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řetězové modely, PT -symetrické bodové interakce na př́ımce a su-
persymetrické bodové interakce na kružnici.
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Abstract: We explore the relation between the PT -symmetry and the
pseudo-Hermiticity, we present a bounded pseudo-Hermitian op-
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Introduction

Quasi-Hermitian models [37] play the essential role in a so called PT -symmetric
Quantum Mechanics. With regard of the fact that quasi-Hermitian operators are
similar to the self-adjoint ones we may use them as observables. This can be done
either by already mentioned similarity transformation or by the modification of the
scalar product.

Whole PT -symmetric Quantum Mechanics itself arised from the observation that
spectrum of PT -symmetric operators, despite they are non-Hermitian, can be real
and positive. This fact was revealed by Caliceti et al [12] studied by Bessis and Zinn-
Justin [44] and, finally, highlighted by Bender and Boettcher [5, 6]. Mostafazadeh
[26] pointed out that PT -symmetric operators are often also pseudo-Hermitian. This
class of operators was introduced already in 1940’s by Dirac [14] and Pauli [34].

From mathematical point of view there are still more open questions. The equiv-
alence of the PT -symmetry (or more general antilinear symmetry) and the pseudo-
Hermiticity is not fully solved yet, nonetheless works [28, 38, 40] bring some results
for special classes of operators. Discussion on the definition of quasi-Hermiticity
is presented in [23], however we can find much older indeed mathematical work
by Dieudonné [13]. Definition of quasi-Hermiticity presented there is more general
then the special case usually considered within PT -symmetric Quantum Mechanics.
Since quasi-Hermitian operators in sense of Diedonné may have much more extensive
spectral properties (e.g. non real spectrum) we do not adopt that definition in this
work and we retain the “standard physical” one which, in fact, is equivalent to the
similarity to some self-adjoint operator. Criteria for similarity to self-adjoint opera-
tors were found independently by several authors [41, 32, 25] and their importance
and also applicability in the context of PT -symmetry was stressed by Albeverio and
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Kuzhel [3]. The construction of so called metric Θ is presented in [27], nevertheless
only for very special class of operators and with very formal proof without necessary
parts (convergence of the sums, domains of definition). Technically alternative point
of view, however leading to the same result, provides [23]. Examples of metric op-
erator (with careful verifications of all requirements) can be found in [22] and even
for operator with non-compact resolvent [3].

Our aim is to review and add some missing parts to general theoretical results on
PT -symmetry, pseudo-Hermiticity and quasi-Hermiticity. Particularly we intend to
investigate relation between PT -symmetry and pseudo-Hermiticity and formulate
more precisely the method of construction of metric Θ for pseudo-Hermitian op-
erators with compact resolvent. The next part consists of concrete PT -symmetric
models - chain models, PT -symmetric point interactions on a line and supersym-
metric PT -symmetric point interactions on a loop.
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List of Symbols

[·, ·] the commutator

〈·, ·〉 the scalar product

B(H) bounded linear operators acting on H

C (H) closed operators acting on H

Dom(A) the domain of A

H the separable Hilbert space

Ker(A) the kernel of A

L (H) linear operators acting on H

L (Vn) linear operators acting on Vn

X the closure of set X

Ran(A) the range of A

σ(A) the spectrum of A

σd,ess(A) the discrete and essential spectrum of A

σp,c,r(A) the point,continuous and residual spectrum of A

%(A) the resolvent set of A

ϑ Heaviside step function
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w– lim, s– lim the limit in weak and strong operator topology

{·, ·} the anticommutator

⊥ the orthogonal complement

A∗ the adjoint of A

AC2 absolute continuous functions with a.c. derivative and second
derivative in L2

C∞0 infinitely differentiable functions with compact support

Rλ(A) the resolvent of A at λ

Vn the linear vector space, dim Vn = n
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Chapter 1

PT -symmetry and

pseudo-Hermiticity

1.1 Basic properties

The numerical study of Hamiltonians of the type p2 + m2x2 − (ix)N , originally for
N = 3, showed that these operators may have interesting spectral properties, i.e.
spectrum is real, discrete, positive. PT -symmetry was suggested to be fundamental
property of Hamiltonians causing reality of spectra. Traditionally, the parity P is
represented by the linear operator acting in L2(R) space

(Pψ)(x) = ψ(−x), P2 = I, (1.1)

while the time-reversal symmetry T denotes a complex conjugation

(T ψ)(x) = ψ(x), T 2 = I, (1.2)

and PT -symmetry of Hamiltonian is understood as

PT Hψ = HPT ψ for all ψ ∈ Dom(H). (1.3)

This relation implies a symmetry of the Dom(H) as well, i.e. ψ ∈ Dom(H) if and
only if PT ψ ∈ Dom(H). The immediate consequence of the PT -symmetry for
eigenvalues is that, if a complex number E is an eigenvalue of H then the complex
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conjugate E is the eigenvalue as well

HψE = EψE ⇒ PT HψE = HPT ψE = EPT ψE . (1.4)

Moreover, if eigenfunction ψE is also PT -symmetric, i.e. PT ψE = ψE , then eigen-
value E is real. This elementary proposition is often stressed and we speak about
unbroken PT -symmetry if all eigenfunctions are PT -symmetric (and therefore all
eigenvalues are real). It is obvious that the particular structure of PT operator is
not necessary for validity of these conclusions, we can generalize it in a following
way.

1.1.1 Antilinear symmetry

Definition 1.1. Let A ∈ L (H). We say that A has an antilinear symmetry if there
exists an antilinear bijective operator C and the relation

ACψ = CAψ (1.5)

holds for all ψ ∈ Dom(A).

Basic spectral properties of an operator having antilinear symmetry are given by
following proposition

Proposition 1.1. Let A ∈ C (H) have an antilinear symmetry C. Then λ ∈ C is in
the spectrum of A if and only if λ is in the spectrum of A. Moreover, this equivalence
is valid also for the disjoint parts of spectrum, i.e. λ ∈ σp,c,r(A)⇐⇒ λ ∈ σp,c,r(A).

Remark 1.2. We use the definition of spectrum A.1 and its point, continuous and
residual part presented in [10].

Proof. Equation (1.5) and properties of C yield the relation between resolvents

(A− λ)−1 = C−1(A− λ)−1C. (1.6)

Hence, λ ∈ %(A) ⇐⇒ λ ∈ %(A). Moreover, Ker(A − λ) = C Ker(A − λ) and
Ran(A− λ) = C Ran(A− λ), thus λ ∈ σp,c,r(A) ⇐⇒ λ ∈ σp,c,r(A) from the defini-
tion of spectrum A.1.

Remark 1.3. An A ∈ L (H) having an antilinear symmetry is not automatically
closed.
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1.1.2 Pseudo-Hermiticity

Mostafazadeh drew attention to the class of pseudo-Hermitian [26] operators because
the studied PT -symmetric Hamiltonians possessed also this property.

Definition 1.2. Let A ∈ L (H) be densely defined. A is called weakly pseudo-
Hermitian, if there exists an operator η with properties
(i) η, η−1 ∈ B(H),
(ii) A = η−1A∗η.
If η is self-adjoint then A is called pseudo-Hermitian. If we want to specify particular
η we say that A is η-(weakly)-pseudo-Hermitian.

Although pseudo-Hermiticity seems to be a stronger than weak pseudo-Hermiticity,
we show that assuming the latter one only is sufficient for proving basic properties.
Relation between the two properties is partly described by following theorem

Theorem 1.4 ([30]). Let A ∈ L (H) be an ηw-weakly-pseudo-Hermitian operator
and the spectrum σ(η−1

w η∗w) of η−1
w η∗w does not contain the unit circle S1. Then A is

pseudo-Hermitian.

Corollary 1.5. Let A ∈ L (Vn). Then A is weakly pseudo-Hermitian if and only if
it is pseudo-Hermitian.

Unlike operators having antilinear symmetry the (weakly)-pseudo-Hermitian ones
are always closed.

Lemma 1.6. Let A ∈ L (H) be a weakly pseudo-Hermitian operator. Then A is
closed.

Proof. We consider convergent sequence {xn} ⊂ Dom(A), xn → x for which {Axn}
is convergent. Since η ∈ B(H), sequence {yn}, yn := ηxn is convergent, yn →
y = ηx. Since A∗ is closed (theorem A.1), A∗yn → A∗y and y ∈ Dom(A∗). Hence
x = η−1y ∈ Dom(A) and Axn = η−1A∗η xn = η−1A∗yn → η−1A∗y = Ax.

Weak pseudo-Hermiticity implies also spectral properties.

Proposition 1.7. Let A ∈ L (H) be a weakly-pseudo-Hermitian operator. Then
point, continuous and residual spectrum σp,c,r(A) of A and σp,c,r(A∗) of A∗ are
equal.
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Proof. Relation (ii) of the definition 1.2 yields

(A− λ)−1 = η−1(A∗ − λ)−1η. (1.7)

Since η is bounded and bijective, the equality of σp,c,r(A) and σp,c,r(A∗) holds.

1.2 Equivalence relations

Theorem A.2 shows that the equivalence λ ∈ σ(A) ⇔ λ ∈ σ(A) holds for every
weakly-pseudo-Hermitian operator A. When we return back to the spectral proper-
ties of operators having antilinear symmetry and when we realize known examples of
Hamiltonians which are both PT -symmetric and pseudo-Hermitian, natural ques-
tions rise. Is every PT -symmetric (or operator having an antilinear symmetry)
weakly-pseudo-Hermitian? Or, possesses every weakly-pseudo-Hermitian operator
an antilinear symmetry? We give some answers to these questions in the following.

In order to explain equivalence relations between PT -symmetry and pseudo-
Hermiticity we present another class of operators, namely J-self-adjoint ones.

Definition 1.3 ([16]). Let A ∈ L (H) be densely defined. Let J be an antilinear
isometric involution, i.e. J2 = I and 〈Jx, Jy〉 = 〈y, x〉 for all x, y ∈ H. A is called
J-symmetric if A ⊂ JA∗J . A is called J-self-adjoint if A = JA∗J .

J-self adjoint operators were suggested by Borisov and Krejčǐŕık [11] to be “ade-
quate for a rigorous formulation of PT -symmetric problems”. One of the reasons for
this conclusion is a fact that residual spectrum of J-self adjoint operator is empty
(in contrast to operators having antilinear symmetry and pseudo-Hermitian oper-
ators as we shall see later). It can be easily seen that every η-pseudo-Hermitian
operator with antilinear symmetry C satisfying η2 = I, C2 = I, [η, C] = 0 and
〈x, ηCy〉 = 〈y, x〉 is ηC-self-adjoint.

Lemma 1.8 ([16]). Let A be a J-self-adjoint operator. Then
(i) dim(Ker(A− λ)) = dim(Ker(A∗ − λ)),
(ii) σr(A) = ∅.
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1.2.1 Finite dimension

At first, we explore relations between operators having antilinear symmetry, weakly-
pseudo-Hermitian, and J-self-adjoint operators in the finite dimensional spaces.

Lemma 1.9. Every A ∈ L (Vn) is similar to the J-self-adjoint operator, i.e. there
exists invertible X ∈ L (Vn) such that XAX−1 is J-self-adjoint.

Proof. Every matrix A can be transformed to the Jordan form, i.e. A = X−1AJX,
where AJ is composed of k × k Jordan blocks Jk(λ)

Jk(λ) =


λ 1

λ 1
λ 1

. . .
. . .

 . (1.8)

Every Jordan block Jk(λ) is J-self-adjoint [18]. We provide J in the explicit form.
J = PkT , where T is a complex conjugation and Pk is a k × k parity, i.e.

Pk =



1
1

. .
.

1
1


. (1.9)

The above lemma is essential for the equivalence statement in finite dimensional
spaces.

Proposition 1.10. Let A ∈ L (Vn). Then A is pseudo-Hermitian if and only if it
possesses an antilinear symmetry.

Proof. Let A is pseudo-Hermitian, i.e. A = η−1A∗η. Using the lemma above

XAX−1 = AJ = JA∗JJ = J(X−1)∗A∗X∗J = J(X−1)∗ηAη−1X∗J (1.10)

we obtain CA = AC, where C := η−1X∗JX is the antilinear symmetry.
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Let C be the antilinear symmetry of A. We find easily that

A = C−1X−1J(X−1)∗A∗X∗JXC, (1.11)

hence A is η-weakly-pseudo-Hermitian, η := X∗JXC. By corollary 1.5, A is pseudo-
Hermitian.

1.2.2 Spectral operators of scalar type

Situation in Hilbert spaces with infinite dimension is of course more complicated.
The problem is not solved even for bounded operators. Some results, however with
not very correct proofs, provide articles of Mostafazadeh [26, 27, 28] and more correct
works by Solombrino and Scolarici [40, 38]. All propositions of these articles require
operators with discrete spectrum and with eigenvectors which form biorthonormal
basis. Slight generalization is presented in [38] where operators with finite Jordan
blocks in spectrum may appear. We provide extension of the propositions and we
provide a new proof. We show that equivalence of weak pseudo-Hermiticity and
antilinear symmetry is valid for spectral operators of scalar type. Proof for all
spectral operators is not known yet (except finite Jordan blocks case [38]). See
Appendix for the definitions and basic properties of spectral operators.

Important result for spectral operators of scalar type allows us to prove the
desired equivalence very easily.

Theorem 1.11 ([15]). Let S1, ..., Sk ∈ B(H) be commuting scalar type operators
in H. Then there is a bounded self-adjoint operator X with a bounded everywhere
defined inverse such that the operators XSiX−1, i = 1, ..., k are all normal.

Remark 1.12. We say that A ∈ L (H) is similar to B ∈ L (H) if there is a
X ∈ B(H) with a bounded everywhere defined inverse and A = X−1BX. Thus,
the particular case k = 1 in the theorem above states that every spectral operator of
scalar type is similar to some normal operator.

Proposition 1.13. Let S ∈ B(H) be a spectral operator of scalar type. S is weakly
pseudo-Hermitian if and only if it possesses an antilinear symmetry.

Proof. S is similar to a normal operator N , S = X−1NX. Every normal operator
is J-self-adjoint [18] (proof is based on the spectral theorem for normal operators
[36]). The rest of the proof is exactly the same procedure as for matrices.
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If S is η-weakly-pseudo-Hermitian, then C := η−1X∗JX is antilinear symmetry
of S. Conversely, if C is an antilinear symmetry of S then S is η-weakly-pseudo-
Hermitian, where η := X∗JXC.

1.2.3 Two examples

It may seem that the weak pseudo-Hermiticity and the antilinear symmetry are
equivalent properties at least for bounded operators and only some technical proof
is needed. However, we present examples of bounded operators having an antilin-
ear symmetry which are not weakly pseudo-Hermitian and also bounded pseudo-
Hermitian operator which cannot possess any antilinear symmetry.

Example 1.1 ([35]). Let {en}∞n=1 be the standard orthonormal basis of H = l2(N),
i.e. en(m) = δnm. Let T be an operator on H acting as

Ten := en−1, n ∈ N, e0 := 0. (1.12)

T is bounded and it possesses the antilinear symmetry T -complex conjugation. Ad-
joint operator T ∗ acts as

T ∗en := en+1, n ∈ N. (1.13)

Every complex number λ with absolute value |λ| < 1 is in the point spectrum σp(T )
of T , corresponding eigenvector xλ reads xλ =

∑∞
n=1 λ

n−1en. Spectrum σp(T ∗) of
T ∗ is different. If we consider equation for eigenvalues

(T ∗ − λ)

( ∞∑
n=1

αnen

)
= 0, (1.14)

we arrive at

λα1 = 0, (1.15)

αn−1 − λαn = 0, n > 1. (1.16)

Hence, the point spectrum of T ∗ is empty. In fact, the set {λ ∈ C||λ| < 1} ⊂ σr(T ∗)
due to theorem A.3. Operator T is not weakly pseudo-Hermitian because the neces-
sary condition is the equality of the spectrum of T and T ∗ as we have already shown
(proposition 1.7).
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Example 1.2. Let H = l2(Z) and let {ei}∞−∞ be the orthonormal basis, en(m) =
δnm. Operator T acts as

Tei :=


λ0ei + ei+1, i ≥ 1,

0, i = 0,
λ0e−1, i = −1,

λ0ei + ei+1, i < −1,

(1.17)

λ0 ∈ C, Imλ0 >
1
2 . We find T ∗ easily from the definition of the adjoint A.3,

〈ei, T ej〉 =


λ0δi,j + δi,j+1, i, j ≥ 1,
λ0δi,j + δi,j+1, i, j ≤ −1,

0, otherwise,

(1.18)

hence

T ∗ei =


λ0ei + ei−1 i > 1,

λ0e1, i = 1,
0, i = 0,

λ0ei + ei−1, i ≤ −1.

(1.19)

Let P be a parity, i.e.
Pei := e−i. (1.20)

We may show immediately from the definitions that T is P-pseudo-Hermitian

T = PT ∗P. (1.21)

It is obvious that λ0 ∈ σp(T ) = σp(T ∗). We show that λ0 ∈ σr(T ) = σr(T ∗). We
express the equation

(T − λ0)
∞∑

i=−∞
αiei = 0 (1.22)

and determine coefficients αi.

(T − λ0)
∞∑

i=−∞
αiei =

−2∑
i=−∞

αi
[
(λ0 − λ0)ei + ei+1

]
+

+α−1(λ0 − λ0)e−1 − α0λ0e0 +
∞∑
i=1

αiei+1, (1.23)
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hence

αi = 0 for i ≥ 0,

αi(λ0 − λ0) + αi−1 = 0 for i < 0. (1.24)

α−1 (and then all αi) must be 0. If α−1 6= 0 then for i < −1, αi = α−1 (2 i Imλ0)−i−1 .

Since Imλ0 >
1
2 from the definition of T ,

∞∑
i=−∞

|αi|2 = +∞. (1.25)

Hence λ0 is not an eigenvalue and Ran(T − λ0) 6= H for

e1 /∈ span(ei)i 6=1 = Ran(T − λ0). (1.26)

This proves that λ0 ∈ σr(T ) and there holds also λ0 ∈ σr(T ∗) by proposition 1.7.
Operator T cannot have any antilinear symmetry because the necessary condition

is that λ0 ∈ σp,c,r(T )⇔ λ0 ∈ σp,c,r(T ), by proposition 1.1.

Corollary 1.14. Weak pseudo-Hermiticity and antilinear symmetry are not equiv-
alent properties even for bounded operators on H, see examples 1.1 and 1.2.

Nonetheless, it is necessary to remark that operators from previous examples are
not spectral. To justify this take into consideration

Theorem 1.15 ([15]). If the space H is separable, then the point and residual spectra
of a spectral operator are countable.

Spaces l2(N) and l2(Z) are separable and we have already shown that the set
{λ||λ| < 1} is included in the point spectrum of the operator from the example 1.1.
Similarly, the set ω =

{
λ ∈ C||λ− λ0| < 1

}
is included in the point spectrum of

the adjoint operator T ∗ from the example 1.2. Therefore, using theorem A.3, ω is
included in the union of the point and residual spectrum of T .

For sake of completeness we discuss the relations of J-self-adjointness with anti-
linear symmetry and J-self-adjointness with weak pseudo-Hermiticity.

Example 1.1 presents the operator with antilinear symmetry with non-empty
residual spectrum, thus it cannot be even similar to J-self-adjoint operator. Con-
versely, A := (i) acting in C is J-self-adjoint, where J is the complex conjugation,
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however it cannot have any antilinear symmetry because −i is not in the spectrum
of A.

Example 1.2 presents the pseudo-Hermitian operator with non-empty residual
spectrum, which cannot be therefore similar to any J-self-adjoint operator. Again,
operator A := (i) is J-self-adjoint, however it is not weakly pseudo-Hermitian for
i /∈ σ(A∗).
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Chapter 2

Quasi-Hermiticity

2.1 Basic properties

Quasi-Hermitian operators are very special class of pseudo-Hermitian operators.
Their importance in physics was emphasized by F. G. Scholtz, H. B. Geyer and F.
J. W. Hahne in [37].

Definition 2.1. Let A ∈ L (H) be densely defined. A is called quasi-Hermitian, if
there exists an operator Θ with properties
(i) Θ,Θ−1 ∈ B(H),
(ii) Θ is positive,
(iii) A = Θ−1A∗Θ.

In mathematics, the notion of quasi-Hermiticity appeared much earlier [13].
Later, mathematically oriented discussion on the definition of quasi-Hermiticity can
be found in [23].

Remark 2.1. A more general definition of quasi-Hermiticity is presented in [13],
the inverse of Θ does not need to be bounded. However, we will not use this more
general definition here, one of the reasons is that spectrum of such quasi-Hermitian
operator may be non real, appropriate example is presented in [13].

Remark 2.2 ([43]). For bounded operators A ∈ B(H), the existence of such Θ
that 0 /∈

{
〈x,Θx〉

∣∣ x ∈ H, ‖x‖ = 1
}

and condition (iii) of the definition (2.1) is
satisfied implies quasi-Hermiticity of A.
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Reason why are quasi-Hermitian operators so important in the PT -symmetric
Quantum Mechanics is that they are self-adjoint in a Hilbert spaceHΘ with modified
scalar product

〈·, ·〉Θ := 〈·,Θ·〉 . (2.1)

The operator Θ is often called a ’metric’ or ’metric operator’ in physical litera-
ture. The properties of Θ, see the definition above, guarantee that 〈·, ·〉Θ fulfills all
requirements for being scalar product and moreover

m 〈ψ,ψ〉 ≤ 〈ψ,ψ〉Θ ≤M 〈ψ,ψ〉 ∀ψ ∈ H, (2.2)

where m = inf{〈ψ,Θψ〉 |ψ ∈ H, ‖ψ‖ = 1} and M = ‖Θ‖. Since Θ−1 ∈ B(H) and Θ
is positive, m > 0. It is possible to verify directly from the definition of the adjoint
operator A.3 that quasi-Hermitian operator A is indeed self-adjoint in this scalar
product.

2.1.1 Similarity to self-adjoint operator

Another point of view on quasi-Hermitian operators provide following proposition.

Proposition 2.3 ([3]). Let A ∈ L (H) be a quasi-Hermitian operator with metric
operator Θ. Then A is similar to the self-adjoint operator H,

A = %−1H%, (2.3)

where % =
√

Θ.

The study of the problem of similarity to the self-adjoint operators may be found
in the mathematical literature [32, 41, 25]. We recall integral-resolvent criterion

Theorem 2.4 ([32]). Let A ∈ L (H). A is similar to a self-adjoint operator if and
only if

supε>0 ε

∫ ∞
−∞
‖(A− λI)−1ψ‖2dξ ≤M‖ψ‖2, (2.4)

supε>0 ε

∫ ∞
−∞
‖(A∗ − λI)−1ψ‖2dξ ≤M‖ψ‖2, (2.5)

where λ = ξ + i ε, ψ ∈ H and the integration is carried along an arbitrary straight
line, parallel to the real axis, in the upper half plane.
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This criterion is simplified when we restrict ourselves on pseudo-Hermitian op-
erators.

Corollary 2.5 ([3]). Let A ∈ L (H) be a pseudo-Hermitian operator. A is similar
to a self-adjoint operator if and only if the spectrum of A is real and there exists a
constant M such that

supε>0 ε

∫ ∞
−∞
‖(A− λI)−1ψ‖2dξ ≤M‖ψ‖2, (2.6)

where λ = ξ + i ε, ψ ∈ H and the integration is carried along an arbitrary straight
line, parallel to the real axis, in the upper half plane.

For purposes of PT -symmetric Quantum Mechanics this version of the theorem
may be very useful because many known and studied PT -symmetric models are
pseudo-Hermitian as well. As it is shown in [3], the latter criterion is extremely
useful for the study of point interactions.

Another characterization of similarity of P-pseudo-Hermitian operator acting in
L2(R) to self-adjoint one is given using property of C-symmetry [7, 9, 8, 3].

Definition 2.2 ([3]). Let A ∈ L (L2(R)) be a P-pseudo-Hermitian. We say that
A possesses the property of C-symmetry if there exists bounded linear operator C in
L2(R) such that the following conditions are satisfied
(i) AC = CA,
(ii) C2 = I,
(iii) for each f, g ∈ L2(R) the sesquilinear form (f, g)C := [Cf, g]P ,
where [f, g]P := 〈Pf, g〉 =

∫∞
−∞ f(−x)g(x)dx, determines a scalar product in L2(R)

that is equivalent to the initial one.

Proposition 2.6 ([3]). Let A ∈ L (L2(R)) be a P-pseudo-Hermitian. Then the
following statements are equivalent
(i) A has the property of C-symmetry,
(ii) A is similar to a self-adjoint operator.

It is obvious that P-pseudo-Hermitian operator acting in L2(R) that has the
property of C-symmetry is quasi-Hermitian with the metric Θ = PC.

Authors of [3] emphasized also a necessary condition for similarity to self-adjoint
operator, based on the theorem A.4.
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Proposition 2.7. Let A ∈ L (H) be similar to a self-adjoint operator. Then there
exists real constant M such that

‖Rλ0(A)‖ ≤ M

|Imλ0|
(2.7)

for all λ0 ∈ C \ R.

Proof. It follows immediately from theorem A.4 and relation between resolvents of
similar operators.

With regard to the simplicity of this proposition it can be very useful for proving
that an operator is not similar to self-adjoint one.

2.2 Metric operator

General resolvent criteria presented above do not provide any hint how to construct
the similarity transformation % or the metric operator Θ. Proposition 2.6 only mod-
ify the problem to the construction of C-symmetry. Partial answer to this question
can be found in [27, 31]. There is a simple criterion in finite dimensional spaces for
operators to be quasi-Hermitian.

Proposition 2.8. Let A ∈ L (Vn). Then A is quasi-Hermitian if and only if spec-
trum σ(A) of A is real and A is diagonalizable. Operator Θ has form

Θ =
n∑
j=1

cj 〈φj , ·〉φj , (2.8)

where cj are positive real constants and φj are eigenvectors of A∗.

Proof. If A is quasi-Hermitian matrix then it is similar to Hermitian one, hence it
has real spectrum and it is diagonalizable.

If A has the real spectrum and it is diagonalizable, then

A = X−1DX, (2.9)

where D is a diagonal matrix composed of real eigenvalues. If we take adjoint of
(2.9) we arrive at

XX∗A = A∗X∗X. (2.10)

Whence Θ := XX∗ is positive and it can be expressed in the form (2.8).
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Infinite dimensional case is of course more complicated, in fact there is no gen-
eral result for all quasi-Hermitian operators yet. Some results for operators with
pure discrete spectrum (see definition A.7) are known. We would like to present
more rigorous approach to the construction of the metric Θ. In order to describe
eigenvectors of quasi-Hermitian operator we recall a notion of Riesz basis and a basic
criterion.

Definition 2.3 ([42]). Let {en}∞n=1 be an orthonormal basis in H. Then the set
{xn}∞n=1 ⊂ H is said to be a Riesz basis if there exists a bounded invertible operator
U with bounded inverse and xn = Uen for all n ∈ N.

Theorem 2.9 ([42]). Set {xn}∞n=1 is a Riesz basis if and only if there exist positive
constants m,M such that

m‖x‖2 ≤
∞∑
n=1

| 〈x, xn〉 |2 ≤M‖x‖2 (2.11)

for each x ∈ H.

Proposition 2.10. Let A ∈ L (H) be quasi-Hermitian operator with pure discrete
spectrum and metric operator Θ. Let denote {ψn}∞n=1, {φn}∞n=1 eigenvectors of A
and A∗, respectively. It is possible to normalize them in a is such way that

φn = Θψn, 〈ψi, φj〉 = δij for all i, j, n ∈ N. (2.12)

Both {ψn}∞n=1 and {φn}∞n=1 are Riesz bases and

Θ = s– lim
N→∞

N∑
j=1

〈φj , ·〉φj . (2.13)

Proof. We denote H self-adjoint operator which is similar to A and {en}∞n=1 eigen-
vectors of H,

H = %A%−1, % =
√

Θ, Hen = λnen, ‖en‖ = 1, ∀n ∈ N. (2.14)

Since spectrum of H is pure discrete the resolvent of H is a normal compact operator,
see theorem A.10. Hence normalized eigenvectors {en}∞n=1 form orthonormal basis.
Eigenvectors ψn, φn of A, A∗ satisfy ψn = %−1en, φn = %en. Hence φn = Θψn
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and 〈ψi, φj〉 = δij . Moreover, using functional calculus for self-adjoint operators, it
follows from requirements for Θ (definition 2.1) that % is bounded positive operator
with bounded inverse and therefore {ψn}∞n=1 and {φn}∞n=1 are Riesz bases.

We denote ΘN :=
∑N

j=1 〈φj , ·〉φj . Each x ∈ H can be uniquely expressed in the
Riesz basis {ψn}∞n=1

x =
∞∑
n=1

αnψn, αn ∈ C, (2.15)

the action of ΘN then reads

ΘNx =
N∑
j=1

〈φj , x〉φj =
N∑
j=1

∞∑
n=1

〈φj , αnψn〉φj =
N∑
n=1

αnφn. (2.16)

Relation

〈x,ΘNx〉 =
N∑
n=1

|αn|2 (2.17)

shows that ΘN is positive and by similar procedure, {ΘN}∞N=1 is an increasing
sequence of positive operators. Furthermore, ΘN ≤ Θ for all N ∈ N due to

〈(Θ−ΘN )x, x〉 =
∞∑

n=N+1

|αn|2. (2.18)

Hence, {ΘN} converges in a strong limit sense to some bounded positive operator
(theorem A.11). In order to complete the proof, i.e. Θ is limit of {ΘN}, we show
that

Θ = w– lim
N→∞

ΘN . (2.19)

We take arbitrary x, y ∈ H, then

| 〈(Θ−ΘN )x, y〉 | ≤
∞∑

k=N+1

|αkβk| ≤

√√√√ ∞∑
k=N+1

|αk|2
√√√√ ∞∑

k=N+1

|βk|2, (2.20)

where

x =
∞∑
n=1

αnψn, y =
∞∑
n=1

βnψn. (2.21)

Since %x =
∑∞

n=1 αnen and %y =
∑∞

n=1 βnen, the sums on the right side of (2.20)
are finite and both converge to 0 for N →∞.
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We remark that if we insert positive constants cj with property

∃ m,M > 0, m ≤ cj ≤M for all j ∈ N, (2.22)

into the sum (2.13) in the same way as in the finite dimensional case (2.8) we obtain
another metric.

It is natural to ask then, if every pseudo-Hermitian operator (or/and with anti-
linear symmetry) with real and pure discrete spectrum is quasi-Hermitian. Let us
assume that A is a pseudo-Hermitian operator with compact resolvent. Then, by
theorem A.7, the spectrum of A is pure discrete. Let us denote ψn, φn the eigenvec-
tors of A, A∗ respectively and λn the eigenvalues. We assume that the eigenvectors
are normalized in a special way, ‖φn‖ = 1 and 〈ψn, φn〉 = 1. Let us assume further
that

Θ = s– lim
N→∞

N∑
j=1

cj 〈φj , ·〉φj (2.23)

exists and it is a bounded operator for some set of positive numbers cn which satisfies
the condition (2.22).

Particurlary, it is not possible that cn → 0 (or some subsequence ckn → 0),
although this may seem to be useful for guaranteeing the convergence of (2.23).
However, then 0 ∈ σ(Θ) and therefore the inverse of Θ is not bounded. If we
consider a sequence {ξn} = {ψn/‖ψn‖} of unit vectors, then

‖Θξn‖ = ‖
∞∑
j=1

cj 〈φj , ξn〉φj‖ = ‖cn 〈φn, ξn〉φn‖ ≤ cn → 0. (2.24)

Without loss of generality we will assume that cn = 1 for all n ∈ N.
The crucial step is to show that eigenvectors φn form a Riesz basis. First of all

it is necessary that span {φ1, φ2, ...} is a dense set in H, i.e. {φn}∞n=1 is a complete
system in H. We can show this for example by investigating Ker(Θ). If the point
spectrum σp(Θ) does not contain 0, then each x0 ∈ {φ1, φ2, ...}⊥ is zero vector
because it follows that Θx0 = 0, by inserting x0 into (2.23). Feasible analysis of the
kernel of Θ using directly the sum expansion can be found e.g. in [22].

Further, the strong convergence of Θ implies the weak convergence and for all
x ∈ H 〈 ∞∑

n=1

〈φn, x〉φn, x
〉

=
∞∑
n=1

| 〈φn, x〉 |2 ≤ ‖Θ‖‖x‖2. (2.25)
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Hence we obtained one of the inequalities (2.11). The second inequality exactly
corresponds with existence of a bounded inverse of Θ, i.e. whether 0 is or is not in
the continuous spectrum of Θ. This is probably the most technically difficult step
in this procedure which cannot be skipped.

Nevertheless, it is satisfied automatically for η-pseudo-Hermitian operators with
antilinear symmetry C, where η and C are involutive and commuting, i.e. η2 =
I, C2 = I, [η, C] = 0. Then, it is obvious that A∗ also has antilinear symmetry
C and we may assume that eigenvectors φn are C invariant, it suffices to take
(φn + Cφn). Furthermore, they can be normalized in such way that

〈φn, ηφm〉 = 0 for n 6= m and 〈φn, ηφn〉 = ±1 ∀n ∈ N. (2.26)

Since η is typically indefinite we cannot exclude the ’−1 case’ in the latter. Properties
of η, C and C invariance of φn yield

〈φn, ηφm〉 = 〈φn, Cηφm〉 ∀n,m ∈ N. (2.27)

Antilinear operator Cη is surely involutive and we can assume that the set {φn}∞n=1

is Cη-orthonormal,
〈φn, Cηφm〉 = δnm, (2.28)

it suffices to take iφk when there ’−1 case’ occurs. The essential fact then follows
from

Theorem 2.11 ([17]). Let {un}∞n=1 be a complete J-orthonormal system in H, where
J is an antilinear involution. Then following assertions are equivalent
(i) for each x ∈ H

∞∑
n=1

| 〈x, un〉 |2 ≤M‖x‖2, (2.29)

(ii) {un}∞n=1 is a Riesz basis with m = M−1.

Hence, the set {φn}∞n=1 with all assumptions above is a Riesz basis.
It remains to verify if relation ΘAx = A∗Θx for all x ∈ Dom(A) holds. We

consider µ ∈ %(A) and rewrite the condition to following equivalent form

(A∗ − µ)−1Θx = Θ(A− µ)−1x ∀x ∈ H. (2.30)
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Now, the expansion of arbitrary x ∈ H into the Riesz basis {ψn}∞n=1, relations

(A− µ)−1ψn =
1

λn − µ
ψn, (A∗ − µ)−1φn =

1
λn − µ

φn (2.31)

and explicit form of Θ (2.23) are needed.
We may summarize the ideas above to the proposition.

Proposition 2.12. Let A ∈ L (H) be an η-pseudo-Hermitian operator with an-
tilinear symmetry C, where η and C are both involutive and commuting. Let the
resolvent of A is compact for some µ ∈ C and the spectrum of A is real. If

Θ = s– lim
N→∞

N∑
j=1

cj 〈φj , ·〉φj , (2.32)

where ‖φj‖ = 1 are eigenvectors of A∗ and cj are positive constants satisfying (2.22),
is an invertible bounded operator (i.e. 0 /∈ σp(Θ)), then A is quasi-Hermitian with
the metric Θ.

Typical example of operators satisfying the assumptions of the proposition are P-
pseudo-Hermitian PT -symmetric Hamiltonians with real spectrum defined on finite
interval (a, b). We present some examples of such operators in following section.
Many more examples can be found in a literature dealing with PT -symmetry. Let
us stress particularly the carefully and rigorously treated model [22].
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Chapter 3

Models

3.1 Chain models

An interesting class of finite dimensional models, so called chain-models, presented
Znojil in [48, 46, 47, 45]. It refers to N ×N tridiagonal matrices of the form

H(chain) =



1−N g1 0 0 . . . 0
−g1 3−N g2 0 . . . 0

0 −g2 5−N
.. .

. . .
...

0 0 −g3
. . . gN−2 0

...
...

. . .
. . . N − 3 gN−1

0 0 . . . 0 −gN−1 N − 1


, (3.1)

where gn are real parameters. For sake of simplicity the parameters are assumed to
be up-down symmetric, i.e.

gN−k = gk ≥ 0, k ∈ {1, 2, ..., J}, (3.2)

where N = 2J or N = 2J + 1. From the physical point of view, these tridiagonal
models may represent a nearest neighbor-interaction perturbation of a harmonic-
oscillator-like systems with shifted original equidistant eigenvalues {1, 3, 5, ...}. It is
obvious that the finite dimensional truncated Hamiltonian H(chain) is not Hermitian
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but PT -symmetric, where P corresponds to the N ×N matrix

P =


1
−1

1
. . .

 . (3.3)

In spite of the fact that the technical requirements for investigation of H(chain)

increase rapidly with the dimension, several important fact have been shown in
[48, 46, 47, 45].

For any dimension N there exist a J-dimensional domain D of the matrix ele-
ments for which the Hamiltonian is quasi-Hermitian. The domain D is contained in
a bigger one S defined by following inequalities

N3 −N
2

≥ 2
J−1∑
n=1

g2
n +

{
g2
J , N = 2J,

2 g2
J , N = 2J + 1 .

(3.4)

The set of intersections of D and ∂S is finite. These points are called extremely
exceptional points, EEP, and it is possible to write their coordinates in a closed
form

g(EEP )
n =

√
n (N − n) , n = 1, 2, . . . , J . (3.5)

When we cross the boundary ∂D of D, some of the energies are complexified. The
EEPs are special for complexification of all energies. Thus the presented systems
may serve as a illustration of ”quantum catastrophes”, i.e. a perturbation may cause
that we leave the domain D and some energies become complex. In the domaine D
the Hamiltonian is quasi-Hermitian, i.e. physical - we may describe the system in a
Hilbert space with modified scalar product (2.1).

Many numerical results, e.g. in [47], illustrates how energies may become com-
plex, number of energies depends on the way out of the D. Also two dimensional
domain D(2) for the Hamiltonian H(3) is presented,

H(3) =

 −1 a 0
−a 1 b

0 −b 3

 P(3) =

 1 0 0
0 −1 0
0 0 1

 . (3.6)

29



The secular equation for H(3) reads

−E 3 + 3 E 2 +
(
−a2 + 1− b2

)
E − 3 + 3 a2 − b2 = 0, (3.7)

and EEPs have coordinates (±
√

2,±
√

2). The boundary ∂D of the star-like shape
domain D may be parametrized in following way

a = a± = ±
√

1
2

(4− 3β2 − β3), b = b± = ±
√

1
2

(4− 3β2 + β3), (3.8)

where parameter β ∈ (−1, 1).

-1 -0.5 0 0.5 1
a

-1

-0.5

0

0.5

1

b

Figure 3.1: Boundary ∂D(2)
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3.1.1 The domain D for H(6)

We consider 6 dimensional model,

H(6) =



−5 c 0 0 0 0
−c −3 b 0 0 0
0 −b −1 a 0 0
0 0 −a 1 b 0
0 0 0 −b 3 c

0 0 0 0 −c 5


(3.9)

and try to find the domain D. EEPs (3.5) are at (a, b, c) = (±3,±2
√

2,±
√

5).
Secular equation for the Hamiltonian reads

χ(a, b, c, s) ≡ det
(
H(6) − E I

)
= s3 + P1 s

2 + P2 s+ P3 = 0 , s = E2, (3.10)

where

P1 = a2 + 2b2 + 2c2 − 35,

P2 = 259− 34a2 − 44b2 + b4 + 28c2 + 2a2c2 + 2b2c2 + c4, (3.11)

P3 = −225 + 225a2 − 150b2 − 25b4 − 30c2 + 30a2c2 − 10b2c2 − c4 + a2c4.

Elementary analysis of the roots of (3.10) (s must be non-negative for E ∈ R) yields
that the domain D(3) is contained in the area determined by conditions P1,2,3 ≥ 0,
see figure 3.2. In order to fully determine the domain D we analyse the qualitative
meaning of the parameter a, b, c, i.e. their impact on properties of the characteristic
polynomial χ. H(6) is obviously Hermitian for a = 0, b = 0, c = 0. E = s2, hence
the complexification of energies E may occur for several reason:
(i) one or more roots s are negative,
(ii) two roots s are non-real, (complex conjugated to each other).
The second possibility may happen if the local minimum of χ is below zero (or the
local maximum is above zero). Figure 3.3 illustrates, how the position of roots and
local extremes is modified with respect to change of parameters a, b, c. Thus, the
boundary of the domain D is defined by surface S1 corresponding to the condition
P3 = s1.s2.s3 = 0, where we denoted s1,2,3 the roots of χ, and surfaces S2,3 deter-
mined by the condition that the local extremes of χ are zero. Local extremes χ are
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(c) P3 = 0

Figure 3.2: Areas determined by Pi = 0

situated at points x1,2

x1,2 =
1
3

(
35− a2 − 2b2 − 2c2 ±

±
√

448 + 32a2 + a4 − 8b2 + 4a2b2 + b4 − 224c2 − 2a2c2 + 2b2c2 + c4
)
. (3.12)

Hence conditions χ(a, b, c, x1,2) = 0 determine the surfaces S2,3, see figure 3.5, where
the red points are EEPs. The intersection of the surfaces illustrates figure 3.4

Answer to the question how and how many energies are complexified provide fig-
ures 3.6,3.7, where the colors of the graphs of χ and areas correspond (white=black).
Two energies are complexified in the orange area - there is one negative s root. Four
energies are complexified in the yellow area - there are two negative s roots, and
in the white area - there are two complex conjugated s roots. Finally, all six en-
ergies are complexified in the green area - there are one negative and two complex
conjugated s roots.
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Figure 3.3: Characteristic polynomial χ
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Figure 3.5: Surfaces S1,2,3 and the domain D with EEPs.
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Figure 3.7: The domain D and areas of complexification
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3.2 PT -symmetric point interaction on a line

Typical one dimensional PT -symmetric physical systems are Hamiltonians acting
in L2(R) of the form

H = − d2

dx2
+ V (x), (3.13)

where potential V is a complex function satisfying

V (−x) = V (x). (3.14)

Although PT -symmetry does not guarantee the reality of spectrum, many such
systems were discovered and intensively studied. It is natural that systems with
various types of potential may be very complicated and only little of them are exactly
solvable. PT -symmetry, in sense of non-self-adjointness, brings another difficulties.
In order to obtain some suitable solvable models we use point interactions. The
point interaction should be understood as any interaction which does not affect the
function with the support separated from the point where interaction acts. Theory of
standard Hermitian point interactions, which is based on the self-adjoint extensions
of symmetric operators, is well described in several monographs, we mention one of
them [2]. Some elementary facts about self-adjoint extensions of symmetric operators
and point interactions in one dimension can be found in Appendix. The methods
for self-adjoint operators are not applicable for PT -symmetric systems and they has
to be modified.

The most important initial work on PT -symmetric point interactions is done in
[1]. Another papers presents concrete systems on a line or finite interval [29, 49]. At
first, we summarize the main principles and results. Then, we extend the results of
[3] concerning the relation between systems with one point interaction on a line and
quasi-Hermitian operators. Next section is devoted to supersymmetrical systems
with two PT -symmetric point interactions on a finite interval.

We consider one point interaction at the origin. More technically speaking, we
take a second derivative operator L0 = −(d2/dx2) with the domain

Dom(L0) = C∞0 (R \ {0}) (3.15)

as a starting point. The adjoint L∗0 is again the second derivative L∗0 = −(d2/dx2),
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however with the domain

Dom(L∗0) = AC2(R \ {0}). (3.16)

We use the notation of [10], ψ ∈ AC2(Ω) if ψ,ψ′ are absolutely continuous at Ω and
ψ′′ ∈ L2. Any PT -symmetric point interaction is represented by PT -symmetric
extension of L0 (or restriction of L∗0). Thus we describe the point interactions by
boundary conditions.

Theorem 3.1 ([1]). The family of PT -symmetric second derivative operators with
point interactions at the origin coincides with the set of restrictions of the second
derivative operator Lmax = − d2

dx2 , defined on AC2(R \ {0}), to the domain of func-
tions satisfying the boundary conditions at the origin of one of the following two
types

1. (
ψ(0+)
ψ′(0+)

)
= B

(
ψ(0−)
ψ′(0−)

)
(3.17)

with the matrix B equal to

B = eiθ

( √
1 + bceiφ b

c
√

1 + bce−iφ

)
(3.18)

with the real parameters b ≥ 0, c ≥ −1/b, θ, φ ∈ [0, 2π)

2.

h0ψ
′(0+) = h1e

iθψ(0+) (3.19)

h0ψ
′(0−) = −h1e

−iθψ(0−) (3.20)

with the real phase parameter θ ∈ [0, 2π) and with the parameter h = (h0, h1)
taken from the (real) projective space P1.

The symbols 0± have usual meaning of limits, ψ(0±) = limx→0± ψ(x). Boundary
conditions of the first type are called connected, conditions of the second type are
called separated. Further we deal with connected boundary conditions only because
the separated case can be decomposed to two separated systems on a half-line.
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Although the original statement of [1] includes that the restricted operators are
both PT -symmetric and P-pseudo-Hermitian for the entire range of parameters
b, c, θ, φ, we show that P-pseudo-Hermiticity is ensured only for θ = 0 (other ranges
of parameters are preserved), see Appendix for the details. Nevertheless, the oper-
ators for θ 6= 0 and θ = 0 are unitary equivalent [1].

Spectrum of Hamiltonians with PT -symmetric point interactions is described by
following

Theorem 3.2 ([1]). The spectrum of any PT -symmetric second derivative operator
with point interactions at the origin consists of the branch [0,∞) of the absolutely
continuous spectrum and at most two (counting multiplicity) eigenvalues, which are
real negative or are complex conjugated to each other.

Proposition 3.3 ([1]). The spectrum of the PT -symmetric second derivative op-
erator with connected point interaction at the origin is pure real if and only if the
parameters appearing in theorem 3.1 satisfy in addition at least one of the following
conditions
(i) bc sin2 φ ≤ cos2 φ,

(ii) bc sin2 φ ≥ cos2 φ and cosφ ≥ 0.

3.2.1 Quasi-Hermitian PT -symmetric point interactions

Our aim is to classify the Hamiltonians with one PT -symmetric point interaction
which have real spectrum according to their similarity to self-adjoint operator, i.e.
quasi-Hermiticity. Analysis of a such type has been already done in [3] for special
subclass of Hamiltonians with one PT -symmetric point interaction corresponding
to the potential composed of δ and δ′ functions

V = a 〈δ, ·〉 δ + b
〈
δ′, ·
〉
δ + c 〈δ, ·〉 δ′ + d

〈
δ′, ·
〉
δ′, (3.21)

where a, d ∈ R and c = −b. The results show that the reality of spectrum itself does
not guarantee quasi-Hermiticity.

Technically, we use the resolvent criterion, theorem 2.5, and necessary condition
for similarity to self-adjoint operator, proposition 2.7. To be able to use these criteria
we calculate resolvent Rλ(H) of the Hamiltonian H = −(d2/dx2) with the domain

Dom(H) =
{
ψ ∈ AC2(R \ {0})

∣∣ψ satisfies (3.17, 3.18)
}
. (3.22)
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We denote k the square root of λ and to obtain unique k pro every λ ∈ C we
require Im k ≥ 0. We introduce two functions e+ and e−

e+(x) = ϑ(x)eikx, e−(x) = ϑ(−x)e−ikx, (3.23)

where ϑ is a Heaviside step function. Then resolvent Rλ(H) can be written for
arbitrary f ∈ L2(R) in the form

g(x) ≡ Rλ(H)f(x) = (Rλ(H0)f)(x) + C+(f)e+(x) + C−(f)e−(x), (3.24)

where
Rλ(H0)f(x) =

i
2k

∫ ∞
−∞

eik|x−y|f(y)dy (3.25)

is well-known formula for self-adjoint free particle Hamiltonian and C± are param-
eters to be calculated.

g(0+) = i
2k (f− + f+) + C+(f), g′(0+) = −1

2(f− − f+) + ikC+(f),
g(0−) = i

2k (f− + f+) + C−(f), g′(0−) = −1
2(f− − f+)− ikC−(f),

(3.26)

where
f± =

∫
R±

e±ikyf(y)dy. (3.27)

Function g = Rλ(H)f must satisfy the boundary conditions (3.18) thus(
eiθ(ibk −

√
1 + bc eiφ) 1

eiθ(ik
√

1 + bc e−iφ − c) ik

)
.

(
C−

C+

)
=(

1
2k

(
k(f− − f+) +

√
1 + bc ei(θ−φ)k(−f− + f+) + iceiθ(f− + f+)

)
i
2

((√
1 + bc ei(θ+φ) − 1

)
(f− + f+) + ibeiθk(f− − f+)

) )
. (3.28)

This system of linear equations is solvable if and only if the determinant of the
matrix is nonzero

eiθ
(
bk2 + 2ki

√
1 + bc cosφ− c

)
6= 0. (3.29)

Then the solutions can be written as

C−(f) =
−1

2kp(k)

[
2k
(√

1 + bc f+ cosφ− f+ cosφ
)

+ ic(f− + f+) +

ibk2(f− − f+) + 2ik(f+ sinφ+
√

1 + bc f− sinφ)
]
,

C+(f) =
ie−iφ

2kp(k)

[
k
(
eiφ(bk(f− − f+) + 2

√
1 + bc (if− cosφ+ f+ sinφ)) +

2f−
(

sin(θ + φ)− i cos(θ + φ)
))
− ceiφ(f− + f+)

]
, (3.30)
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where
p(k) = bk2 + 2ki

√
1 + bc cosφ− c. (3.31)

Proposition 3.4. Let H ∈ L (L2(R)) be a Hamiltonian corresponding to one
PT -symmetric point interaction at the origin (3.22). Let parameters b, c, φ sat-
isfy bc sin2 φ ≤ cos2 φ (i.e. spectrum of H is real, proposition 3.3). If in addition
one of the following conditions for parameters is satisfied

(i) c > 0, cosφ < 0, b ≥ 0,
(ii) c = 0, cosφ ≤ 0, b > 0,
(iii) c < 0, cosφ ≥ 0, b > 0,
(iv) c < 0, cosφ > 0, b = 0,

then H is not similar to any self-adjoint operator.

Proof. If H is similar to a self-adjoint operator then the inequality from the propo-
sition 2.7 holds for every g ∈ L2(R). Further, Rλ(H0) (3.25) is resolvent of the
self-adjoint operator, thus for every λ ∈ C \ R

‖ (Rλ(H)−Rλ(H0)) g‖2 ≤ M

(Imλ)2
‖g‖2, (3.32)

where M is a positive constant independent of λ and g, is valid for each g ∈ L2(R),
particularly for

g0(x) = ϑ(x)e−ikx, (3.33)

where ϑ is a Heaviside step function, and k2 = λ and Im k > 0. We calculate the
norms

‖g0‖2 =
1

2Im k
, ‖e±‖2 =

1
2Im k

, (3.34)

and together with relations (3.30) and identities (Imλ)2 = 4(Im k)2(Re k)2 we receive
condition (3.32) in the explicit form(∣∣∣∣ i

2
+

ic+ k
√

1 + bc e−iφ

p(k)

∣∣∣∣2 +
∣∣∣∣− i

2
+
ke−iθ

p(k)

∣∣∣∣2
)

(Re k)2

|k|2
≤M, (3.35)

where p(k) has been already defined (3.31). If we take into account that roots of
p(k) (for non degenerate case b 6= 0) read

k1,2 = − i
b

cosφ
(√

1 + bc±
√

cos2 φ− bc sin2 φ

)
, (3.36)
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we may easily prove that if parameters b, c, φ satisfy at least one of the conditions
then left hand side of (3.35) tends to infinity in the neighborhood of k1,2.

We intend to show the similarity to a self-adjoint operator for class of PT -
symmetric point interactions using criterion of the theorem 2.5. To make the proof
more technically feasible we at first modify relations (3.30) for functions fr,l(x) :=
ϑ(±x)f(x)

C−(fl) =
(

i
2

+
ic+ k

√
1 + bc eiφ

p(k)

)
fl−
k
,

C−(fr) =
(
− i

2
+
ke−iθ

p(k)

)
fr+
k
,

C+(fl) =
(
− i

2
+
keiθ

p(k)

)
fl−
k
,

C+(fr) =
(

i
2

+
ic+ k

√
1 + bc ei−φ

p(k)

)
fr+
k
. (3.37)

Proposition 3.5. Let H ∈ L (L2(R)) be a Hamiltonian corresponding to one PT -
symmetric point interaction at the origin (3.22). Let parameters b, c, φ satisfy
(I) bc sin2 φ ≥ cos2 φ and cosφ ≥ 0,
or
(II) bc sin2 φ ≤ cos2 φ

with at least one of the following conditions in addition
(i) c > 0, cosφ > 0, b > 0,
(ii) c > 0, cosφ = 0, b = 0,
(iii) c = 0, cosφ > 0, b 6= 0,
(iv) c = 0, cosφ 6= 0, b = 0,
(v) c < 0, cosφ = 0, b = 0,
(vi) c < 0, cosφ < 0,

then H is similar to a self-adjoint operator.

Proof. Taking into account theorem 2.5, the existence of a constant M such that for
all g ∈ L2(R)

supε>0 ε

∫ ∞
−∞
‖ (Rλ(H)−Rλ(H0)) g‖2dξ ≤M‖g‖2, (3.38)
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where λ = ξ + i ε and the resolvents Rλ(H), Rλ(H0) are defined above, already
guarantee the similarity to self-adjoint operator. At first, we consider function gr,
where gr,l(x) := ϑ(±x)g(x). Using relations (3.34, 3.37) and λ = k2, Im k > 0 we
arrive at

‖ (Rλ(H)−Rλ(H0)) gr‖2 =

=

(∣∣∣∣ i
2

+
ic+ k

√
1 + bc e−iφ

p(k)

∣∣∣∣2 +
∣∣∣∣− i

2
+
ke−iθ

p(k)

∣∣∣∣2
)

︸ ︷︷ ︸
Mr(k)

|gr+|2

2|k|2Im k
, (3.39)

where gr+ is defined by (3.27) and p(k) by (3.31). Since we assumed (I), or (II) with
at least one of the (i)-(vi), roots of p(k) are located in the lower complex half-plane
(Im k < 0). Thus Mr(k) < Mr for all k ∈ C, Im k > 0. (Little bit more delicate case
c = 0 when one root is equal zero can be resolved by elementary analysis of Mr(k),
the estimate is valid as well.) Next we estimate the resting parts, using changing
of integration variables, fact that gr+ is Fourier transformation of gr and Carleson
embedding theorem [21, 3],∫ ∞

−∞

ε|gr+(k)|2

|k|2Im k
dξ = 4

∫ ∞
0
|gr+(k)|2dRe k ≤ π

2
M‖gr‖2, (3.40)

where M is a constant independent of k and gr. All together we have

ε

∫ ∞
−∞
‖
(
Rλ(H)−1 −Rλ(H0)

)
gr‖2dξ <

π

2
MrM‖gr‖2. (3.41)

We can use the similar procedure to gl and we obtain almost the same result (con-
stants can be different). Hence H is similar to self-adjoint operator.

Using the theorem 2.5 and the same technique we may also classify all systems
with one point interaction (not necessarily PT -symmetric) on a line with real spec-
trum. It is possible to show that example of a complex delta interaction [29] is (in
therein considered setting of the parameter) similar to self-adjoint operator. This
result, in fact, justifies the effort to construct the metric for this system [29].
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3.3 Supersymmetric PT -symmetric point interactions

on a loop

We consider a system on the finite interval (−l, l) and two point interactions, at
x = 0 and x = ±l (i.e. interaction at origin and between the two end points).
PT -symmetric point interaction are described by boundary conditions theorem 3.1,
however, in order to show connection with self-adjoint case [33] we rewrite these
conditions in the following form, using the same parameters b, c, θ, φ

(C − I)Ψ(a) + (C + I)Ψ′(a) = 0, (3.42)

where

Ψ(a) =

(
ψ(a+)
ψ(a−)

)
, Ψ′(a) =

(
ψ′(a+)
−ψ′(a−)

)
, (3.43)

C =

 (b−c)eiφ+
√

1+bc(e2iφ−1)

(b+c)eiφ+
√

1+bc(e2iφ+1)
2e(θ+φ)

(b+c)eiφ+
√

1+bc(e2iφ+1)

2e(−θ+φ)

(b+c)eiφ+
√

1+bc(e2iφ+1)

(b−c)eiφ−
√

1+bc(e2iφ−1)

(b+c)eiφ+
√

1+bc(e2iφ+1)

 . (3.44)

Our aim is to find PT -symmetric systems on a loop (−l, l) with two point interac-
tions (at 0 and l) which are supersymmetric. Various supersymmetric PT -symmetric
systems were intensively studied, e.g. [24, 4]. We would like to take advantage of
usual simplicity (exact solvability in terms of elementary functions) of Hamiltonians
with point interactions and moreover its special structure (SUSY) to find explicitly
the spectra and metric Θ operators for these systems.

In order to obtain supersymmetric system with supercharges Q1,2 ∝ d
dx ,

{Qa, Qb} = Hδab, (3.45)

we have to restrict boundary conditions (3.42)-(3.44). We expect that we receive
boundary conditions which connect values of functions and values of derivatives
separately as well as in a self-adjoint case [33].

We recall briefly the procedure of finding suitable boundary conditions compat-
ible with supersymmetry presented in [33] and we modify it to the PT -symmetric
case.

If ϕ is an eigenfunction of H then Qϕ is also eigenfunction of H corresponding
to the same eigenvalue (or Qϕ = 0). Since it is not guaranteed for general boundary
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conditions that Qϕ satisfies (3.42) although ϕ does, supercharges cannot be only
derivatives multiplied by a scalar. We take an eigenfunction ϕ of H

Hϕ = Eϕ (3.46)

and denote χ ≡ Qϕ. Since the supercharge is proportional to the derivative, bound-
ary values of χ are related to those of ϕ′

Ψχ(a) ≡

(
χ(a+)
χ(a−)

)
= M

(
ϕ′(a+)
−ϕ′(a−)

)
, (3.47)

where M is an invertible matrix. ϕ is an eigenfunction of H, hence ϕ′′ is proportional
to ϕ and

Ψ′χ(a) ≡

(
χ′(a+)
−χ′(a−)

)
= EM̃

(
ϕ(a+)
ϕ(a−)

)
, (3.48)

where M̃ is an invertible matrix again. When we combine (3.42),(3.47),(3.48) we
arrive at

(C − I)M̃−1Ψ′χ(0) + E(C + I)M−1Ψχ(0) = 0. (3.49)

Boundary conditions have to be energy independent and Ψχ, Ψ′χ are not zero vectors
simultaneously. Therefore (C ± I) must be singular matrices, i.e. eigenvalues of C
are ±1. This constraint restricts general form of C to two possibilities

C± = ±

(
i tanφ eiθ

cosφ
e−iθ

cosφ −i tanφ

)
, (3.50)

i.e. parameters b, c are equal to zero however the range of θ, φ is preserved.
After reparametrization of C± elements using new both ~β and ~b parameters

β1 = b1 = − cos θ
cosφ

, β2 = b2 =
sin θ
cosφ

, β3 = ib3 = −i tanφ, (3.51)

(~β) 2 = b21 + b22 − b23 = 1, β1,2 ∈ R, β3 ∈ iR, b1,2,3 ∈ R, (3.52)

we arrive at
C± = exp

(
i
π

2
(I ± ~β.~σ)

)
, (3.53)

where ~σ are the Pauli matrices.
We use parameters ~β in order to write following expressions in more elegant way

and to show connection with the self-adjoint case, where parameters real ~α are used,
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see (3.54, 3.55). However, we move to real parameters ~b in the following to avoid
the tricky structure of ~β, β3 is not real.

We summarize results for self-adjoint case in following and adapt them to the
PT -symmetric case. Fortunately, the transition from the self-adjoint case turned
out to be very easy, in fact a shift ~α 7→ ~β is needed only. The direct connection can
be found in the relation (3.53) because it is a slight generalization of the standard
one (3.56).

Boundary conditions for the self-adjoint case are described by unitary matrix U
and real parameter L0 in equation (C.4) where Ψ, Ψ′ are correspond to (3.43). We
may use an exponential form of unitary matrix

U ≡ Ug(θ+, θ−) = exp
{

iθ+P
+
g + iθ−P−g

}
, (3.54)

where P±g are orthogonal projectors

P±g =
1
2

(I ± g), g = ~α.~σ, ~α ∈ R3, (~α)2 = 1,

(P±g )2 = P±g = (P±g )∗, P±g P
∓
g = 0, P+

g + P−g = I. (3.55)

Supersymmetry restricts (proof in [33]) these general conditions to

Ug(π, 0) = exp
{

i
π

2
(I ± ~α.~σ)

}
. (3.56)

Although we cannot use the exponential form for the general matrix C (3.44), both
matrices Ug(π, 0) and C± with restricted parameters may be written in the exponen-
tial form (3.53), (3.56). We note that the only difference between Ug(π, 0) and C±

is the structure of ~α and ~β. This fact allows us to obtain supercharges, eigenvalues
and eigenfunctions of Hamiltonian very easily from the self-adjoint case.

In order to express boundary conditions in more convenient way we use operators
P,Q,R,

(Pψ)(x) = ψ(−x), (Rψ)(x) = (ϑ(x)− ϑ(−x))ψ(x), Q = −iRP, (3.57)

where ϑ is a Heaviside step function. The operators are labeled in following way

P1 ≡ P, P2 ≡ Q, P3 ≡ R. (3.58)
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The set of these operators forms an algebra of Pauli matrices, i.e.

[Pl,Pm] = 2iεlmnPn,

{Pl,Pm} = 2δlmI. (3.59)

Next, operator G associated to g = ~β.~σ is introduced

G = ~β. ~P, (3.60)

obeying G2 = I, G∗ 6= G, [G,PT ] = 0. (In the self-adjoint case is ~β replaced by ~α and
G is self-adjoint.) It allows us to decompose any function ψ into two eigenfunctions
of G

ψ± =
1
2

(I ± G)ψ, ψ = ψ+ + ψ−, Gψ± = ±ψ±. (3.61)

Boundary conditions at x = a corresponding to C± are now expressed in the
form

type + : ψ+(a+) = ψ′−(a−) = 0, type − : ψ′+(a+) = ψ−(a−) = 0. (3.62)

Hence we study two types of models: (++) and (+−). (++) denotes the interaction
of the type + at x = 0 and of the type − at x = l (at x = l boundary conditions
connect x = −l and x = l). The other combinations provide equivalent models.

3.3.1 Model of the type (++)

We work in the Hilbert space L2(−l, l). The domain of definition of our Hamiltonian
H1 ≡ H++ = − d2

dx2 consists of functions ψ ∈ AC2(Ω), where Ω = (−l, 0) ∪ (0, l),
which obey boundary conditions (++) at x = 0 and x = ±l.

Dom(H1) : ψ ∈ AC2(Ω),
(b1 + ib2)ψ(0+) + (1− ib3)ψ(0−) = 0,
(b1 + ib2)ψ′(0+) + (1 + ib3)ψ′(0−) = 0,
(b1 + ib2)ψ(l) + (1− ib3)ψ(−l) = 0,
(b1 + ib2)ψ′(l) + (1 + ib3)ψ′(−l) = 0,
b1,2,3 ∈ R, b21 + b22 − b23 = 1,

(3.63)

where b1,2,3 ∈ R and b21 + b22 − b23 = 1. Since the fractions (1 ± ib3)/(b1 + ib2) have
absolute values equal to one, boundary conditions may be rewritten as

ψ(0+) = eiτ1ψ(0−), ψ′(0+) = eiτ2ψ′(0−), τ1,2 ∈ R, (3.64)
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for x = ±l similarly. Parameters τ1,2 are different if b3 6= 0, the case b3 = 0
corresponds to the self-adjoint setting.

It is not difficult to find the adjoint operator H∗1 directly from the definition of
adjoint operator A.3, i.e. using standard technique, integration by parts etc.

Dom(H∗1 ) : ψ ∈ AC2(Ω),
(b1 + ib2)ψ(0+) + (1 + ib3)ψ(0−) = 0,
(b1 + ib2)ψ′(0+) + (1− ib3)ψ′(0−) = 0,
(b1 + ib2)ψ(l) + (1 + ib3)ψ(−l) = 0,
(b1 + ib2)ψ′(l) + (1− ib3)ψ′(−l) = 0,
b1,2,3 ∈ R, b21 + b22 − b23 = 1.

(3.65)

Since H1 is equal to H∗−b3 (we change a sign of b3 in (3.63) and take the adjoint)
it is closed. We remark that H1 is P-pseudo-Hermitian only for b2 = 0. It is clear
from the theorem A.8 that H1 is operator with compact resolvent.

Eigenvalues of H1 are the same as in self-adjoint case [33], eigenfunctions differ
only in the substitution ~α 7→ ~b, i.e.

En =
(nπ
l

)2
,

ψn+(x) = Cn

(
ϑ(x)− ϑ(−x)

b1 + ib2
1 + ib3

)
sin

nπ

l
x,

ψn−(x) = Cn

(
ϑ(x)− ϑ(−x)

b1 + ib2
1− ib3

)
cos

nπ

l
x, n ∈ N0, (3.66)

where ϑ(x) is a Heaviside step function and Cn are normalization constants. Eigen-
functions of Hamiltonian ψn± are eigenfunctions of operator G (3.60) as well, corre-
sponding to eigenvalues ±1 (the generalization of the proof from the self-adjoint case
is straightforward). Figures 3.8, 3.9 illustrate eigenfunctions ψ5±, point interactions
at the origin and end points rotate wavefunction in the complex plane.

Energy levels are doubly degenerate except the lowest one as we expected for the
supersymmetric system. Supercharges Q1,2 may be obtained from the self-adjoint
case [33] easily again, by substitution ~α 7→ ~β

Q1,2 = i
√

2
2
G1,2P3

d

dx
, (3.67)

where
G1,2 = ~γ1,2. ~P, (~γ1,2)2 = 1 and ~γ1,2.~β = ~γ1.~γ2 = 0. (3.68)
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Figure 3.8: Eigenfunction ψ5+, ~b = (10.000, 5.600, 11.417), l = π
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Figure 3.9: Eigenfunction ψ5−, ~b = (10.000, 5.600, 11.417), l = π

Eigenfunctions of Hamiltonian have very simple form and this fact allows us to
construct metric Θ operator using (2.23).

We denote φn± eigenfunctions of H∗ and normalize them in a special way

φn+(x) =

√
2
l

(
ϑ(x)− ϑ(−x)

b1 + ib2
1− ib3

)
sin

nπ

l
x,

φ0−(x) =
1√
l

(
ϑ(x)− ϑ(−x)

b1 + ib2
1 + ib3

)
,

φn−(x) =

√
2
l

(
ϑ(x)− ϑ(−x)

b1 + ib2
1 + ib3

)
cos

nπ

l
x. (3.69)

50



Sets {e±n }∞n=1, {f±n }∞n=0

e±n (x) =

√
2
l
ϑ(±x) sin

nπ

l
x,

f±0 (x) =
1√
l
ϑ(±x), f±n (x) =

√
2
l
ϑ(±x) cos

nπ

l
x, (3.70)

form orthonormal bases of L2(−l, 0) and L2(0, l). We express φn± in terms of e±n , f
±
n

and calculate

〈φn+, ψ〉φn+ =
〈
e+
n , ψ

〉
e+
n +

〈
e−n , ψ

〉
e−n +

b1 + ib2
1− ib3

〈
e−n ,Pψ

〉
e−n +

+
b1 − ib2
1 + ib3

〈
e+
n ,Pψ

〉
e+
n ,

〈φn−, ψ〉φn− =
〈
e+
n , ψ

〉
f+
n +

〈
f−n , ψ

〉
f−n −

b1 + ib2
1 + ib3

〈
f−n ,Pψ

〉
f−n −

−b1 − ib2
1− ib3

〈
f+
n ,Pψ

〉
f+
n . (3.71)

Finally, we calculate the sum (2.23)

Θ = s– lim
N→∞

1
2

(
N∑
n=1

〈φn+, ·〉φn+ +
N∑
n=0

〈φn−, ·〉φn−

)
=

= I − ib3
b1 + ib2

P+P +
ib3

b1 − ib2
P−P, (3.72)

where P is a parity and P± are orthogonal projectors

(P±ψ)(x) = ϑ(±x)ψ(x), (P±)2 = P± = (P±)∗, P+P− = P−P+ = 0. (3.73)

3.3.2 Model of the type (+−)

The domain of definition of Hamiltonian H2 ≡ H+− reads

Dom(H2) : ψ ∈ AC2(Ω),
(b1 + ib2)ψ(0+) + (1− ib3)ψ(0−) = 0,
(b1 + ib2)ψ′(0+) + (1 + ib3)ψ′(0−) = 0,
(b1 + ib2)ψ(l)− (1 + ib3)ψ(−l) = 0,
(b1 + ib2)ψ′(l)− (1− ib3)ψ′(−l) = 0,
b1,2,3 ∈ R, b21 + b22 − b23 = 1.

(3.74)
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H2 is also operator with compact resolvent, eigenvalues and eigenfunctions are

En =
(

(2n− 1)π
2l

)2

,

ψn+(x) = Cn

(
ϑ(x)− ϑ(−x)

b1 + ib2
1 + ib3

)
sin

(n− 1)π
2l

x,

ψn−(x) = Cn

(
ϑ(x)− ϑ(−x)

b1 + ib2
1− ib3

)
cos

(n− 1)π
2l

x, n ∈ N. (3.75)

Supercharges have exactly the same form as in previous case (3.67), however super-
symmetric structure of this model is different because zero energy level is absent.

We use analogous procedure to obtain metric operator. We express eigenfunc-
tions of H∗2 in terms of en, fn

e0(x) =
1√
2l
, e2k−1(x) =

1√
l

sin
(2k − 1)π

2l
x, e2k(x) =

1√
l

cos
kπ

l
x,

f2k−1(x) =
1√
l

cos
(2k − 1)π

2l
x, f2k(x) =

1√
l

sin
kπ

l
x, (3.76)

where sets {en}∞n=0, {fn}∞n=1 form orthonormal bases of L2(−l, l). Summation (2.23)
in the strong limit sense yields

Θ = P+(O1 +O2)P+ + P−(O1 +O2)P− − b1 − ib2
1 + ib3

P+O1P
− −

−b1 + ib2
1− ib3

P−O1P
+ − b1 − ib2

1− ib3
P+O2P

− − b1 + ib2
1 + ib3

P−O2P
+, (3.77)

where O1,2 are orthogonal projectors

O1e2k = 0, O1e2k−1 = e2k−1,

O2f2k = 0, O2f2k−1 = f2k−1. (3.78)

This result is derived directly from the sum (2.23), nevertheless operators O1, O2

are projectors respectively on the odd and even part of the function, i.e.

O1 =
1
2

(I − P), O2 =
1
2

(I + P). (3.79)

Hence metric operator Θ has exactly the same form as in previous case (3.72).
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3.3.3 Metric operator

According proposition 2.12 it is needed to show that Ker(Θ) = {0}. This is obvious
from the following estimations.

〈ψ,Θψ〉 = ‖ψ‖2 − ib3
b1 + ib2

J +
ib3

b1 − ib2
J ≥

≥ ‖ψ‖2 −
∣∣∣ ib3
b1 + ib2

∣∣∣∣∣∣J∣∣∣∣∣∣1− b1 + ib2
b1 − ib2

J

J

∣∣∣, (3.80)

where

J :=
∫ l

0
ψ(x)ψ(−x)dx (3.81)

|J | ≤
∫ l

0
|ψ(x)||ψ(−x)|dx ≤ 1

2

∫ l

0
|ψ(x)|2 + |ψ(−x)|2 dx ≤

≤ 1
2
(
‖P+ψ‖2 + ‖P−ψ‖2

)
≤ 1

2
‖ψ‖2. (3.82)

These estimates yield all together

〈ψ,Θψ〉 ≥

(
1− |b3|√

1 + |b3|2

)
︸ ︷︷ ︸

c0

‖ψ‖2 ≥ 0. (3.83)

In fact, this estimation shows more, 0 /∈ σ(Θ), thus Θ−1 ∈ B(H).
We can also easily directly verify [39] that Θ maps domains of definition of H1,2

and H∗1,2 correctly, i.e. ΘDom(H1,2) = Dom(H∗1,2). Moreover, we can explicitly
express the similarity transformation % =

√
Θ,

% = a1I + a2P
+P + a2P

−P, (3.84)

where
a1 > 0, a2

1 =
1
2

(
1 +

√
1− |k|2

)
, a2 =

k

2a1
, k = − ib3

b1 + ib2
. (3.85)

To verify that indeed % =
√

Θ, it suffices to show that %2 = Θ, what is very easy with
help of identities PP± = P∓P and P+ + P− = I, and that % is positive. Slightly
modified estimations (3.80)-(3.82) yield

〈ψ, %ψ〉 ≥ (a1 − |a2|)‖ψ‖2, (3.86)
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and a1 − |a2| > 0.
The presented metric operator (3.72) is suitable also for the model H3 = − d2

dx2

on L2(−l, l) [39].

Dom(H3) : ψ ∈ AC2(Ω),
(b1 + ib2)ψ(0+) + (1− ib3)ψ(0−) = 0,
(b1 + ib2)ψ′(0+) + (1 + ib3)ψ′(0−) = 0,
ψ(−l) = ψ(l) = 0,
b1,2,3 ∈ R, b21 + b22 − b23 = 1.

(3.87)

Eigenvalues and eigenfunctions of H3 read

En =
(nπ

2l

)2
,

ψ2n(x) = C2n−1

(
ϑ(x)− ϑ(−x)

b1 + ib2
1 + ib3

)
sin

nπ

l
x,

ψ2n+1(x) = C2n

(
ϑ(x)− ϑ(−x)

b1 + ib2
1− ib3

)
cos

(2n+ 1)π
2l

x, n ∈ N0. (3.88)

Furthermore, if we consider Hilbert space L2(R) and H4 = − d2

dx2

Dom(H4) : ψ ∈ AC2(R \ {0}),
(b1 + ib2)ψ(0+) + (1− ib3)ψ(0−) = 0,
(b1 + ib2)ψ′(0+) + (1 + ib3)ψ′(0−) = 0,
b1,2,3 ∈ R, b21 + b22 − b23 = 1.

(3.89)

we may show that already found Θ (3.72) is the metric operator for H4 which has
empty point spectrum.
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Chapter 4

Conclusions

The relations between PT -symmetry and pseudo-Hermiticity are not simple even
for bounded operators. We presented a bounded pseudo-Hermitian operator which
cannot have any antilinear symmetry and also a bounded operator with antilinear
symmetry which cannot be pseudo-Hermitian. Nevertheless, both these operators
are not spectral. On the other hand, we extended the proof of equivalence of pseudo-
Hermiticity and antilinear symmetry for spectral operators of scalar type. We would
like to stress the importance of J-self-adjoint operators. It is possible to show the
mentioned results on equivalence using this notion very easily. Moreover, it theory
of J-self-adjoint operators turned out to be helpful also for construction of metric
operator Θ.

We presented three types of models - finite dimensional chain models, PT -
symmetric point interaction on a line and supersymmetric point interactions on
a loop. We find the domain D of quasi-Hermiticity for the chain model H(6), using
the same procedure we can obtain also results for H(7). We corrected the range of
parameters for which PT -symmetric point interaction is P-pseudo-Hermitian. We
extended classification according to quasi-Hermiticity to all systems with one PT -
symmetric point interaction on a line with real spectrum. Finally, we found suitable
boundary conditions for PT -symmetric Hamiltonians with two point interactions
compatible with supersymmetry. These boundary conditions turned out to be qual-
itatively the same as for self-adjoint systems - they connect values of functions and
values of derivatives separately. We constructed metric operators together with its
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square root for these systems. Both operators can be written in a closed formula
form. Constructed metric operator turned out to be applicable also for next, how-
ever no more supersymetric, systems on a loop and even on a line (with empty point
spectrum).
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Appendix A

Selected parts of the spectral

theory

Definition A.1 ([10]). Let A be a linear operator on a Banach space X . A is said
to be closed if for every sequence {xn} ⊂ Dom(A), which is convergent xn → x and
Axn → y, holds x ∈ Dom(A) and y = Ax.

Definition A.2 ([10]). Let A be a closed linear operator in a Banach space X .
A complex number λ is said to be in the resolvent set %(A) of A if A − λI is a
bijection with a bounded inverse. Rλ(A) = (A− λI)−1 is called resolvent of A at λ.
If λ /∈ %(A), then λ is said to be in the spectrum σ(A) of A. λ ∈ σ(A) is in the
(i) point spectrum σp(A) of T , if A− λI is not injective,
(ii) continuous spectrum σc(A) of A, if A− λI is injective and Ran(A− λI) = X ,
(iii) residual spectrum σr(A) of A, if A− λI is injective and Ran(A− λI) 6= X .
The spectrum is divided to three disjoint parts

σ(A) = σp(A) ∪ σc(A) ∪ σr(A). (A.1)

Definition A.3 ([35]). Let A ∈ L (H) be densely defined. Let

Dom(A∗) = {ψ ∈ H|(∃η ∈ H)(∀ϕ ∈ Dom(A))(〈ψ,Aϕ〉 = 〈η, ϕ〉)} (A.2)

For each ψ ∈ Dom(A) we define A∗ψ := η. A∗ is called adjoint of A.
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Definition A.4 ([35]). Let A ∈ L (H) be densely defined. We say that
(i) A is symmetric if A ⊂ A∗ or equivalently 〈ψ,Aϕ〉 = 〈Aψ,ϕ〉, ∀ϕ,ψ ∈ Dom(A),
(ii) A is self-adjoint if A = A∗.

Definition A.5 ([10]). A symmetric operator A is called essentially self-adjoint if
its closure A is self-adjoint.

Theorem A.1 ([10]). Let A ∈ L (H) be densely defined. Then A∗ is closed.

Theorem A.2 ([35]). Let A ∈ L (H) be densely defined. Then σ(A∗) =
{
λ|λ ∈ σ(A)

}
.

Theorem A.3 ([35]). Let A ∈ C (H) be densely defined.
(i) If λ ∈ σr(A) then λ ∈ σp(A∗).
(ii) If λ ∈ σp(A) then λ ∈ σp(A∗) or λ ∈ σr(A∗).

Theorem A.4 ([42]). Let A ∈ L (H) be a self-adjoint operator. Then

‖Rλ0(A)‖ ≤ 1
|Imλ0|

(A.3)

for all λ0 ∈ C \ R.

Definition A.6 ([10]). Let A ∈ C (H). A complex number λ is said to be in the
essential spectrum σess(A) of A if there exists a sequence {xn} ⊂ Dom(A) of unit
vectors for which ‖(A− λ)xn‖ → 0 and the set {xn} is not compact.

Proposition A.5 ([10]). Let A ∈ C (H). Then

σ(A) = σp(A) ∪ σr(A) ∪ σess(A), (A.4)

σc(A) = σess(A) \ (σp(A) ∪ σr(A)) . (A.5)

Remark A.6 ([10]). The decomposition (A.5) is not disjoint in general, e.g. each
eigenvalue of infinite multiplicity is included in σess(A).

Definition A.7 ([20]). Let A ∈ C (H). A complex number λ is said to be in the
discrete spectrum σd(A) of A if λ is an eigenvalue with finite multiplicity and it
the isolated point of the spectrum. We say that A is an operator with pure discrete
spectrum if σ(A) = σd(A).
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Theorem A.7 ([20]). Let A ∈ C (H) such that the resolvent Rλ(A) exists and is
compact for some λ. Then the spectrum of A is pure discrete and Rλ(A) is compact
for every λ ∈ %(A).

Definition A.8 ([20]). T ∈ L (H) is called a finite extension of S ∈ L (H) and S

a finite restriction of T if S ⊂ T and dim( Dom(T )/Dom(S)) = m < ∞. m is the
order of the extension or restriction.

Theorem A.8 ([20]). Let T1, T2 ∈ C (H) have non-empty resolvent sets. Let T1, T2

be either extensions of a common operator T0 or restrictions of a common operator
T , with order of extension or restriction for T1 being finite. Then T1 has compact
resolvent if and only if T2 has compact resolvent.

Remark A.9 ([10]). Let A ∈ L (H) is self-adjoint. Then

σd(A) = σ(A) \ σess(A). (A.6)

Theorem A.10 ([10]). Let A ∈ L (H) be self-adjoint. A has pure discrete spectrum
if and only if for all µ ∈ %(A) (A − µ)−1 is compact. Operators with pure discrete
spectrum are called operators with compact resolvent.

Theorem A.11 ([10]). Let {An}∞n=1 be a non decreasing sequence of bounded self-
adjoint operators and B is bounded self-adjoint operator such that An ≤ B for all n ∈
N . Then there exists bounded self-adjoint operator A such that A = s– limn→∞An.
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Appendix B

Spectral operators

Definition B.1 ([19, 15]).
(i) A spectral measure E in H is a homomorphic map of a σ-algebra A of sets into
a Boolean algebra of projection operators in H such that the unit of A is mapped
to identity I in H. The spectral measure E is called bounded if for some C > 0,
‖E(ω)‖B(H) ≤ C for all ω ∈ A.
(ii) If T ∈ C (H)), then σ ⊆ σ(T ) is called a spectral set if σ is both open and closed
in the topology of σ(T ).

We use Ω = C and Σ is σ-algebra BC of Borel subsets of C in following.

Definition B.2 ([19, 15]). Let T ∈ B(H)).
(i) A projection-valued spectral measure E on BC is called a resolution of the identity
(or a spectral resolution) for T if

E(ω)T = TE(ω), σ
(
T
∣∣
E(ω)H

)
⊆ ω, ω ∈ BC. (B.1)

(ii) A projection-valued spectral measure E in H defined on BC is called countably
additive if for all f, g ∈ H, 〈f,E(·)g〉 is countably additive on BC.
(iii) T is called a spectral operator if it has a countably additive resolution of the
identity defined on BC.

Basic properties of spectral operators are given by following lemma

Lemma B.1 ([19, 15]).
(i) Any countably additive projection-valued spectral measure E on BC is countably
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additive in the strong operator topology and bounded.
(ii) Let T ∈ B(H) be a spectral operator, then E(σ(T )) = I.
(iii) Every bounded spectral operator has a uniquely defined countably additive res-
olution (denoted ET ) of the identity defined on BC .

Definition B.3 ([19, 15]).
(i) Let S ∈ B(H) be a spectral operator with spectral resolution ES defined on BC.
Then S is said to be of scalar type (or a scalar spectral operator) if

S =
∫

C
λdES(λ). (B.2)

(ii) N ∈ B(H) is called quasi-nilpotent if limn→∞ ‖Nn‖1/n = 0.

Lemma B.2 ([19, 15]).
(i) If E is a countably additive projection-valued spectral measure on BC which van-
ishes outside a compact subset of C, then

S =
∫

supp (dE)
λ dE(λ) (B.3)

is a bounded spectral operator of scalar type whose spectral resolution is E.
(ii) N ∈ B(H) is quasi-nilpotent if and only if σ(N) = {0}.

Theorem B.3 ([19, 15]).
Let T ∈ B(H). Then T is a spectral operator if and only if T = S + N , where
S ∈ B(H) is a bounded spectral operator of scalar type and N is a quasi-nilpotent
operator commuting with S. This decomposition is unique and

σ(T ) = σ(S). (B.4)

Moreover, T and S have the same resolution of the identity.
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Appendix C

Basics of point interactions

Definition C.1 ([10]). Suppose that A ∈ L (H) is a symmetric operator. Let

K+ := Ker(i−A∗) = Ran(i−A)⊥,

K− := Ker(i +A∗) = Ran(−i +A)⊥.

K+ and K− are called the deficiency subspaces of A. The pair of numbers n+, n−

given by n+(A) := dim(K+), n−(A) := dim(K−) are called the deficiency indices of
A.

Theorem C.1 ([10]). Let A ∈ L (H) be a symmetric operator. Then the following
assertions are equivalent
(i) A is essentially self-adjoint,
(ii) n+ = n− = 0,
(iii) Ran(A± i) are dense.

Theorem C.2 ([10]). Let A ∈ L (H) be a closed symmetric operator with deficiency
indices n+ and n−. Then A has self-adjoint extension if and only if n+ = n−. There
is one-to-one correspondence between self-adjoint extension of A and unitary maps
from K+ onto K−. If U is such an map then the corresponding closed symmetric
extension AU has the domain

Dom(AU ) = {ψ + ψ+ + Uψ+|ψ ∈ Dom(A), ψ+ ∈ K+}

and
AU (ψ + ψ+ + Uψ+) = Aψ + iψ+ − iUψ+.
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Definition C.2 ([10]). An antilinear map C : H → H : C(αϕ+βψ) = ᾱCϕ+ β̄Cψ

is called a conjugation if it is norm-preserving and C2 = I.

Theorem C.3 (von Neumann’s theorem, [10]). Let A ∈ L (H) be a symmetric
operator and suppose that there exists a conjugation C with C : Dom(A)→ Dom(A)
and AC = CA. Then A has equal deficiency indices and therefore has self-adjoint
extensions.

We consider one point interaction at x = 0. Corresponding Hilbert space is
H = L2(R) and starting Hamiltonian reads

H0 = − d2

dx2
(C.1)

with the domain
Dom(H0) = C∞0 (R \ {0}). (C.2)

H0 is symmetric operator and

Dom(H∗0 ) =
{
ψ ∈ H | ψ ∈ AC2(R \ {0})

}
. (C.3)

It follows from von Neumann’s theorem that deficiency indices are equal and explicit
calculations yield n+ = n− = 2. H0, the closure of H0, may be found easily with
help of A = A∗∗ (valid for every symmetric operator A). Theorem C.2 and vanishing
limits of the functions from Dom(H0) at x = 0 provide the result that all self-adjoint
extensions of H0, denoted by HU , are restrictions of H∗0

Dom(HU ) =
{
ψ ∈ Dom(H∗0 ) | (U − I)Ψ(0) + iL0(U + I)Ψ′(0) = 0

}
, (C.4)

where L0 is arbitrary non-zero real constant, U ∈ U(2) and

Ψ(0) =

(
ψ(0+)
ψ(0−)

)
, Ψ′(0) =

(
ψ′(0+)
−ψ′(0−)

)
. (C.5)

Symbols 0± denote limits limx→0±.
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Appendix D

The correction of the ranges of

parameters

Boundary conditions according to theorem 3.1, part 1 :

ϕ ∈ Dom(L) (D.1)

ϕ(0+) = ei(θ+φ)
√

1 + bc ϕ(0−) + eiθb ϕ′(0−)

ϕ′(0+) = eiθc ϕ(0−) + eiθ−φ
√

1 + bc ϕ′(0−)

Equality
〈ψ,Lϕ〉 = 〈L∗ψ,ϕ〉 (D.2)

holds for all ψ ∈ Dom(L∗) and ϕ ∈ Dom(L). We express (D.2) and use integration
by parts

−
∫

R
ψ
′′
ϕ = −

∫
R
ψϕ′′ (D.3)

−
∫

R
ψ
′′
ϕ = − lim

a→∞

(∫ 0

−a
ψϕ′′ +

∫ a

0
ψϕ′′

)
=

= − lim
a→∞

(
[ψϕ′]0−−a + [ψϕ′]a0+ − [ψ′ϕ]0−−a − [ψ′ϕ]a0+ +

∫ a

−a
ψ
′′
ϕ

)
=

= −ψ(0−)ϕ′(0−) + ψ(0+)ϕ′(0+) + ψ′(0−)ϕ(0−)− ψ′(0+)ϕ(0+)−

−
∫

R
ψ
′′
ϕ.

64



Inserting the boundary conditions for ϕ ∈ Dom(L) into (D.4) yields

ϕ′(0−)
[
ψ(0−)− ψ(0+)ei(φ−θ)

√
1 + bc+ ψ′(0+)e−iθb

]
+ (D.4)

+ϕ(0−)
[
−ψ′(0−)− ψ(0+)e−iθc+ ψ′(0+)e−i(φ+θ)

√
1 + bc

]
= 0,

where boundary values of ϕ at x→ 0− may be chosen arbitrarily (we have already
used (D.2) ). We conclude that ψ ∈ Dom(L∗) must satisfy

ψ(0−) = ψ(0+)ei(φ−θ)
√

1 + bc− ψ′(0+)e−iθb (D.5)

ψ′(0−) = −ψ(0+)e−iθc+ ψ′(0+)e−i(φ+θ)
√

1 + bc. (D.6)

If L is P-pseudo-Hermitian then L∗ = PLP and hence Dom(L∗) = PDom(L).
Boundary conditions corresponding to PDom(L) read

ψ(0−) = ψ(0+)ei(φ+θ)
√

1 + bc− ψ′(0+)eiθb (D.7)

ψ′(0−) = −ψ(0+)eiθc+ ψ′(0+)e−i(φ−θ)
√

1 + bc. (D.8)

Hence the equality of the domains is satisfied only if θ = 0.
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