exists an in-

vertible, bounded and positive operator Θ such that A† = ΘAΘ−1. We define the
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quadratic form 〈·, ·〉Θ := 〈·,Θ·〉. This form satisfies the requirements for being a

scalar product and we may consider a Hilbert space (H, 〈·,·〉Θ). The operator Θ

may be called a metric operator. The operator A satisfies

〈ψ,Aϕ〉Θ = 〈ψ,ΘAϕ〉 = 〈ψ,A†Θϕ〉 = 〈Aψ,Θϕ〉 = 〈Aψ,ϕ〉Θ, (14)

for arbitrary ψ, ϕ ∈ Dom(A) [5]. Hence, the eigenvalues of the quasi-Hermitian are

real. However, the non-trivial existence of a positive metric operator is ensured by

the Theorem 2.

In the pseudo-Hermitian case, it is used instead of the metric Θ so-called indefi-

nite metric η. The associated quadratic form cannot be used as the scalar product.

Nevertheless, existence of the positive metric operator for the pseudo-Hermitian case

is not excluded. We may search for such metric operator in the form

Θ =
∑

n

|n〉〉sn〈〈n|, (15)

where sn > 0 [15].

2.4 Examples

2.4.1 Harmonic oscillator and PT -symmetry

Let us take the PT -symmetric the Hamiltonian H with the potential V

H = − d2

dx2
+ (x+ iε)2, V (x) = (x+ iε)2. (16)

In order to solve the eigenvalue problem we follow a formal transformation from x

to y = x+ iε and we arrive at the differential equation

−d
2ϕ(y)

dy2
+ (y2 − E)ψ = 0. (17)

This is equivalent to the standard harmonic oscillator eigenvalue problem. Hence,

the eigenvalues and eigenvectors are known,

En = 2n+ 1, ψn(x) = Cne
− (x+iε)2

2 Hn(x+ iε), n ∈ N0. (18)

Cn is a normalization constant.
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2.4.2 PT -symmetric square well

The PT -symmetric square well [8], [9]

V (x) =


iZ, −1 < x < 0

−iZ, 0 < x < 1

∞, |x| > 1.

(19)

is a next example of the PT -symmetric system. Its Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = Eψ(x), x ∈ (−1, 1) (20)

with boundary conditions ψ(±1) = 0, may be solved for the real eigenvalue E. If

ϕ is a solution of (20) for the real eigenvalue E, then PT ϕ is a solution of (20) for

the same eigenvalue E. Therefore, we may search for the PT -symmetric solution.

The solution ψ, compatible with boundary conditions, may be written as

ψ(x) =

{
KL sinh[κ∗(1 + x)], −1 < x < 0

KR sinh[κ(1− x)], 0 < x < 1,
(21)

where

κ2 = −E − iZ = (s− it)2, Z = 2st, E = t2 − s2. (22)

The continuity of ψ together with its first derivative in the origin imposes the con-

ditions
KR

KL
= sinh κ∗

sinh κ
,

κ cothκ+ κ∗ cothκ∗ = 0.
(23)

We are permitted to require, according to PT -symmetry of ψ,

ψ(0−) = ψ(0+) = α

∂xψ(0−) = ∂xψ(0+) = iβ,
(24)

where α, β are real parameters and (0±) denotes limx→0± . Then ψ may be rewritten

as

ψ(x) =

{
α

sinh κ∗
sinh[κ∗(1 + x)], −1 < x < 0

α
sinh κ

sinh[κ(1− x)], 0 < x < 1.
(25)

With the help of (22), the matching condition (23) may be put in the form

s sinh 2s+ t sin 2t = 0. (26)
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This equation, together with the definition Z = 2st, can be numerically solved.

After rescaling t → T = 2t
π
, we see that in a Hermitian limit Z → 0, the spectrum

becomes standard En ∼ n2. The rescaling s sinh 2s = 2 sinh2 S enables us to write

the condition (26) in the form

4 sinh2 S = −πT sin(πT ). (27)

When we express S from (27), (22) and plot the curves X(T ), Y (Z, T ), we see that

Figure 1: The curves S = X(T ) and S = Y (Z, T ) in a S − T plane

the character of the spectrum changes fundamentally above critical values of Z. The

first critical value Z0
.
= 4, 4748 was determined with the highest accuracy in [9]. It

may seem from the Figure 1 that two energy levels are vanishing above Z0. However,

Schrödinger equation (20) must be solved for complex eigenvalues. According to the

PT -symmetry of the Hamiltonian we take two complex conjugate levels E0 and E1,

E0 = E − iε, E1 = E + iε. (28)

Schrödinger equation (20) reads

ψ′′(x) =

{
(k

(n)
L )2 ψn, −1 < x < 0

(k
(n)
R )2 ψn, 0 < x < 1,

(29)
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where
(k

(0)
R )2 = −E + iε− iZ = κ2 = (s− it)2,

(k
(1)
R )2 = −E − iε− iZ = λ2 = (p− iq)2,

(k
(0)
L )2 = −E + iε+ iZ = (λ∗)2,

(k
(1)
L )2 = −E − iε+ iZ = (κ∗)2.

(30)

The solution obeying the boundary conditions may be expressed as

ψ0(x) =

{
KL sinh[λ∗(1 + x)], −1 < x < 0

KR sinh[κ(1− x)], 0 < x < 1,

ψ1(x) =

{
LL sinh[κ∗(1 + x)], −1 < x < 0

LR sinh[λ(1− x)], 0 < x < 1.

(31)

The matching conditions at x = 0

LR sinhλ = LL sinhκ∗,

λLR coshλ = −κ∗LL coshκ∗,

KR sinhκ = KL sinhλ∗,

κKR coshκ = −λ∗KL coshλ∗,

(32)

are defining relations for coefficients KR and LR in terms of arbitrary KL, LL. The

intertwining relation between λ and κ results in

λ cothλ+ κ∗ cothκ∗ = 0. (33)

Hence, κ and λ define the energies E0 and E1. Once we express E, ε, Z in terms of

s, t, p, q we get

E = t2 − s2 = q2 − p2, ε = pq − st, Z = pq + st. (34)

We re-parametrize

s = k sinhα, t = k coshα, p = k sinh β, q = k cosh β (35)

and eliminate

k =

√
2Z

sinh 2α+ sinh 2β
. (36)

We see that, the solution of the Schrödinger equation is completely determined by

two real parameters α and β for which the condition (33) in appropriate form must

be satisfied.
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3 Supersymmetry

3.1 Superalgebra

Let G be a monoid with binary operation ’·’ : G × G → G. A G-graded algebra

A is a linear vector space over field C endowed with a bilinear binary operation

[·,·] : A× A→ A enabling the decomposition to a direct sum

A =
⊕
i∈G

Ai (37)

such that

[Am, An] ⊂ Am.n. (38)

Elements of An are called homogeneous elements of degree n. In physics, the term

superalgebra refers to a Z2-graded algebra

A = A0 ⊕ A1 (39)

with a bilinear binary operation [·,·] : A × A → A, called a Lie superbracket or a

supercommutator, satisfying

[x, y] = −(−1)|x||y|[y, x] (40)

and the super Jacobi identity

(−1)|z||x|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0, (41)

where x, y, z are homogeneous elements and |x| denotes the degree of x, i.e.

|x| =

{
0, x ∈ A0

1, x ∈ A1.

Since for all x, y, z ∈ A0 the superbracket becomes the standard Lie bracket (com-

mutator) [x, y] = −[y, x] as well as the super Jacobi identity becomes the standard

Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, (42)
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the so-called even subalgebra A0 forms a standard Lie algebra. We may create a

Lie superalgebra from a given associative Z2-graded algebra A with product ’·’ by

defining the superbracket on homogenous elements

[x, y] = x · y − (−1)|x||y|y · x (43)

and extending this definition by linearity to all other elements.

The commutator is denoted [·,·], the anticommutator {·,·}

[A,B] = AB −BA, {A,B} = AB +BA. (44)

3.2 Schrödinger’s factorization method

The method, usually connected with Schrödinger, was already used by Dirac [19]

before by solving the eigenvalue problem for the one dimensional harmonic oscillator

[20]. In fact, origin dates back to the nineteenth century, namely to Darboux [21].

If u(x) satisfies −u′′(x) + [V (x)− ε]u(x) = 0 and if −θ′′(x) +V (x)θ(x) = 0, then

ũ(x) :=

(
− d

dx
+
θ′(x)

θ(x)

)
u(x) (45)

solves −ũ′′(x) + [Ṽ (x)− ε]ũ(x) = 0 for

Ṽ (x) := V (x) +

(
θ′(x)

θ(x)

)′

. (46)

Inspired by this, we describe the following procedure [13]. Let H1 be a Hamiltonian

H1 = − d2

dx2
+ V1(x). (47)

We factorize H1 using ansatz

H1 = A†A, (48)

A =
d

dx
+W (x), A† = − d

dx
+W (x). (49)

Hence

H1 = A†A = − d2

dx2
+W 2(x)−W ′(x) (50)
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and we identify potential V1 with

V1(x) = W 2(x)−W ′(x). (51)

We construct a new Hamiltonian H2

H2 = AA† = − d2

dx2
+W 2(x) +W ′(x) (52)

and we define a new potential V2

V2(x) = W 2(x) +W ′(x). (53)

Equation (51) is actually the definition of the function W (x), usually referred to as

the superpotential. The potentials V1 and V2 are known as supersymmetric partner

potentials. The superpotential W may be found conveniently, if we know the ground

state E0 = 0 wave function ψ0(x) which has no nodes. We require

Aψ0 = 0 ⇒ H1 = A†Aψ0 = 0, (54)

and it yields

W (x) = −ψ
′
0(x)

ψ0(x)
. (55)

If the ground state energy E0 does not equal zero, we use Hamiltonian (H1 − E0)

and follow the former procedure. Once we denote E
(1,2)
n the energy eigenvalues of

H1,2 and ψ
(1,2)
n the corresponding eigenfunctions, the Schrödinger equation

H1ψ
(1)
n = A†Aψ(1)

n = E(1)
n ψ(1)

n (56)

implies

H2(Aψ
(1)
n ) = AA†Aψ(1)

n = E(1)
n (Aψ(1)

n ) (57)

and similarly

H2ψ
(2)
n = AA†ψ(2)

n = E(2)
n ψ(2)

n (58)

implies

H1(A
†ψ(2)

n ) = A†AA†ψ(2)
n = E(2)

n (A†ψ(2)
n ). (59)
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Since E
(1)
0 = 0 and Aψ

(1)
0 = 0 eigenvalues and eigenfunctions satisfy

E
(1)
0 = 0, E(2)

n = E
(1)
n+1, (60)

ψ(2)
n =

1√
E

(1)
n+1

Aψ
(1)
n+1, (61)

ψ
(1)
n+1 =

1√
E

(2)
n

A†ψ(2)
n . (62)

We see that the energy eigenvalues and the wave functions of H1 and H2 are related

and operator A converts the eigenfunction of H1 into the eigenfunction of H2 with

the same energy and A† does it conversely. The ground state wave function ψ
(1)
0 is

annihilated by A.

3.3 Supersymmetric quantum mechanics

We construct new, so-called supersymmetric, Hamiltonian

H =

(
H1 0

0 H2

)
(63)

and so-called supercharges

Q =

(
0 A†

0 0

)
, Q† =

(
0 0

A 0

)
. (64)

It is easy to verify that these operators obey the commutation and anticommutation

relations

{Q,Q} = {Q†, Q†} = 0, {Q,Q†} = H, [H,Q] = [H,Q†] = 0. (65)

In a more general setting we may assume that the Hamiltonian H 6= 0 is a self-

adjoint operator acting a Hilbert space H and the quantum mechanical system

(H, H) is then called supersymmetric if there exists a finite number of non-self-

adjoint operators Q1, ..., QM on H such that

{Qi, Q
†
j} = δijH, {Qi, Qj} = 0, i, j ∈ {1, ...,M}. (66)

12



The operators Q1, ..., QM are called supercharges [22].

Important consequences of this definition (see Appendix A.1 for details) are that

H has a non-negative spectrum and the eigenvectors may written in the form

ψ =

(
ψ1

ψ2

)
. (67)

For the most important case with M = 1, where Q1 ≡ Q, operators H and Q,Q†

are homogenous elements of a superalgebra A = A0 ⊕A1, where A0 =span{H} and

A1 =span{Q,Q†}. The superbracket [·,·]s is defined by

[x, y]s = xy − (−1)|x||y|yx (68)

and we may verify that this yields the multiplication table (65).

3.4 Examples

3.4.1 Harmonic oscillator

The simplest example is the one dimensional harmonic oscillator,

H = − d2

dx2
+ x2, V (x) = x2. (69)

The eigenvalue problem of this system is well-known,

En = 2n+ 1, ψn = Cne
−x2

2 Hn(x), Hn(x) = (−1)nex2 dn

dxn
e−x2

, n ∈ N0, (70)

Cn is normalization constant, Hn are Hermite polynomials. Since E0 = 1, we modify

H,

H1 := − d2

dx2
+ V1(x) = − d2

dx2
+ x2 − 1, V1(x) := V (x)− E1 = x2 − 1 (71)

ψ(1)
n := ψn, E(1)

n := En − E0 = 2n, n ∈ N0. (72)

Superpotential W is given by (55) and the partner potential V2 by (53)

W (x) = x, V2(x) = x2 + 1. (73)

We receive the eigenfunctions ψ
(2)
n and eigenvalues E

(2)
n from (61) and (60)

ψ(2)
n = Cne

−x2

2 Hn(x) = ψ(1)
n , E(2)

n = 2n+ 2. (74)
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Figure 2: Harmonic oscillator eigenfunctions ψ0, ψ1, ψ2

3.4.2 Superpartners of square well

Let us take the square well

V (x) =

{
0, |x| < 1

∞, |x| > 1,
(75)

H = − d2

dx2
+ V (x). (76)

The eigenvalues and eigenstates are well-known

En =
π2

4
n2, ψn(x) = Cn sin[n

π

2
(x− 1)], n ∈ N , (77)

and Cn stands for a normalization constant. With regard to the non-zero ground

state energy of the system, we shift the energy scale and we modify the eigenvalues

and eigenstates,

H1 := H − E1 = − d2

dx2
+ V (x)− E1, V1(x) := V (x)− E1, (78)

E(1)
n := En+1 − E1 =

π2

4
((n+ 1)2 − 1), ψ(1)

n := ψn+1, n ∈ N0. (79)

The ground state ψ
(1)
0 belongs to the zero ground state energy

ψ
(1)
0 = C0 cos(

π

2
x), E

(1)
0 = 0. (80)

In conformity with the factorization method we find the superpotential W with the

help of relation (55)

W (x) =
π

2
tan(

π

2
x). (81)
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Supersymmetric partner potential V2 is given by (53)

V2(x) =
π2

4

1 + sin2(π
2
x)

cos2(π
2
x)

. (82)

Eigenfunctions ψ
(2)
n of the supersymetric Hamiltonian H2

H2 = − d2

dx2
+ V2(x) (83)

may be obtained by applying A to ψ
(1)
n+1 (61) and eigenvalues E

(2)
n are given by (60)

ψ
(2)
n = Cn+1

π
2

1√
(n+1)(n+3)

((n+ 2) cos[(n+ 2)π
2
(x− 1)]+

+ tan(π
2
x) sin[(n+ 2)π

2
(x− 1)]),

(84)

E(2)
n =

π2

4
(n+ 1)(n+ 3). (85)

Figure 3: SUSY square well eigenfunctions corresponding to E0, E1, E2
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4 PT -symmetry and supersymmetry

4.1 PT -symmetric supersymmetry

PT -symmetric systems possess usually the complex potential V . Therefore the

straight application of the factorization method may lead to the inconsistent re-

sults. The factorization A†A does not allow identification (51) for the complex

superpotential W . The possible solution, used for example in [24], is stating the

factorization in the form

A = d
dx

+W (x), Ā = − d
dx

+W (x),

H1 = ĀA, H2 = AĀ,

(86)

i.e. A, Ā are not related by the Hermitian conjugation. Nevertheless, the example

of searching for the SUSY partners to the PT -symmetric square well [24] shows

that A, Ā exchange states of H1 and H2 and this property is considered to be most

important for the SUSY system. We describe the generalizations of SUSY QM which

enable us to study the PT -symmetric systems.

The quantum mechanical system (H, H) is called PT -supersymmetric [25] if

there exists operators Q , Q̄ such that

{Q , Q̄} = H, {Q ,Q} = {Q̄ , Q̄} = 0. (87)

The commutation rules

[H,Q ] = [H, Q̃ ] = 0 (88)

are satisfied. Hamiltonian and supercharges are represented by

Q =

(
0 0

T A 0

)
, Q̄ =

(
0 ĀT
0 0

)
,

H =

(
H1 0

0 H2

)
=

(
ĀA 0

0 T AĀT

)
,

(89)

where A, Ā coincide with those of (86). Therefore operators Q , Q̄ are not intertwined

by Hermitian conjugation. The relations

T AH1 = H2T A, ĀT H2 = H1ĀT , (90)
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show that the eigenfunctions of H1 are converted to those of H2 by T A and con-

versely by ĀT . Possible exceptions are the states which are annihilated by T A or

ĀT .

4.2 Pseudo-supersymmetry

Pseudo-supersymmetry is a different generalization of SUSY in which supercharges

are formally related by so-called pseudo-Hermitian conjugation X‡ = η−1X†η [6].

Let H be a η-pseudo-Hermitian Hamiltonian. The quantum mechanical sys-

tem (H, H) is then called pseudo-supersymmetric if there exists a finite number of

operators Q1,...,QM and an operator K on H such that

{Qi,Q‡
j} = δijH, {Qi,Qj} = {Q‡

i ,Q
‡
j} = 0, i, j ∈ {1, ...,M}

K = K† = K−1, [η,K] = 0, {Q, K} = 0.

(91)

We will restrict ourselves on the special case M = 1 and we denote Q1 ≡ Q.

Analogously to the case of standard SUSY QM system, operators H,K,Q, η may

be represented by

H =

(
H1 0

0 H2

)
, K =

(
I 0

0 −I

)

Q =

(
0 0

A# 0

)
, Q‡ =

(
0 A

0 0

)
, η =

(
η1 0

0 η2,

)

H1 = A#A, H2 = AA#,

(92)

where A# = η−1
2 A†η1. H1,2 are η1,2-pseudo-Hermitian and they satisfy

AH1 = H2A, A#H2 = H1A
#. (93)

Therefore A maps the eigenvector of H1 to that of H2 and vice versa A# maps the

eigenvector of H2 to that of H1. The only possible exceptions of the eigenvectors

that are annihilated by A or A#.
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If we search for the supersymmetric partners of a chosen Hamiltonian, the

pseudo-supersymmetry yields a variety of systems. We have η1-pseudo-Hermitian

Hamiltonian H1 and we are permitted to select η2 and try to find H2. Operators

η1, η2 determine the form of A, A#. In case of the P-pseudo-Hermitian system, we

may require η2 = −P, i.e. H2 to be P-pseudo-Hermitian. Under certain conditions,

this choice allows us to express A and A# in the standard form,

A =
d

dx
+W (x), A# = − d

dx
+W (x). (94)

More explicitly,

η =

(
P 0

0 −P

)
⇒ A# = − d

dx
−W ∗(−x). (95)

Therefore the factorization is successful exactly in the form (94) if and only if the

superpotential W , obtained from the relation (51), satisfies

ReW (−x) = −ReW (x), ImW (−x) = ImW (x). (96)

Although the pseudo-Hermiticity does not involve all PT -symmetric systems,

the above definition facilitates construction of many pseudo-supersymmetric systems

[26].

4.3 Nonlinear supersymmetry

We investigate a spiked PT -symmetric oscillator [11, 27]

H(α) = − d2

dx2
+ (x− iε)2 +

α2 − 1
4

(x− iε)2
, (97)

where α > 0, ε > 0. To solve the eigenvalue problem, we use a transformation

y = x− iε. This leads to the solution in terms of Laguerre polynomials

ψ(qα)
n = Cn.(x− iε)qα+ 1

2 e−
(x−iε)2

2 L(qα)
n ((x− iε)2), (98)

and the spectrum numbered by the integer n ∈ N0 and so called quasi-parity q = ±1

E(qα)
n = 4n+ 2 + 2qα (99)
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In following, we consider α 6= 0, 1, 2, ... . In the pseudo-supersymmetry framework,

we find the superpotential from the ground state ψ
(−α)
0

W (α)(x) = x− iε+
α− 1

2

x− iε
. (100)

We see that it fulfils the requirement (96). The factorization (94) works and the

partner Hamiltonian is P-pseudo-Hermitian,

H1 = − d2

dx2 + (x− iε)2 +
α2− 1

4

(x−iε)2
+ 2α− 2,

H2 = − d2

dx2 + (x− iε)2 +
(α−1)2− 1

4

(x−iε)2
+ 2α.

(101)

The energy levels of superpartners are

E(qα)(1)
n = 4n+ 2α(q + 1), E(qα)(2)

n = 4n+ 4 + 2α(q + 1), n ∈ N0 (102)

and the eigenvectors of H2 may be obtained from (61).

When we examine the action of operators

A(γ) =
d

dx
+W (γ)(x), A#(γ) = − d

dx
+W (γ)(x) (103)

on the eigenvectors we arrive at the annihilation and creation operators for the

spiked PT -symmetric oscillator

A(α) = A(−γ−1)A(γ), B(α) = A#(−γ)A#(γ−1), (104)

where α = |γ| and

A(α)ψ
(γ)
n+1 = C(n, γ)ψ

(γ)
n , B(α)ψ

(γ)
n = C(n, γ)ψ

(γ)
n+1,

C(n, γ) = −4
√

(n+ 1)(n+ 1 + γ).

(105)

Hamiltonian H(α) may be factorized

H(α) =
1

8
[A(α)B(α)−B(α)A(α)]. (106)
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It satisfies the intertwining relations

[A(α), H(α)] = 4A(α), [H(α), B(α)] = 4B(α). (107)

New supersymmetry was introduced in [28], A, Ā (86) and H1,2 are replaced by

A(α), B(α) and G1,2,

Q =

(
0 0

A(α) 0

)
, Q̄ =

(
0 B(α)

0 0

)
,

G =

(
G1 0

0 G2

)
.

(108)

We put

G1 = B(α)A(α), G2 = A(α)B(α), (109)

and conclude that

{Q, Q̄} = G, {Q,Q} = {Q̄, Q̄} = 0, [G,Q] = [G, Q̄] = 0. (110)

This result may be interpreted in the second-derivative supersymmetry SSUSY

framework [29]. In this approach operators A, Ā have the second-derivative real-

ization. In place of the Hamiltonian one uses so-called quasi-Hamiltonian K which

is the fourth-order differential operator,

A =

(
− d

dx
+W1

)(
− d

dx
+W2

)
, Ā =

(
d

dx
+W2

)(
d

dx
+W1

)
, (111)

where W1,2 are two superpotentials. K may be related to the square of Hamiltonian

under certain conditions,

K = (H + a)2 + d, (112)

a, d are constants. This is known as a polynomial SUSY.

4.4 Examples

4.4.1 PT -symmetric harmonic oscillators as superpartners

We consider Hamiltonian

H1 = − d2

dx2
+ (x+ iε)2 − 1, (113)
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for which eigenvalues and eigenvectors are already known (18).

The relation (55) yields W (x) = x + iε. Since W satisfies the conditions (96)

the proposed scheme of pseudo-supersymmetry for η1 = P , η2 = −P works in

conformity with (94). The partner Hamiltonian, its eigenvalues and eigenfunctions

are

H2 = − d2

dx2 + (x+ iε)2 + 1,

E
(1)
n = 2(n+ 1), ψ

(2)
n = Cn+1

√
2(n+ 1)e−

(x+iε)2

2 Hn(x+ iε), n ∈ N0.

(114)

Figure 4: PsSUSY PT -symmetric oscillator, ε = 0.05, eigenfunctions ψ0, ψ1, ψ2.

4.4.2 Superpartners of PT -symmetric square well

The supersymmetric construction for Z > Z0 is investigated in [24]. Let us contem-

plate the Z < Z0 case only. Our starting point is the Hamiltonian

H1 = − d2

dx2
+ V (x)− E0, (115)

where E0 is determined by (27) and

V (x) =


iZ, −1 < x < 0

−iZ, 0 < x < 1

∞, |x| > 1.

(116)
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Eigenvalues given by (27) are shifted and eigenvectors are identical with ψn in (25),

E(1)
n = En − E0, ψ(1)

n = ψn. (117)

The relation (55) yields

W (x) =

{
−κ∗0 coth[κ∗0(1 + x)], −1 < x < 0

κ0 coth[κ0(1− x)], 0 < x < 1,
(118)

where κ0 = E0 − iZ. It meets requirements (96), therefore the factorization (94) is

possible. The explicit form of P-pseudo-Hermitian H2 may be obtained from (92),

H2 = − d2

dx2
+ V2(x), (119)

where the potential

V2(x) =


κ2
0 cosh2[κ0(1+x)]+1

sinh2[κ0(1+x)]
, −1 < x < 0

(κ∗0)2 cosh2[κ∗0(1−x)]+1

sinh2[κ∗0(1−x)]
, 0 < x < 1

∞, |x| > 1.

(120)

The eigenvalues of H2 are E
(2)
n = En+1 − E0 and the eigenvectors read

ψ(2)
n =


αn+1 sinh[κ∗n+1(1+x)]

sinh κ∗n+1
{κ∗n+1 coth[κ∗n+1(1 + x)]− κ∗0 coth[κ∗0(1 + x)]}

αn+1 sinh[κn+1(1−x)]
sinh κn+1

{κn+1 coth[κn+1(1− x)]− κ0 coth[κ0(1− x)]}.
(121)
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When we investigate PT -symmetric oscillators and square well in the PT -

symetric supersymmetry framework, we arrive at the similar results. In fact, the

only change concerns the complex conjugation of V2 and ψ
(2)
n .

Figure 5: PsSUSY PT -symmetric square well, Z=1.5, eigenfunctions corresponding to
E0, E1, E2.
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5 Conclusions

We presented generalized models of SUSY which may describe PT -symmetric sys-

tems consistently. We mentioned the possible extension of the second-derivative

supersymmetry with the help of the spiked PT -symmetric oscillator example. The

pseudo-supersymmetric construction for the PT -symmetric harmonic oscillators

yields only shifted system, similarly, like in the standard Hermitian case. However,

superpartners of PT -symmetric square well represent the non-trivial solvable model

(120). Further examples are solved and attempts of new physical interpretation are

proposed in [26, 10, 29].

Although we work with unbounded operators, we do not concentrate on their

domains of definition, our main goal is to show the basic principles of the PT -

symmetry, SUSY and their combinations. We do not prove all propositions and

theorems, nevertheless the appropriate references are presented.
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A Appendix

A.1 Some mathematical aspects the Hermitian formulation

of SUSY

The definition (66) implies

{Q†
i , Q

†
j} = 0, [H,Qi] = [H,Q†

i ] = 0, i, j ∈ {1, ...,M} (122)

and the defining relations (66) do not allow self-adjoint supercharges unless H = 0.

Relations (66) yield the existence of a bounded Hermitian operator K, K 6= ±I,
called a Klein operator or a Witten parity operator [22], with properties

K2 = I, {K,Qi} = 0, i ∈ {1, ...,M}. (123)

Let us pick up the most important special case with M = 1 and denote Q1 ≡ Q.

We create self-adjoint operators q1, q2 from Q,Q†,

q1 =
1

2
(Q+Q†), q2 =

i

2
(Q† −Q), (124)

Q = q1 + iq2, Q† = q1 − iq2. (125)

We see from {Q,Q} = 0 that

0 = Q2 = (q1 + iq2)
2 ⇒ q2

1 = q2
2, {q1, q2} = 0. (126)

Relation {Q,Q†} = H yields, with the use of (125) and (126),

H = {Q,Q†} = 2q2
1 + 2q2

2 = 4q2
1 = 4q2

2 (127)

and

[H, q1] = [H, q2] = 0. (128)

An important consequence of (127) is that H has a non-negative spectrum,

(ψ,Hψ) = (ψ, 4q2
1ψ) = ‖2q1ψ‖2 ≥ 0. (129)
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Since K2 = I, the only admissible eigenvalues of K are ±1. Every ψ ∈ H can be

written in following form

ψ =
1

2
(ψ +Kψ) +

1

2
(ψ −Kψ) (130)

and therefore if we denote

H1 = {ψ ∈ H|Kψ = ψ}, H2 = {ψ ∈ H|Kψ = −ψ}, (131)

we arrive at the direct sum decomposition of H to the two non-trivial (K 6= ±I)
subspaces H1 and H2

H = H1 ⊕H2. (132)

We write

ψ =

(
ψ1

0

)
+

(
0

ψ2

)
=

(
ψ1

ψ2

)
, ψ1 ∈ H1, ψ2 ∈ H2 (133)

and

K =

(
I1 0

0 −I2

)
, (134)

where I1 and I2 are identity operators on H1 and H2. This partitioned notation

facilitates discussing the operators commuting or anticommuting with K. Indeed,

for every operator

X =

(
A B

C D

)
(135)

[X,K] = 0 ⇔ X =

(
A 0

0 D

)
, {X,K} = 0 ⇔ X =

(
0 B

C 0

)
. (136)

Since q1 and q2 are anticommuting with K it follows from (136) that

q1 =
1

2

(
0 A†

A 0

)
, q2 =

1

2

(
0 B†

B 0

)
(137)

(the factor 1
2

is chosen only for convenience). Hence, the relation between H and q1
(127) implies

H =

(
H1 0

0 H2

)
=

(
A†A 0

0 AA†

)
. (138)
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We decompose A to A = a1 + ia2 and B to B = b1 + ib2, where a1, a2, b1, b2 are

self-adjoint operators,

q1 =
1

2

(
0 a1 − ia2

a1 + ia2 0

)
, q2 =

1

2

(
0 b1 − ib2

b1 + ib2 0

)
(139)

and we determine q2 from relations (126) up to an overall sign

q2 =
1

2

(
0 −a2 − ia1

−a2 + ia1 0

)
. (140)

We return to our supercharges in (66)

Q =

(
0 A†

0 0

)
. (141)

Once we take ψ ∈ H and apply Q we get

Qψ =

(
0 A†

0 0

)(
ψ1

ψ2

)
=

(
A†ψ2

0

)
. (142)

We take an eigenvector ψ of H belonging to energy E ≥ 0, Hψ = Eψ, we apply

q1 on the Schrödinger equation and with the help of (128) we have

(Hq1)ψ = E(q1ψ) (143)

and for the ground state E = 0

0 = (ψ,Hψ) = ‖2q1ψ‖2 ⇒ q1ψ = 0. (144)

Hence, we see the degeneracy of energy levels with the only exception E = 0. The

corresponding eigenvectors for the eigenvalue E are ψ and q1ψ. If ψ ∈ H1, then

q1ψ ∈ H2 and vice versa, if ψ ∈ H2, then q1ψ ∈ H1. Operators H and Q, Q† are

homogenous elements of a superalgebra A = A0 ⊕ A1, where A0 =span{H} and

A1 =span{Q,Q†}. The superbracket [·,·]s is defined by

[x, y]s = xy − (−1)|x||y|yx, (145)
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i.e. with the help of (66), (122)

[Q,Q]s = QQ+QQ = {Q,Q} = 0, [Q†, Q†]s = Q†Q† +Q†Q† = {Q†, Q†} = 0,

[H,Q]s = HQ−QH = [H,Q] = 0, [H,Q†]s = HQ† −Q†H = [H,Q†] = 0,

[Q,Q†]s = QQ† +Q†Q = {Q,Q†} = H.

(146)

In short, we have the multiplication table (65) based on both commutators and

anticommutators.

A.2 Physical interpretation of SUSY based on the harmonic

oscillator

A very elegant technique to solve the harmonic oscillator eigenvalue problem may

use lowering (annihilation) and raising (creation) operators b, b† [19].

H = − d2

dx2
+ x2, b =

d

dx
+ x, b† = − d

dx
+ x, (147)

H =
1

2
{b, b†}. (148)

The creation and annihilation operators obey commutation relation

[b, b†] = I (149)

and if we consider associated bosonic number operator Nb = b†b we get

[Nb, b] = −b, [Nb, b
†] = b†. (150)

We may express

H = Nb + I. (151)

The method proposed by Dirac requires

bψ
(0)
b = 0. (152)
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The n particle state is then given by

ψ
(n)
b =

1√
n!
b†ψ

(0)
b . (153)

Hamiltonian of SUSY harmonic oscillator H as well as supercharges Q,Q† may be

expressed in terms of the bosonic operator b and the fermionic f , where the fermionic

annihilation and creation operators are represented by

f = σ+ =

(
0 1

0 0

)
, f † = σ− =

(
0 0

1 0

)
(154)

and obeying

{f †, f} =

(
1 0

0 1

)
, {f †, f †} = {f, f} = 0, [f, f †] = σ3 =

(
1 0

0 −1

)
. (155)

Q = f ⊗ b† and Q† = f † ⊗ b, hence

H = {Q,Q†} =

(
1 0

0 1

)
⊗
(
− d2

dx2
+ x2

)
− [f, f †]⊗ I. (156)

If we introduce the fermion number operator Nf = f †f , we see from anticommuta-

tion relations (155)

N2
f = Nf (157)

and therefore, the only admittable eigenvalues of Nf are 0 and 1.

The supercharge changes a fermion into a boson and when we remark the re-

lations (62), (74), we see that Q does not change the energy of the state. The

boson-fermion degeneracy is characteristic for SUSY theories and it has been al-

ready shown as a result of the algebraic formulation of SUSY.

For the general case of SUSY quantum mechanics, supercharges Q,Q† are con-

struct from A,A† instead of a, a† and the description of the bosonic sector is not so

simple [30].
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