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Abstract

We prove that the pseudorandom generator introduced in [INW94]
fools group products of a given finite group. The seed length is
O(log n log 1

ε ), where n the length of the word and ε is the precision.
The result is equivalent to the statement that the pseudorandom gen-
erator fools read-once permutation branching programs of constant
width.

1 Introduction

Our result is motivated by the problem of derandomizing space bounded
computations. It is well-known that for the latter problem, it suffices to find
efficient constructions of pseudorandom generators for polynomial size read-
once branching programs. As this still seems to be too hard, researchers in
computational complexity focused on special cases of this problem. In par-
ticular, the case of oblivious read-once constant width branching programs
has been extensively studied. But even this special case is still open; so
branching programs with further restriction have been studied. In this paper
we solve the problem for permutation read-once constant width branching
programs.
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Partially supported by GA ČR P202/10/0854, project No. 1M0021620808 of MŠMT ČR,
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When working with permutation read-once constant width branching
programs, it is more natural to recast the problem in terms of finite groups.
Let G be a finite group and w = (g1, g2, . . . , gn) a string of elements of G,
which we will call a group word. The group word w determines a probability
distribution Rndw on G by taking products of random substrings of w. The
distribution is formally defined by setting the probability Rndw(g) of an
element g ∈ G to

Rndw(g) =
1
2n
|{(x1, . . . , xn) ∈ {0, 1}n| g = gx1

1 . . . gxn
n }|.

The goal of derandomization is to replace the uniform distribution on the
set {0, 1}n by a distribution efficiently generated from r random bits, where
r = O(log n), so that the resulting distribution is still very close to Rndw

for any group word of length n. A pseudorandom generator is determined
by an efficiently computable function Γ : {0, 1}r → {0, 1}n. The elements of
{0, 1}r are called seeds and r is the seed length.

In general, a pseudorandom generator is used to approximate any poly-
nomial time computable distribution. In this paper we are interested only
in the distributions of the form above for a fixed finite group. Given such a
function Γ, the corresponding distribution Dw

Γ is defined by

Dw
Γ (g) =

1
2r
|{y ∈ {0, 1}r| g = g

Γ(y)1

1 · · · gΓ(y)n
n }|.

(Γ(y)i are the bits of the string Γ(y) ∈ {0, 1}n.) The goal is to find pseu-
dorandom generators Γ such that Dw

Γ approximates very well the distri-
bution Rndw for every w. It is well-known that for a random function Γ
and r = O(log n), the distance between Rndw and Dw

Γ is at most 1/nO(1).
However, prior to our work no explicit constructions with logarithmic seed
length had been known that would give Dw

Γ of distance ε for arbitrarily small
positive ε. We analyze the Impagliazzo-Nisan-Wigderson generator (in the
sequel abbreviated by ‘INW generator’) introduced in [INW94] and show
that it gives pseudorandom generators such that ‖Rndw − Dw

Γ ‖∞ ≤ ε, for
arbitrary constant ε > 0, where the seed length isO(log n·(|G|O(1)+log 1/ε)).

Note that this also solves the problem of finding pseudorandom genera-
tors for bounded with permutation branching programs, because a read-once
permutation branching program of width k on n inputs can be described as
a group word gx1

1 . . . gxn
n , gi ∈ Sk, where Sk is the symmetric group on k

elements. We will explain this connection in Section 1.3.

1.1 Comparison with previous results

There has been a series of results concerning the power randomness gives
to space-bounded computation, and the simulation of randomized logspace
machines by deterministic machines (c.f. [AKS87, BNS89, Nis92, Nis94,
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NZ96, SZ99]). In [Sav70], it was shown that a non-deterministic space S
machine can be simulated by a deterministic machine that uses S2 space,
which implies RL ⊆ L2. This was improved to BPL ∈ L3/2 by [SZ99]. This is
the best known bound for deterministic simulation of a randomized logspace
machine.

Another approach to the same problem is to construct a pseudorandom
generator with a short (O(log n)) seed and to replace the random string of a
randomized logspace machine by the output of a pseudorandom generator.
For such a machine, a pseudorandom generator with O(log2 n) due to [Nis92]
is known. Other constructions with the same seed-length are known due to
[NZ96], [INW94], [RR99].

As a logspace machine can be modelled as a branching program of width
and length polynomial in n, the subsequent work has been focussed on de-
signing pseudorandom generators for branching programs of constant width,
which have length polynomial in n. Due to Barrington’s theorem [Bar89],
it is known that this class of branching programs is same as the class NC1,
and in fact NC1 can be simulated by a width 5 permutation branching pro-
gram. The work on pseudorandom generators for bounded-width branching
programs has been restricted to read-once branching programs. A general
motivation for looking for pseudorandom generators that fool read once
branching programs is that such generators would suffice to derandomize
BPL. Unfortunately, it is not known that pseudorandom generators that fool
read once bounded-width branching would suffice to derandomize RNC1.

For width 2 branching programs, a generator having error ε is equivalent
to an ε-biased space, which can be constructed with O(log n+log ε−1) seed-
length [NN93, AGHP92]. Recently, a pseudorandom generator has been
given by [BV10] for width w permutation read-once branching programs,
which has seed-length O((w4 log log n + log 1/ε) log n) and by [BRRY10]
for width w regular read-once branching programs, which has seed-length
O((logw+ log log n+ log 1/ε) log n). Regular branching programs are more
general than permutations branching programs. In [vv10], a construction of
polynomial-time computable hitting set of polynomial size has been given
for width 3 read-once branching programs.

Pseudorandom generators with seed-length O(log n) for group products
were previously known only for finite cyclic groups [LRTV09, MZ09]. Our
result gives a generator for all finite groups. The seed-length depends poly-
nomially on the order of the group whereas the previously known generators
for cyclic groups have a seed-length which depends logarithmically on the
order of the group. Our result also implies that the INW generator with
seed-length O(log n(log 1/ε+ exp(w))) fools permutation programs of width
w. The connection between group products and permutation branching
programs will be explained shortly.
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1.2 A brief outline of the proof

INW generator is based on recursive application of the following construc-
tion, called the expander product of two pseudorandom generators. This
construction uses two pseudorandom generators Γ1,Γ2 : {0, 1}r → {0, 1}n
and a 2d-regular expander graph F with the vertex set {0, 1}r. It produces
a pseudorandom generator Γ1 ⊗F Γ2 : {0, 1}r+d → {0, 1}2n. In the INW
generator this construction is always applied with Γ1 = Γ2.

Starting with the trivial generator, the identity on {0, 1}d, and applying
the expander product k times with expanders of degree 2d, we obtain a
pseudorandom generator Γ : {0, 1}d(k+1) → {0, 1}d2k

. Thus if d is a constant,
the seed length is logarithmic in the length of the output.

It is not difficult to prove, using the well known properties of expanders,
that the Dw

Γ1⊗F Γ2
approximates Dw

Γ1×Γ2
, the distribution produced by sam-

pling Γ1 and Γ2 independently. The latter distribution can also be described
as the group G convolution of Dw1

Γ1
with Dw2

Γ2
, which is denoted by Dw1

Γ1
∗Dw2

Γ2
,

where w = w1w2 and |w1| = |w2|. The advantage of this description is that it
is an operation on distributions; we do not need to know the two generators.

The error of the approximation of Dw1
Γ1
∗Dw2

Γ2
by Dw

Γ1⊗F Γ2
is bounded by

O(λ(F )), where λ(F ) denotes the second largest (in absolute value) eigen-
value of the normalized adjacency matrix of F . Since there are explicit
constructions of expanders in which λ(F ) is an arbitrary small constant, the
error can be set to be smaller than any fixed γ > 0.

Note that Rndw is the distribution that we obtain from the uniform
distributions on {1G, gi} by repeated applications of convolution. Thus one
can study how the error develops with repeated application of the expander
construction.

The fact that the expander product approximates the convolution with
an arbitrary small positive error does not imply anything interesting. If in
each step the error increases by a constant, then after a constant number
of steps we do not have any control of it. Here comes a crucial observation:
the error does not increase always and sometimes it also decreases. To
see that this is possible, consider a model situation in which DΓ1 is the
uniform distribution on G. (We will omit the superscripts from now on.)
Then DΓ1 ∗ DΓ2 is the uniform distribution. Hence DΓ1⊗F Γ2 is γ-close to
the uniform distribution. Note that this is regardless what is the distance of
DΓ2 from the distribution produced by random bits. This remains essentially
true if we only assume that DΓ1 is very close to the uniform distribution.

This suggests the following strategy: to prove that in each step of the
construction

1. either DΓ1⊗F Γ2 is closer to the uniform distribution than DΓ1 and DΓ2

by a constant additive term,

2. or the error does not increase.
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Since case 1. can only occur a finite number of times, the accumulated error
will be bounded by a constant depending on γ. This is not literally true,
because the expander construction can always introduce an error, even if
both DΓ1 and DΓ1 are the uniform distributions. So one must also use the
fact mentioned above that the error decreases when one of the distributions
is very close to the inform distribution.

It is not difficult to formalize this intuition in the special case of groups of
prime size—the groups without proper subgroups. It is substantially more
difficult to prove our result in the case of general groups that have proper
subgroups. The reason is that instead of convergence to the global uniform
distribution, there can be convergence to a distribution that is uniform only
on each coset of some subgroup H.1 But when converging to a uniform
distribution on cosets of H it can diverge from a uniform distribution on
cosets of another subgroup J . The difficult part is to show that when we
alternate the process of converging on cosets of different subgroups, the error
will still be bounded by a constant.

1.3 Permutation branching programs

A permutation branching program B of width k is a branching program
with the following properties. The vertices of the program can be divided
into levels 0, 1, . . . ,m such that every arrow goes from a level i to the level
i + 1 and the size of each level is k. It is oblivious, which means that at
each level only one variable is queried. For each level i, the arrows labeled
by 0 (respectively 1) define a one to one mapping onto the next level i+ 1.
One of the initial (level 0) vertices is the input vertex. The terminal vertices
(level m) are divided into accepting ones and rejecting ones. In this paper
we are only interested in read once branching programs, which means that
each variable xi is used only on one level. Thus the length of B is equal to
the number of variables and we can assume, that the variables are red in
the order x1, x2, . . . , xn.

Assume that the vertices on each level are labeled by 1, . . . , k. Then the
two one-to-one mappings between levels i and i + 1 can be identified with
permutations on a k elements set, in other words, with two elements of the
symmetric group Sk. By relabelling nodes in each level of the branching
program one can assume that the permutations corresponding to bit 0 can
always be the identity mappings. Thus a permutation branching program
of width k is determined by a group word g1 . . . gk ∈ (Sk)n, except for the
the choice of the accepting vertices (we can assume that the input vertex
has label 1).

The derandomization problem for branching programs is to find pseudo-
random generators that would approximate the probability that a random

1In fact it is more complicated. We have to consider double cosets determined by a
pair of subgroups.
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input is accepted. In the case of permutation branching programs we can
look for pseudorandom generators satisfying the following property: for ev-
ery pair of indices 1 ≤ i, j ≤ k, they should approximate the probability
that for a random input, starting in the i-th initial vertex we will end in
the j-th terminal vertex. It is clear that this is equivalent to the original
question.

Our result gives a pseudorandom generator that for every fixed permu-
tation π ∈ Sk approximates the probability that for a random input and
every i, 1 ≤ i ≤ k, from an initial vertex labelled i, we reach a terminal
vertex labelled π(i). Again, it is not difficult to see that this problem is
equivalent to the original problem (assuming we want logarithmic size seed
and constant error). Here is a sketch of the proof of this equivalence. Our
generator solves the previous problem, because the probability that from i
we reach j is the sum of the probabilities of the permutations that map i
to j. To prove the other direction of the equivalence, given a group word
g1, . . . , gn ∈ Gn, consider the permutation branching program of width |G|
in which the nonidentical mapping from the level i to the level i+ 1 is given
by the action of gi on G.

1.4 Map of the paper

Section 2 contains notations and elementary preliminaries that are necessary
for the rest of the paper. We rely heavily on not-quite-standard notation for
several concepts, for which we do not know of any standard notation. Sec-
tion 3 contains the description of the pseudorandom generator and the state-
ment of our main result. This section uses very little of the non-standard
notation and one can possibly read it with only intuitive understanding of
γ-approximate convolution. The same goes also for most of next Section
4 which contains the proof that expander product can be viewed as a γ-
approximate convolution. Section 5 contains the statements related to the
main technical contribution of this paper which is Approximate Convolution
Theorem. Rest of the paper is devoted to the proof of this theorem. Section
6 contains elementary facts about various concepts used later in the proofs.
These facts do not form a cohesive reading and the reader may want to just
quickly glance at the statements and return to the proofs only later. These
facts are referred in Sections 7 and 8 which contain the proofs of the main
technical tools.

2 Notations and Preliminaries

2.1 Notation on vectors

The i-th coordinate of any vector x can be referred to as either xi or x(i).
(We use either of the two notations so to avoid confusion with double in-
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dexes.) An all one vector is denoted by 1, where its dimension is taken
from the context. The support of a vector x ∈ RI with coordinates labelled
by elements of a set I is supp(x) = {i ∈ I; xi 6= 0}. For two real valued
vectors x and y of the same dimension we define their inner product to
be 〈x, y〉 =

∑
xi · yi, where the sum is taken over all the coordinates of x

and y, respectively. We say that x and y are orthogonal if 〈x, y〉 = 0; we
denote this by x ⊥ y. Notice, if supp(x) ∩ supp(y) = ∅ then x ⊥ y. The
`2-norm of a real valued vector x is defined as ‖x‖ =

√
〈x, x〉; the `∞-norm

is ‖x‖∞ = maxi |xi|.
Let m ≥ 1 be an integer. For x ∈ R

m and disjoint nonempty sets
S1, S2, . . . , Sk ⊆ {1, 2, . . . ,m}, x‖(S1,S2,...,Sk) is the vector in R

m such that
for all i ∈ {1, . . . ,m}:

1. if i ∈ Sj for some j ∈ {1, . . . , k} then x
‖(S1,S2,...,Sk)
i = 1

|Sj |
∑

`∈Sj
x`,

and

2. x‖(S1,S2,...,Sk)
i = xi otherwise.

Thus, x‖(S1,S2,...,Sk) is constant on sets (of coordinates) S1, S2, . . . , Sk. Fur-
thermore, x⊥(S1,S2,...,Sk) = x − x‖(S1,S2,...,Sk). Notice that x⊥(S1,S2,...,Sk) is
zero in coordinates not belonging to any of the Si’s. The following facts are
easy to check:

Proposition 1 Let m ≥ 1 be an integer. For any x ∈ R
m and disjoint

nonempty sets S1, S2, . . . , Sk ⊆ {1, 2, . . . ,m} it holds:

x⊥(S1,S2,...,Sk) ⊥ x‖(S1,S2,...,Sk),

x⊥(S1,S2,...,Sk) =
k∑
i=1

x⊥(Si).

Remark 2 The reader may find helpful the following explanation of the
above notation. If one were to plot a graph of x‖(S1,S2,...,Sk)(i) as a func-
tion of i, one would see it consists of several parallel (horizontal) lines as
x‖(S1,S2,...,Sk) is constant on each of the sets S1, . . . , Sk. Hence the notation
‖. On the other hand x⊥(S1,S2,...,Sk) is the component of x that sticks out in
such a graph from the parallel lines. Hence the use of symbol ⊥. (It also
happens that x⊥(S1,S2,...,Sk) is parallel to any y‖(S1,S2,...,Sk).)

We say that two partitions (L1, L2, . . . , L`) and (K1,K2, . . . ,Kk) of
{1, 2, . . . ,m} are connected if for any x, y ∈ S there exists a path of hyper-
edges between x and y, i.e., a sequence of sets C1, C2, . . . , Cm where each
Ci ∈ {L1, L2, . . . , L`,K1, . . . ,Kk}, x ∈ C1, y ∈ Cm and Ci ∩ Ci+1 6= ∅ for
i ∈ {1, . . . ,m− 1}.

In the proof of our result we will only use vectors indexed by elements
of a fixed finite group G; so a vector x will be an element of RG.
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2.2 Notation on groups and convolution

We consider finite groups, and probability distributions on them. The size
of a group is considered to be a constant throughout the paper. Let G be
a finite group. Denote the identity element of G as 1G. Let D ∈ R

G be a
probability distribution on G. For g ∈ G, D(g) denotes the probability of
picking g, if an element is chosen from G according to D. We also treat
probability distributions over G as vectors in RG, indexed by elements of
G. For a probability distribution D on G and a subset S ⊆ G, we define
D(S) =

∑
g∈S D(g).

For a group G and set S ⊆ G, the subgroup generated by S is the smallest
subgroup of G containing S; we will denote it by 〈S〉. For a probability
distribution D ∈ R

G we denote 〈D〉 = 〈supp(D)〉. For a group G, its
subgroup H ≤ G and g ∈ G, the set gH = {gh; h ∈ H} is called a left
coset of H (or left H-coset) and the set Hg = {hg; h ∈ H} is called a right
coset of H (or right H-coset). A well known fact is that if H is a subgroup
of G then G can be partitioned into left (and right) H-cosets and thus the
size of H divides the size of G. For subgroups L,K ≤ G and an element
g ∈ G, define LgK = {agb; a ∈ L, b ∈ K}. It is easy to verify that G can
be partitioned into parts such that each part is of the form LgK for some
g ∈ G.

For a subgroup H ≤ G, let (L1, L2, . . . , Lk) be the decomposition of G
into left H-cosets and (K1,K2, . . . ,Kk) be the decomposition of G into right
H-cosets. For a vector x ∈ RG we define

x‖H = x‖(L1,L2,...,Lk)

x⊥H = x⊥(L1,L2,...,Lk)

xH‖ = x‖(K1,K2,...,Kk)

xH⊥ = x⊥(K1,K2,...,Kk).

For 0 ≤ ∆ ≤ 1, a subgroup H ≤ G and a probabilistic distribution
D ∈ RG we say that D is ∆-uniform on left H-cosets if ‖D⊥H‖∞ ≤ ∆.

Definition 3 (Convolution of vectors: ) Given two vectors u, v ∈ R
G,

define the convolution of v and u, denoted by v ∗ u, as follows:

(v ∗ u)h =
∑
g∈G

vg · ug−1h

Thus convolution of two probability distributions D1, D2 on G is another
probability distribution D where D(h) =

∑
g∈GD1(g) · D2(g−1h). Notice

that convolution is a linear operation so (u + v) ∗ w = u ∗ w + v ∗ w and
u ∗ (v + w) = u ∗ v + u ∗ w.

For g ∈ G, if g 6= 1G then [g] denotes the probability distribution where
[g] (1G) = [g] (g) = 1/2, otherwise [g] denotes the probability distribution
where [g] (1G) = 1.
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Definition 4 A distribution D ∈ RG is natural if for some g1, . . . , gk ∈ G,

D(g) =
1
2k
|{x1 . . . xk ∈ {0, 1}k|g = gx1

1 . . . gxk
k }|

for all g ∈ G. Equivalently, D is natural, if

D = [g1] ∗ [g2] ∗ · · · ∗ [gk]

for some elements g1, . . . , gk ∈ G.

One can show that for a natural distribution D, 1G ∈ supp(D) and for
every g ∈ supp(D), D(g) ≥ 2−|supp(D)|. However, we will not need the latter
fact. Clearly, convolution of two natural distributions is natural. For two
probability distributions D,R ∈ R

G we say that D = R + ε is a natural
decomposition of D if R is natural, ε = D − R, ε ⊥ 1, and supp(ε) ⊆
supp(R). Observe that, for probability distributions D1, D2, R1, R2 ∈ RG, if
D1 = R1+ε1 and D2 = R2+ε2 are natural decompositions, then D = D1∗D2

has a natural decomposition of the form D = R1 ∗R2 + ε′.
Our goal will be to approximate the actual convolution by an expander

product thus, we consider also any γ-approximate convolution ∗γ , defined
below:

Definition 5 For 0 < γ ∈ R, ∗γ : R
G × RG → R

G is any operation
that satisfies the following properties. For any two probability distributions
D1, D2 ∈ RG:

1. D1 ∗γ D2 is a probability distribution,

2. supp(ε) ⊆ supp(D1 ∗D2),

3. ||ε〈D1〉‖|| = ||ε‖〈D2〉|| = 0, and

4. ||ε〈D1〉⊥||, ||ε⊥〈D2〉|| < γ,

where ε = D1 ∗D2 −D1 ∗γ D2.

The meaning of the third condition is that the error ε redistributes the
probability mass only within each right 〈D1〉-coset and left 〈D2〉-coset. In
other words, each right 〈D1〉-coset has the same probability mass in D1 ∗D2

and D, and similarly for left 〈D2〉-cosets.

Remark 6 The reader may be puzzled by the fact that ∗γ is defined as a
function (operation) on distributions. When considering pseudorandom gen-
erators it typically matters not only what is a particular distribution but also
how it was obtained (as that may determine how such distributions will
be composed by the generator). This is true for our construction as well.
However, one can achieve similar effect by using different ∗γ operations at

9



different places tailored to particular distributions since ∗γ is not defined
uniquely. Thus for example in Approximate Convolution Theorem we allow
different ∗γ at different places of the formula and the theorem remains true
for arbitrary choice of these operations.

In order to shield the reader from particular technical details how a distri-
bution was obtained in the technically most difficult part of the paper (Section
5 and related sections) we opted for this definition. Thus Section 5 can be
read without having any particular pseudorandom generator in mind.

One could possibly think of ∗γ as a some kind of fuzzy operation or
ternary relation which satisfies the above condition.

For a probability distribution D ∈ RG on a group G, we define

λR(D) = max
‖x ∗D‖
‖x‖

,

where the maximum is over all vectors x ∈ RG with ‖x‖〈D〉‖ = 0. Symmet-
rically we define λL(D) = max ‖D∗x‖‖x‖ . Let λ(D) = max{λR(D), λL(D)}.

3 The pseudorandom generator

As explained in Introduction, INW generator is obtained by recursively ap-
plying the expander product. Let us recall the relevant facts.

3.1 Expander product

Recall that a (N,M, λ)-expander is an undirected M -regular multi-graph
on N vertices whose second largest (in absolute value) eigenvalue of its
normalized adjacency matrix is at most λ.

Let Γ1,Γ2 : {0, 1}r → {0, 1}n be two functions and F be a 2d-regular
multi-graph with vertex set {0, 1}r. (Think of Γ1 and Γ2 as pseudorandom
generators and F as an expander.) Furthermore, let ν be a function that
given an y ∈ {0, 1}r and y′ ∈ {0, 1}d, gives a neighbor of y in F that is
reached by the edge labeled y′. Then the expander product of Γ1 and Γ2 is
the function Γ1 ⊗F Γ2 : {0, 1}r+d → {0, 1}2n defined by

(Γ1 ⊗F Γ2)(y, y′) = (Γ1(y),Γ2(ν(y, y′))).

Notice that given random y ∈ {0, 1}r and y′ ∈ {0, 1}d, the pair (y, ν(y, y′))
is a random edge of the graph F .

When Γ1 and Γ2 are one-to-one functions (which is true in the case of
the pseudorandom generators used in the construction of INW generator)
we can also view the construction as follows. Take disjoint copies of the
ranges of Γ1 and Γ2 and a bipartite expander on them. Then the range of
Γ1 ⊗F Γ2 will be the concatenation of the pairs of strings connected by an
edge. (However, this view of the product has the drawback of problematic
constructibility.)
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3.2 INW generator

For the construction of INW generator we need an explicitely constructible
family of (N,M, λ)-expanders for an increasing sequence of N and a constant
M that are powers of two. Such a sequence can be obtained from e.g. [GG81]
or [RVW00] (we restate Lemma 5.1 from [RV05]).

Lemma 7 There is a universal constant c0 > 0 such that for every constant
0 < λ < 1 and d = c0dlog 1/λe, there exists a sequence Fm of (2dm, 2d, λ)-
expanders, where m = 1, 2, . . . . Neighbors in Fm are computable in space
O(m), i.e., given a vertex name y ∈ {0, 1}dm and an edge label y′ ∈ {0, 1}d,
we can compute ν(y, y′) in space O(dm) and time poly(dm).

For 0 < λ < 1 and an integer n ≥ 1, (λ, n)-INW generator is obtained
recursively as follows. We start by letting Γ0 : {0, 1}d → {0, 1}d be the
identity mapping. Then Γi+1 = Γi ⊗Fi Γi, where Fi is the (2d(i+1), 2d, λ)-
expander from the previous lemma. This gives (λ, n)-INW pseudorandom
generator for every n = d2k where k > 0, namely Γk : {0, 1}d(k+1) →
{0, 1}d2k

. To obtain (λ, n)-INW pseudorandom generators for an arbitrary
n, we take the smallest n′ = d2k ≥ n (which is less than 2n for all n large
enough) and use only the first n output bits of the (λ, n′)-INW generator.
Hence, (λ, n)-INW generator giving n bits of output has seed length O(log n·
log 1/λ).

One can easily verify that the output of the generator on a given seed
can be computed in space linear in the seed length.

We make the following claim.

Theorem 8 (Main Theorem) Let G be any finite group of size at least
four and 0 < δ < 1 be arbitrary. Let λ = δ/(2c1|G|

12 ·
√
|G|), where c1 is

the constant from Theorem 10. Then (λ, n)-INW generator Γ uses seeds
of length O(log n · (|G|12 + log 1/δ)) to produce n bits such that for every
w ∈ Gn,

‖Rndw −Dw
Γ ‖ ≤ δ.

The output of the generator is computable in space linear in the seed length.

We believe that the dependency on the size of the group in Main Theorem
can be improved. Since every group of size three or less is a subgroup of
some group of size six, the theorem is also applicable to such groups.

We provide the proof of Main Theorem next. The proof uses two key
ingredients. The first ingredient shows that expander product approximates
convolution of any two probability distributions well. Then the second in-
gredient shows that if we take any formula consisting of convolutions of
natural distributions and we substitute the convolutions by approximate
convolutions the `2-distance between the distributions computed by the two

11



formulas can be bounded. Since INW generator is constructed recursively
using the expander product, the distribution it induces can be thought of
as a distribution obtained by a formula consisting of approximate convolu-
tions of natural distributions. These two ingredients are formalized in the
following two statements.

Lemma 9 Let a word w over some group G be given. Let w = w1w2, with
|w1| = |w2| = n. Let 0 < γ < 1 be given. Let Γ1,Γ2 : {0, 1}r → {0, 1}n be
two functions and let F be an (2r, 2d, λ)-expander, where λ = γ/

√
|G|. There

is a γ-approximate convolution ∗γ : RG×RG → R
G such that Dw1

Γ1
∗γ Dw2

Γ2
=

Dw1w2
Γ1⊗F Γ2

.

This lemma is proven in Section 4. The following theorem is the main
technical tool of this paper.

Theorem 10 There is a universal constant c1 > 0 such that for any group
G of size at least four and any 0 < γ < 1 the following holds.

Let F be a formula consisting of convolutions ∗ and natural probability
distributions on G. Let F ′ be obtained from F by replacing the convolutions
by γ-approximate convolutions. If R denotes the distribution computed by
F and D denotes the distribution computed by F ′ then

‖D −R‖ ≤ γ2c1|G|
12
.

We would like to draw attention of the reader to the remarkable fact
that the conclusion of this theorem does not depend in any way on the size
or structure of the formula F . This theorem is an immediate consequence
of Theorem 13 stated in Section 5.

We are ready to prove Main Theorem.
Proof of Main Theorem. Let γ = δ/2c1|G|

12
and λ = γ/

√
|G|. Consider the

(λ, n)-INW generator. Let Γ0,Γ1, . . . ,Γk be the functions used to construct
the generator, where Γ0 : {0, 1}d → {0, 1}d. Pad w by 1G at the right
end so that it would be of length d2k. Break w into consecutive blocks of
d elements and for each block w′ compute Rndw

′
. Observe, Rndw

′
= Dw′

Γ0
.

Using convolution form a balanced formula F out of Rndw
′
, for all the blocks

w′, so that F evaluates to Rndw. Hence, F is a full binary tree of depth k
with each internal node being a convolution and each leaf being one of the
Rndw

′
. Notice, the structure of the formula corresponds to the structure of

(λ, d2k)-INW generator.
Thus, from leaves towards the root of F , inductively replace each con-

volution by some γ-approximate convolution which correctly computes the
distribution Dw1w2

Γi⊗F Γi
= Dw1w2

Γi+1
when applied to the distributions computed

by the operands of the convolution, i.e., distributions Dw1
Γi

and Dw2
Γi

for
some subwords w1 and w2 of w. Such a γ-approximate convolution exists by

12



Lemma 9. The new formula F ′ obtained by replacing all the convolutions
in F by their ∗γ-approximate convolutions clearly computes Dw

Γk
. Thus, by

Theorem 10
‖D −R‖ ≤ γ2c1|G|

12
= δ.

2

4 Expander product well approximates convolu-
tion

In this section we will estimate the error introduced by the expander product
of two pseudorandom generators, the basic step of INW generator, and prove
Lemma 9. Similar bounds were proven in [INW94]. Rather than adapting
their results, we will give a direct proof based on Expander Mixing Lemma.

Lemma 11 Let a word w over some group G be given. Let w = w1w2, with
|w1| = |w2| = n. Let Γ1,Γ2 : {0, 1}r → {0, 1}n be two functions and let F be
an (2r, 2d, λ)-expander. Then

‖Dw1
Γ1
∗Dw2

Γ2
−Dw

Γ1⊗F Γ2
‖ ≤ λ

√
|G|.

The proof of Lemma 11 uses Expander Mixing Lemma, stated below (see
e.g. [AS92] Corollary 2.5).

Lemma 12 (Expander Mixing Lemma) Let F = (V,E) be a
(N,M, λ)-expander. For any two subsets S ⊆ U , T ⊆ V , let e(S, T )
denote the number of edges between S and T . Then

|e(S, T )− M · |S| · |T |
N

| ≤ λM
√
|S| · |T |.

Note that we do not require the sets S and T to be disjoint.
Proof of Lemma 11. Let w1 = g1 . . . gn, w2 = h1 . . . hn, N = 2r and
M = 2d. For g ∈ G put

Ug = {y ∈ {0, 1}r| gΓ1(y)1

1 · · · gΓ1(y)n
n = g},

Vg = {y ∈ {0, 1}r| hΓ2(y)1

1 · · ·hΓ2(y)n
n = g}.

Then {Ug}g∈G and {Vg}g∈G are partitions of {0, 1}r. Using the expander
mixing lemma, we have∣∣∣e(Ug, Vh)− M · |Ug| · |Vh|

N

∣∣∣ ≤ λM√|Ug| · |Vh| (1)

13



for all g, h ∈ G. Dividing by MN , we get (from now on we are omitting the
superscripts w1, w2 and w)∣∣∣e(Ug, Vh)

MN
− |Ug|

N
· |Vh|
N

∣∣∣ ≤ λ

√
|Ug|
N
· |Vh|
N

∴
∣∣∣e(Ug, Vh)

MN
−DΓ1(g)DΓ2(h)

∣∣∣ ≤ λ
√
DΓ1(g)DΓ2(h).

Therefore for each k ∈ G, we have∣∣∣ 1
MN

∑
g,h:
gh=k

e(Ug, Vh)−
∑
g,h:
gh=k

DΓ1(g)DΓ2(h)
∣∣∣ ≤ λ

∑
g,h:
gh=k

√
DΓ1(g)DΓ2(h)

∴ |DΓ1⊗F Γ2(k)−DΓ1 ∗DΓ2(k)| ≤ λ
∑
g,h:
gh=k

√
DΓ1(g)DΓ2(h)

Squaring and summing over all k ∈ G, we get

‖DΓ1⊗F Γ2 −DΓ1 ∗DΓ2‖2 ≤ λ2
∑
k∈G

( ∑
g,h:
gh=k

√
DΓ1(g)DΓ2(h)

)2

≤ λ2
∑
k∈G

(
‖
√
DΓ1‖2‖

√
DΓ2‖2

)
= λ2|G|,

where
√
D is the vector with entries equal to the square roots of the entries

of D, and the last inequality follows from Cauchy-Schwarz inequality. 2

This allows us to prove Lemma 9.
Proof of Lemma 9. Define Dw1

Γ1
∗γDw2

Γ2
= Dw1w2

Γ1⊗F Γ2
. For other D1, D2 ∈ RG,

where D1 6= Dw1
Γ1

or D2 6= Dw2
Γ2

, we can extend ∗γ almost arbitrarily so we
define D1 ∗γ D2 = D1 ∗D2. Clearly, we only have to verify the latter three
conditions of Definition 5 concerning ε = Dw1

Γ1
∗Dw2

Γ2
−Dw1w2

Γ1⊗F Γ2
. Let N = 2r

and M = 2d. (We drop the superscripts of D for the rest of the proof).

1. The support of DΓ1 ∗ DΓ2 is the set of elements of the form
gg−1h such that g ∈ supp(DΓ1) and g−1h ∈ supp(DΓ2). It follows from
the definition that only such elements are in supp(DΓ1⊗F Γ2). Hence also
supp(ε) ⊆ supp(DΓ1 ∗DΓ2).

2. Let A be a right coset of 〈DΓ1〉. Let B be the elements y ∈ {0, 1}r

such that wΓ2(y)1

2,1 w
Γ2(y)2

2,2 · · ·wΓ2(y)n

2,n ∈ A. The weight of A in DΓ2 is |B|/N .
The weight of A in DΓ1⊗F Γ2 is e({0, 1}r, B)/MN . Since F is M -regular,

e({0, 1}r, B)/MN = |B|/N . Hence D
〈DΓ1〉‖
Γ1⊗F Γ2

= D
〈DΓ1〉‖
Γ2

, which means

ε〈DΓ1〉‖ = ~0. The other case follows by symmetry.

3. This follows from 2. and the lemma above, because ε = ε〈DΓi〉‖ +
ε〈DΓi〉⊥, for i = 1, 2. 2
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5 Main Approximate Convolution Theorem

In this section we establish our Approximate Convolution Theorem stated
below which shows that an arbitrary convolution of natural distributions
can be well approximated by γ-approximate convolutions. For this and
following sections we will fix a finite group G of size at least 4. We define
two parameters ∆ and τ depending on the group:

∆ =
1

16|G|2

τ =
∆2

2 · cG ·
√
|G|

=
1

8192 · |G|8.5
.

Here cG is the constant from Lemma 31. Let T = d1/τe.
We state Approximate Convolution Theorem next.

Theorem 13 (Approximate Convolution Theorem) Let 0 < γ < 1 be
real. Let E0 = 0 and Ei = 2h · (Ei−1 + γ), for i > 0, where h is the constant
from Lemma 16. Assume that γ is small so that ET < 1/8|G|.

Let F be a formula consisting of convolutions ∗ and natural probability
distributions on G. Let F ′ be obtained from F by replacing the convolutions
by γ-approximate convolutions. If R denotes the distribution computed by
F and D denotes the distribution computed by F ′ then ‖D −R‖ ≤ ET .

Solving the recurrence Ei = 2h ·(Ei−1 +γ) in Theorem 13 gives the error
ET ≤ (2h)1+Tγ.

To prove the theorem we will classify probability distributions according
to their closeness to the uniform distribution. Notice that for every proba-
bility distribution R on G, its norm is bounded by 1/

√
|G| ≤ ‖R‖ ≤ 1 and

R is the uniform distribution if and only if ‖R‖ = 1/
√
|G|. This motivates

the following definition.

Definition 14 For a probability distribution R ∈ RG, we say that the rank
of R is i (rank(R) = i) if

iτ ≤ 1− ‖R‖ < (i+ 1)τ.

The rank of R corresponds to its distance from the uniform distribution:
the higher the rank the closer the distribution is to uniform. The rank is in
the range from 0 to T . Next lemma summarizes some properties of rank.
(Section 7 contains its proof.)

Lemma 15 The following hold:

1. For any two probability distributions R1, R2 ∈ R
G,

rank(R1), rank(R2) ≤ rank(R1 ∗R2).
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2. For any two natural probability distributions R1, R2 ∈ R
G, if 〈R1〉 6=

〈R2〉 and R1 is ∆-uniform on left 〈R2〉-cosets then rank(R2) <
rank(R1). Similarly, if 〈R1〉 6= 〈R2〉 and R2 is ∆-uniform on right
〈R1〉-cosets then rank(R1) < rank(R2).

3. For any two natural probability distributions R1, R2 ∈ R
G, if R1 is

not ∆-uniform on left 〈R2〉-cosets then rank(R1) < rank(R1 ∗ R2).
Similarly, if R2 is not ∆-uniform on right 〈R1〉-cosets then rank(R2) <
rank(R1 ∗R2).

In the proof of Approximate Convolution Theorem we will trade rank
for error. We will allow the error of our approximate distribution grow
with its rank. Thus we will also need a lemma which will bound the error
introduced by γ-approximate convolutions when there is a long chain of such
convolutions that is applied on a distribution without increasing its rank.

We are interested in an approximate convolution of distributions Di that
approximate some natural distributions Ri up-to error εi. We assume that
each Di = Ri+εi is a natural decomposition. We want to bound the increase
in the error if we convolve many such distributions. The following lemma
bounds the increase in the error.

Lemma 16 (Key Convergence Lemma) Let 0 < e1, γ < 1 be reals. Let
D0, D1, D2, . . . , Dt, R0, . . . , Rt be probability distributions on G, where Di =
Ri+εi is a natural decomposition, for i ∈ {0, . . . , t}. Let ‖εi‖ ≤ e1 for i > 0.
Let D be obtained by iteratively convolving D0 with D1, D2, . . . , Dt where
each of the convolutions is some γ-approximate convolution either from left
or from right. Let R be obtained by the same sequence of convolutions (but
exact) of R0 with R1, R2, . . . , Rt. Then ε = D −R satisfies

‖ε‖ ≤ ‖ε0‖+ h · (e1 + γ),

where h = (600|G| · |G|3|G| · cG)|G| · 1200|G| · |G|4|G|.

The proof of Key Convergence Lemma is in Section 8.
Proof of Approximate Convolution Theorem. Look on F as a tree and
assign to each node of the tree the rank of the distribution computed by
the subformula rooted at the node. Assign the same rank to nodes of F ′.
We denote the distribution computed by a node u in F by Ru and the
corresponding node in F ′ by Du. We claim that for any node u of F ,
‖Ru − Du‖ ≤ Erank(Ru). In the rest of the proof we call the size of the
difference the error.

Remove all the edges between nodes of different ranks in F ′. Hence
we obtain a forest each consisting of nodes of the same rank. We prove the
claim by induction on the rank of nodes in a tree. (We describe the induction
somewhat informally. The interested reader can easily formalize it.) The
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base case is trivial as leaves of the original formula have zero error. Consider
a tree of nodes of some rank i. Leaves in such a tree have either zero error
as they are leaves of F ′ or have error bounded by 2Ei−1 + γ ≤ Ei/4 since
they are obtained by a γ-approximate convolution of nodes of rank less than
i (by induction hypothesis and Lemma 25). Consider a node u of degree
two in such a tree with children v and w. Distribution Du = Ru + εu is
the γ-approximate convolution of two distributions Dv = Rv + εv and Dw =
Rw + εw, where rank(Rv) = rank(Rw) = rank(Ru). (All the decompositions
are natural.)

By Lemma 15, Rv is ∆-uniform on left 〈Rw〉-cosets and Rw is ∆-uniform
on right 〈Rv〉-cosets, so 〈Rv〉 = 〈Rw〉. Thus by Lemma 26 and the choice of
γ and ∆, the size of the error ‖εu‖ ≤ 2 · |G| ·∆ ·Ei +

√
|G| ·E2

i + γ ≤ Ei/4.
The remaining nodes are nodes of degree one and form possibly several

paths, each path starting either in a leaf or a node of degree two. Hence
each path starts in a node with error ≤ Ei/4. Each node along the path
represents a γ-approximate convolution of the distribution of the start node
with a distribution of rank less than i, so of error at most Ei−1. Thus the
Key Convergence Lemma applies and each node along the path has error
bounded by Ei/4 + h(Ei−1 + γ) ≤ Ei. The claim follows. 2

6 Basic properties of `2-norm, groups and convo-
lution

In this section we review and establish some simple facts that will be needed
for the proof our main Approximate Convolution Theorem. The reader may
want to skip this section during the first reading and use it only later as a
reference.

6.1 Facts on `2-norm

For x ∈ Rm
‖x‖ ≤

√
m‖x‖∞ and ‖x‖∞ ≤ ‖x‖.

Note that the dimension m will be the size of the group G, which is a
constant. Thus if the constant factor does not play role, one can use any
of the standard norms. For us, it will be the most convenient to use the
`2-norm.

We will need the following two lemmas that estimate the `2-norm when
one of the components of the vector is changed. Recall that for x ⊥ y,
‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Lemma 17 Let 0 < δ, ε < 1 be reals and x, x′, y ∈ R
m vectors satisfying

x ⊥ y, x′ ⊥ y, ‖x‖ ≥ δ‖x+ y‖ and ‖x′‖ ≤ (1− ε)‖x‖. Then

‖x+ y‖ − ‖x′ + y‖ ≥ εδ2

2
‖x+ y‖.
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Proof: Since x, x′ ⊥ y, we have

‖x′ + y‖2 = ‖x′‖2 + ‖y‖2

≤ (1− ε)2‖x‖2 + ‖y‖2

= ‖x+ y‖2 − (1− (1− ε)2)‖x‖2

≤ (1− (1− (1− ε)2)δ2)‖x+ y‖2

Therefore

‖x+ y‖ − ‖x′ + y‖ ≥ (1−
√

1− (1− (1− ε)2)δ2)‖x+ y‖

Since (1− (1− ε)2)δ2 = (2ε− ε2)δ2 ≥ εδ2, we have

√
1− (1− (1− ε)2)δ2 ≤

√
1− εδ2 ≤ 1− εδ2

2
.

2

Lemma 18 Let 0 < µ be a real and x, x′, y ∈ Rm vectors satisfying x ⊥ y,
x′ ⊥ y, and ‖x′‖ ≤ ‖x‖+ µ. Then

‖x′ + y‖ ≤ ‖x+ y‖+ µ.

Proof: Since x, x′ ⊥ y, we have

‖x′ + y‖2 = ‖x′‖2 + ‖y‖2

≤ (‖x‖+ µ)2 + ‖y‖2

= ‖x+ y‖2 + 2µ‖x‖+ µ2

≤ ‖x+ y‖2 + 2µ‖x+ y‖+ µ2

= (‖x+ y‖+ µ)2.

The lemma follows. 2

The following fact formalizes an informal intuition that if `2-norm of a
vector is large and we have two independent directions then the vector must
be large in at least one of the two directions.

Lemma 19 Let m > 0 be an integer. Let L = (L1, L2, . . . , L`) and K =
(K1,K2, . . . ,Kk) be connected partitions of {1, 2, . . . ,m}. Let ε ∈ R

m be
such that ε ⊥ 1. Let α, β ∈ R satisfy α > 0 and β > 4α`

√
m. If ‖ε‖ ≥ β

and ‖ε⊥L‖ < α then:

‖ε⊥K‖ ≥ β

2`
√
m
− α.
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Proof: Since ‖ε‖ ≥ β, there exists a coordinate max ∈ {1, . . . ,m} such that
|εmax| ≥ β/

√
m. W.l.o.g. εmax > 0 as we can consider −ε instead of ε. Since

ε ⊥ 1, there is also a coordinate min ∈ {1, . . . ,m} with εmin < 0. Since
‖ε⊥L‖ < α, the absolute value of each coordinate of ε⊥L is smaller than
α. Thus, the coordinates of ε⊥L corresponding to the elements of the same
part Li differ by less than 2α. For each i = 1, . . . , ` consider the interval
[minj∈Li εj ,maxj∈Li εj ]. The sum of their lengths is at most 2α`. Thus,
there are a, b ∈ R such that 0 ≤ a < b < εmax, and

b− a ≥ εmax − 2α`
`− 1

≥ β/(
√
m)− 2α`
`

≥ β/(
√
m · `)− 2α,

and no coordinate of ε has its value in the interval of (a, b). Consider S =
{i ∈ {1, . . . ,m}; εi ≤ a}. Clearly, ∅ 6= S 6= {1, . . . ,m} and S is a union
of some Li’s as b − a > 2α. Hence, from connectedness of L and K there
is a part Ki with two elements s and t such that εs ≤ a < b ≤ εt. Thus,
εt − εs ≥ b− a. Hence

‖ε⊥K‖ ≥ ‖ε⊥Ki‖ ≥ εt − εs
2

≥ b− a
2
≥ β

2`
√
m
− α.

2

6.2 Facts on convolution

The next proposition is straightforward to prove so we leave the proof to an
interested reader.

Proposition 20 For a finite group G, let x,D ∈ R
G, where D is a prob-

ability distribution. Let (L1, L2, . . . , L`) be distinct left 〈D〉-cosets and
(K1,K2, . . . ,Kk) be distinct right 〈D〉-cosets of G. Then

(x ∗D)‖〈D〉 = x‖〈D〉,

(x ∗D)⊥(L1,...,L`) = x⊥(L1,...,L`) ∗D,
(D ∗ x)〈D〉‖ = x〈D〉‖,

(D ∗ x)⊥(K1,...,Kk) = D ∗ x⊥(K1,...,Kk).

The following is a consequence of the previous proposition.

Lemma 21 Using the same notation as in Proposition 20

‖x ∗D‖, ‖D ∗ x‖ ≤ ‖x‖,
‖(x ∗D)⊥(L1,...,L`)‖ ≤ ‖x⊥(L1,...,L`)‖,
‖(D ∗ x)⊥(K1,...,Kk)‖ ≤ ‖x⊥(K1,...,Kk)‖.
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Proof:
We will prove the first part. The two remaining parts follow trivially

from the first one. Let δg denote the vector such that δg(g) = D(g) and
δg(h) = 0 for h 6= g. Then D =

∑
g δg. By linearity of convolution, we have

‖x ∗D‖ = ‖
∑
g

x ∗ δg‖ ≤
∑
g

‖x ∗ δg‖ =
∑
g

D(g) · ‖x‖ = ‖x‖.

2

Lemma 22 For a finite group G, let x, y ∈ R
G and H ≤ G be a subgroup

of G. If x ⊥ 1 and supp(x) ⊆ H then (y ∗ x)‖H = 0 and (x ∗ y)H‖ = 0.

Proof: We prove (x ∗ y)H‖ = 0, the other case is symmetric. For any g ∈ G
and any b, b′ ∈ H, ∑

a∈Hg
yb−1a =

∑
a∈Hg

yb′−1a.

Hence, by the definition of convolution and properties of x∑
a∈Hg

(x ∗ y)(a) =
∑
a∈Hg

∑
b∈G

xb · yb−1a

=
∑
a∈Hg

∑
b∈H

xb · yb−1a

=
∑
b∈H

xb ·
∑
a∈Hg

yb−1a

= 0.

The lemma follows. 2

The following claim is an immediate consequence of definition of λ(D).

Proposition 23 Let G be a finite group. Let ε,D ∈ RG, where D is a prob-
ability distribution. Let (A1, A2, . . . , A`) be different left 〈D〉-cosets. Then

‖ε⊥(A1,A2,...,A`) ∗D‖ ≤ λ(D) · ‖ε⊥(A1,A2,...,A`)‖.

Similarly for right 〈D〉-cosets and convolution by D from left.

Proposition 24 Let G be a finite group. Let x, y ∈ R
G. Then ‖x ∗ y‖ ≤√

|G| · ‖x‖ · ‖y‖.

Proof: By the Cauchy-Schwarz inequality,

|(x ∗ y)h| = |
∑
g

xgyg−1h| ≤
√∑

g

x2
g ·
√∑

g

y2
g−1h

= ‖x‖ · ‖y‖,

for every h ∈ G. Hence ‖x ∗ y‖ ≤
√
|G| · ‖x‖ · ‖y‖.

2
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Lemma 25 Let G be a finite group. Let 0 < γ < 1 and R1, R2 ∈ R
G be

probability distributions. Let ε1, ε2 ∈ R
G be such that R1 + ε1 and R2 + ε2

are also probability distributions. Then

‖(R1 + ε1) ∗γ (R2 + ε2)−R1 ∗R2‖ ≤ ‖ε1‖+ ‖ε2‖+ γ.

Proof: By linearity

(R1 + ε1) ∗ (R2 + ε2) = R1 ∗R2 + (R1 + ε1) ∗ ε2 + ε1 ∗R2.

By Lemma 21
‖(R1 + ε1) ∗ ε2‖ ≤ ‖ε2‖

and
‖ε1 ∗R2‖ ≤ ‖ε1‖.

By the triangle inequality

‖(R1 + ε1) ∗ (R2 + ε2)−R1 ∗R2‖ ≤ ‖ε1‖+ ‖ε2‖

The lemma follows from properties of ∗γ . 2

Lemma 26 Let G be a finite group. Let 0 < ∆, γ < 1 and R1, R2 ∈ RG be
probability distributions such that 〈R1〉 = 〈R2〉 = H, R1 is ∆-uniform on
left H-cosets, and R2 is ∆-uniform on right H-cosets. Let ε1, ε2 ∈ R

G be
orthogonal to 1 and supp(ε1), supp(ε2) ⊆ H. Then

‖(R1 + ε1) ∗γ (R2 + ε2)−R1 ∗R2‖ ≤ |G| ·∆ · (‖ε1‖+ ‖ε2‖)
+
√
|G| · ‖ε1‖ · ‖ε2‖+ γ.

Proof: By linearity

(R1 + ε1) ∗ (R2 + ε2) = R1 ∗R2 +R1 ∗ ε2 + ε1 ∗R2 + ε1 ∗ ε2.

Since supp(ε2) ⊆ H and ε2 ⊥ 1, RH‖1 ∗ ε2 is the zero vector. Hence,

R1 ∗ ε2 = (RH‖1 +RH⊥1 ) ∗ ε2 = RH⊥1 ∗ ε2.

Since R1 is ∆-uniform on left H-cosets, each coordinate of RH⊥1 is at most
∆ in absolute value, hence ‖RH⊥1 ‖ ≤

√
|G| ·∆. Thus by Proposition 24,

‖R1 ∗ ε2‖ = ‖RH⊥1 ∗ ε2‖ ≤ |G| ·∆ · ‖ε2‖.

Similarly,
‖ε1 ∗R2‖ ≤ |G| ·∆ · ‖ε1‖.

From these inequalities and the triangle inequality

‖(R1 + ε1) ∗ (R2 + ε2)−R1 ∗R2‖ ≤ |G| ·∆ · (‖ε1‖+ ‖ε2‖) +
√
|G| · ‖ε1‖ · ‖ε2‖.

The lemma follows from properties of ∗γ . 2
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6.2.1 Facts on groups

Lemma 27 Let G be a finite group, L,K,H ≤ G be subgroups of G, and
g ∈ G. The following hold.

1. The set 〈L ∪H〉 gK can be partitioned into right H-cosets, that we call
A1, . . . , A`.

2. The set 〈L ∪H〉 gK can be partitioned into sets B1, . . . , Bk, each Bi
of the form Lg′K, for some g′ ∈ G.

3. The two partitions (A1, . . . , A`) and (B1, . . . , Bk) are connected parti-
tions of 〈L ∪H〉 gK.

Symmetrically for Lg 〈K ∪H〉 and its decomposition into left H-cosets.

Proof:
Part 1. Notice that 〈L ∪H〉 gK is a disjoint union of the right cosets of the
form 〈L ∪H〉 gk for k ∈ K. Since H is a subgroup of 〈L ∪H〉, every right
coset of 〈L ∪H〉 can be partitioned into right cosets of H.
Part 2. Let there be an Lg′K such that Lg′K∩〈L ∪H〉 gK 6= ∅ and Lg′K *
〈L ∪H〉 gK. Let `1g′k1 ∈ 〈L ∪H〉 gK where `1 ∈ L, k1 ∈ K. Therefore
`1g
′k1 = `2gk2 for some `2 ∈ 〈L ∪H〉 , k2 ∈ K. Let `3g′k3 /∈ 〈L ∪H〉 gK.
But then

`3g
′k3 = `3`

−1
1 `1g

′k1k
−1
1 k3 = `3`

−1
1 `2gk2k

−1
1 k3 ∈ 〈L ∪H〉 gK

which contradicts the assumption that `3g′k3 /∈ 〈L ∪H〉 gK.
Part 3. Let us assume that k, ` ≥ 2 as otherwise the claim is trivial. Clearly
it suffices to show that one can find a path of hyper-edges consisting of
Ai’s and Bj ’s between g and any other element g′ ∈ 〈L ∪H〉 gK. Let
g′ = `m`m−1 · · · `2`1gk0, where `1, `2, . . . , `m ∈ L ∪ H and k0 ∈ K. (Since
L,H ≤ G and G is finite such elements exist.) We show by induction on
i = 0, 1, . . . ,m that `i`i−1 · · · `1gk0 is connected to g by a path of hyper-
edges.
Base case. Clearly, g and gk0 are both from LgK so this case is trivial.
Induction step. Let us assume that there is a path of hyper-edges between
g and `i−1 · · · `1gk0. We will extend it into a path from g to `i`i−1 · · · `1gk0.
There are two cases. Consider the case when `i ∈ H. Since 〈L ∪H〉 gK de-
composes into right H-cosets and `i−1 · · · `1gk0 ∈ 〈L ∪H〉 gK, `i−1 · · · `1gk0

is in a right H-coset Aj for some j. But then also `i`i−1 · · · `1gk0 ∈ Aj as
right H-cosets are closed under left multiplication by elements of H. So
extend the path from g to `i−1 · · · `1gk0 by Aj to get a path from g to
`i · · · `1gk0.

The other case of `i ∈ L is similar. Again, `i−1 · · · `1gk0 is in Bj = LgjK
for some j and gj ∈ G as 〈L ∪H〉 gK decomposes into Bj ’s. Since Bj is
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closed under multiplication by elements of L from left, `i · · · `1gk0 ∈ Bj .
Thus again, g is connected to `i · · · `1gk0. The lemma follows. 2

6.2.2 Facts on natural distributions

Lemma 28 Let D be a natural probability distribution on a finite group G.
For every subgroup H ≤ G, if supp(D) \H 6= ∅ then D(S) ≤ 1/2 for every
left and right H-coset S.

Proof: We prove it for right cosets, the case of left cosets is symmetric. Let
D = [g1]∗[g2]∗· · ·∗[gn]. Take the smallest k such that Dk = [g1]∗[g2]∗· · ·∗[gk]
is not contained in H. Then clearly Dk(Hgk) = Dk(H) = 1/2 so no right
H-coset has probability more than 1/2. Furthermore by induction on ` > k,
for any right H-coset S, (D`−1 ∗ [g`])(S) = 1

2D`−1(S) + 1
2D`−1(Sg−1

` ) ≤ 1/2.
2

Lemma 29 Let D be a natural probability distribution on a finite group
G. For every subgroup H ≤ G, if the support of D is not in H, then
there exists two right H-cosets S1 6= S2 such that D(S1) ≥ |H|/|G| and
D(S2) ≥ |H|/2(|G| − |H|). Symmetrically for left H-cosets.

Proof: Take S1 to be the right H-coset with the largest probability and S2

the right H-coset with the second largest probability. 2

Lemma 30 Let D be a natural probability distribution on a finite group G.
Suppose that the support of D generates G. Then there exists an element
a ∈ G and a set K ⊆ G such that D(a) ≥ 1/2|G|, D(g) ≥ 1/2|G| for every
g ∈ K, and Ka−1 generates G.

Proof: Assume |G| > 1 otherwise the claim is trivial. By Lemma
29 applied on H = {1G}, there exist two elements g 6= g′ such that
D(g), D(g′) ≥ 1/2|G|. Let b1 be one of them that is not equal to 1G and
let a be the other. Now define inductively a sequence of elements b1, b2, . . .
such that D(bi) ≥ 1/2|G|, for i ≥ 1, and b1a

−1, . . . , bka
−1 span subgroups

of increasing size. Suppose we already have b1, . . . , bk and b1a
−1, . . . , bka

−1

span a proper subgroup Bk. Since D(Bka) ≤ 1/2 by Lemma 28, there exists
an element bk+1 6∈ Bka that has probability ≥ 1

2 |G|. Since bk+1 6∈ Bka, we
have bk+1a

−1 6∈ Bk, hence b1a−1, . . . , bka
−1, bk+1a

−1 span a larger subgroup.
Since G is finite, we eventually get a set K with the properties required by
the lemma. 2

The following lemma bounds λ(D) for natural distributions D.

Lemma 31 Let D ∈ R
G be a natural probability distribution on a finite

group G. Then
λ(D) ≤ 1− 1/cG,

where cG = 16|G|4.
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We use the same technique that is used to estimate the second largest
(in absolute value) eigenvalue of graphs (cf. [Lov93]) to prove the lemma.
Proof: We prove that λR(D) ≤ 1− 1/cG, the case for λL(D) is symmetric.
Let |G| = m. Let us assume first that 〈D〉 = G. Then for any x ∈ R

G,
‖x‖〈D〉‖ = 0 if and only if x ⊥ 1. Hence, let x ∈ R

G be such that x ⊥ 1,
‖x‖ = 1 and ‖x∗D‖ be maximal possible. Since {x ∈ RG; x ⊥ 1 & ‖x‖ = 1}
forms a compact space such x exists. Clearly, λR(D) = ‖x ∗D‖.

Let D̃ be the m ×m matrix indexed by elements of G and defined by
D̃(g, h) = D(g−1h), for all g, h ∈ G. Clearly, D̃ is doubly-stochastic as
well as D̃D̃T . Moreover by definition of convolution, x ∗ D = xD̃. Thus,
‖x ∗D‖2 = xD̃D̃TxT = λR(D)2. Hence

1− (λR(D))2 = x(I − D̃D̃T )xT

=
∑
i∈G

x2
i −

∑
i,j∈G

xixj(D̃D̃T )i,j

=
1
2

∑
i∈G

x2
i

∑
j∈G

(D̃D̃T )i,j +
1
2

∑
j∈G

x2
j

∑
i∈G

(D̃D̃T )i,j

−
∑
i,j∈G

xixj(D̃D̃T )i,j

=
∑
i,j∈G

(D̃D̃T )i,j
2

(xi − xj)2 .

Since, the right hand side is non-negative, λR(D) ≤ 1.
As ‖x‖ = 1, there is a coordinate g+ such that |xg+ | ≥ 1√

m
. Without

loss of generality, let xg+ ≥ 1√
m

where g+ ∈ G. Since x ⊥ 1, there is
another coordinate xg− < 0. Let a and K be the element and the set from
Lemma 30. Since Ka−1 generates G, there exists g0, . . . , g` ∈ G, ` ≤ m,
such that g0 = g+, g` = g−, and g−1

k gk+1 ∈ Ka−1 for 0 ≤ k < `. (Take
h1, h2, . . . , h` ∈ Ka−1 such that g−1

+ g− = h1h2 · · ·h` and set inductively for
k = 0, · · · , `− 1, gk+1 = gkhk+1.) We will show that

(D̃D̃T )gk,gk+1
≥ 1

4m2
. (2)

By definition

(D̃D̃T )gk,gk+1
=

k∑
s=1

(D̃)gk,s(D̃
T
1 )s,gk+1

=
k∑
s=1

D(g−1
k s)D(g−1

k+1s).

We will lower-bound it by the term in which s = gk+1a. Since g−1
k s =

g−1
k gk+1a and g−1

k gk+1 ∈ Ka−1, we have g−1
k s ∈ K, whence D(g−1

k s) ≥
1/2m. Further, g−1

k+1s = a, hence D(g−1
k+1s) ≥ 1/2m. Thus we get (2).
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Using this estimate and the expression for 1− (λR(D))2 derived above,
we get

1− (λR(D))2 ≥ 1
8m2

`−1∑
j=0

(xgj − xgj+1)2

≥ 1
8m2`

( `−1∑
j=0

(xgj − xgj+1)
)2

(by Cauchy-Schwarz inequality)

≥ 1
8m2`

(xg+ − xg−)2

≥ 1
8m4

As λR(D) ≤ 1, we have

1− λR(D) ≥ 1
16m4

Consider the case when 〈D〉 = H � G. Let k = |H|. If D̃ is the same
matrix as above then Dg,h > 0 implies that g−1h ∈ H so h ∈ gH. Thus
Dg,h > 0 implies that h is in the left coset gH and hH = gH. One can easily
verify that rows and columns of D̃ can be reordered so that D̃ = Im/k⊗D̃H ,
where D̃H is the k×k matrix defined by D̃H(h1, h2) = Dh−1

1 h2
for h1, h2 ∈ H,

and Im/k is the identity matrix of rank m/k. Consider any vector x such
that ‖x‖〈D〉‖ = 0. If (A1, . . . , A`A) is the partition of G into left H-cosets,
then x =

∑`A
i=1 x

⊥(Ai). As D̃ = Im/k⊗D̃H , for any left coset Ai, x⊥(Ai)∗D =
(x ∗D)⊥(Ai). Also x⊥(Ai) ⊥ 1 so ‖x⊥(Ai) ∗D‖ ≤ λR(D̃H)‖x⊥(Ai)‖. Now

‖x ∗D‖2 = ‖
`A∑
i=1

x⊥(Ai) ∗D‖2

≤ λR(D̃H)2 ·
`A∑
i=1

‖x⊥(Ai)‖2

= λR(D̃H)2 · ‖x‖2

and the lemma follows. 2

7 Proof of Lemma 15

Proof: The first part of the lemma follows trivially from properties of con-
volution. In both remaining parts we only consider the case of the left cosets
as the case of right cosets is symmetric.
Part 2. Let H = 〈R2〉 and ` = |H|. First we show that H ⊆ 〈R1〉. Since
R1 is ∆-uniform on left H-cosets, coordinates of R1 corresponding to the
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same left H-coset differ by at most 2∆ < 1/2|G|. Clearly, some left H-coset
gH must contain at least `/|G| of probability mass under R1. Thus, all
coordinates from gH of R1 have probability at least 1

G −
1

2|G| > 0. Hence,
gH ⊆ supp(R1). Since g ∈ gH, g−1 ∈ 〈R1〉 and H = g−1gH ⊆ 〈R1〉. From
the assumption of the lemma, H ( 〈R1〉 and ` ≤ |G|/2.

By Lemma 28, each left H-coset contains at most 1/2 of the total proba-
bility mass. By ∆-uniformity, no coordinate of R1 can have value larger than
1
2` + ∆. By convexity of the squaring function (i.e., for any 0 ≤ c ≤ b ≤ a,
a2 + b2 ≤ (a + c)2 + (b − c)2), the norm ‖R1‖ is maximized when R1 is
concentrated on the fewest possible coordinates. Thus, concentrating R1 to
at most 2` coordinates each of size at most 1

2` +∆ can only increase `2-norm
of R1 (hence, decrease its rank). Thus,

‖R1‖ ≤

√
2` ·

(
1
2`

+ ∆
)2

≤

√
2` ·

(
1
2`

+
1

16`

)2

=

√
2` ·

(
9

16`

)2

=
1√
`
· 9
√

2
16

<
1√
`
· 4

5
.

However, ‖R2‖ ≥ 1√
`
, since supp(R2) ⊆ H and `2-norm is minimal when

the probability is spread uniformly over supp(R2). Thus, ‖R2‖ − ‖R1‖ ≥
1

5
√
`
≥ τ .

Part 3. Let H = 〈R2〉. By our assumption, R⊥H1 contains a coordinate of
absolute value > ∆. Hence, ‖R⊥H1 ‖ > ∆. Furthermore,

R1 ∗R2 = (R‖H1 +R⊥H1 ) ∗R2

= R
‖H
1 +R⊥H1 ∗R2

and, by Lemma 31,

‖R⊥H1 ∗R2‖ ≤ λ(R2) · ‖R⊥H1 ‖

≤
(

1− 1
cG

)
· ‖R⊥H1 ‖.

Clearly, ‖R1‖ ≥ 1/
√
|G|. Since ‖R⊥H1 ‖ ≥ ∆ ≥ ∆ · ‖R‖H1 + R⊥H1 ‖, by

Lemma 17,

‖R1‖ − ‖R1 ∗R2‖ ≥ ‖R‖H1 +R⊥H1 ‖ − ‖R‖H1 +R⊥H1 ∗R2‖ ≥
∆2

2 · cG ·
√
|G|

.

2

8 Proof of Key Convergence Lemma

The Key Convergence Lemma is an immediate corollary to the following
lemma after observing that one can add convolutions with the trivial distri-
bution fully concentrated on 1G arbitrarily. Such a distribution acts as the
identity for convolution.
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Lemma 32 Let 0 < e1, γ < 1 be reals and t > 0 be an integer. Let D0, R0 ∈
R
G be probability distributions with their natural decomposition D0 = R0+ε0.

For j ∈ {L,K}, i ∈ {1, . . . , t}, let Dj
i , R

j
i ∈ R

G be probability distributions
with their natural decomposition Dj

i = Rji + εji where ‖εji‖ ≤ e1. Let

D̂0 = D0 R̂0 = R0

D̂i = (DL
i ∗γ D̂i−1) ∗γ DK

i R̂i = (RLi ∗ R̂i−1) ∗RKi ,
εi = D̂i − R̂i

where i = 1, . . . , t.
Let Li =

〈
RLi
〉

and Ki =
〈
RKi
〉
, for i ∈ {1, . . . , t}. Let L =

〈⋃t
i=1 Li

〉
and K =

〈⋃t
i=1Ki

〉
. For any g ∈ G,

‖ε⊥(LgK)
t ‖ ≤ max

(
h|LgK|, (1− d|LgK|) · ‖ε

⊥(LgK)
0 ‖

)
and ∑

a∈LgK
εt(a) =

∑
a∈LgK

ε0(a),

where di and hi satisfy:

h0 = e1 + γ d0 = min(1/2, 1/cG)

hi = 1200·i4
di−1

· hi−1 di =
di−1

600 · i3

In the lemma we allow each of the γ-approximate convolution to be
different, although it has to satisfy the requirements on γ-approximate con-
volution.
Proof: We prove the lemma by induction on the size of LgH. W.l.o.g. we
assume that for each odd i ∈ {1, . . . , t}, DL

i (1G) = RLi (1G) = DK
i (1G) =

RKi (1G) = 1 and for each even i, DL
i (1G) = RLi (1G) = 1 or DK

i (1G) =
RKi (1G) = 1, since a distribution fully concentrated on 1G acts as identity
so it can be inserted into the chain of convolutions arbitrarily.

Base case: If |LgK| = 1 then ε
⊥(LgK)
t = 0 and there is nothing to prove.

Notice that Dj
i (1G) = Rji (1G) = 1 for all i and j.

Induction step: Let m = |LgK| > 1. We start by considering a special
case. Define K× =

〈⋃t−1
i=1 Ki

〉
and L× =

〈⋃t−1
i=1 Li

〉
. We consider the case

when L×gK× ( LgK. By our assumption either RLt or RKt is identity
operation so there are two symmetric possibilities, either LgK× ( LgK or
L×gK ( LgK. We will analyze the former case, the analysis of the latter
case is symmetric.

So consider, LgK× ( LgK. By Lemma 27, LgK can be partitioned into
parts (A1, A2, . . . , A`A), where each Ai = LgiK× for some gi ∈ G, and parts
(B1, B2, . . . , B`B ), where each Bi is a left Kt-coset.
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Denote

ε̃0 = ε
⊥(LgK)
0 ,

ε̃× = (εt−1)⊥(LgK), and

ε̃t = ε
⊥(LgK)
t .

Since DL
t (1G) = RLt (1G) = 1 by our assumption, D̂t = D̂t−1 ∗ DK

t and
R̂t = R̂t−1 ∗RKt .

Let β = ‖ε̃0‖ and α = β/(10 · m3/2). Depending on the size of α we
distinguish several cases.

Case 1) α > 60 ·m3/2(m · hm−1 + e1 + γ)/dm−1. In this case we claim that

‖ε̃t‖ ≤ (1− 2 · dm) · ‖ε̃0‖

Sub-case 1a) ‖ε̃0⊥(A1,A2,...,A`A
)‖ ≥ α. Then there exists i0 ∈ {1, . . . , `A}

such that ‖ε̃0⊥(Ai0
)‖ ≥ α/

√
`A ≥ 2hm−1. By induction hypothesis applied

to D̂t−1, R̂t−1 and each Ai = LgiK×,

‖ε̃×⊥(Ai0
)‖ ≤ (1− dm−1)‖ε̃0⊥(Ai0

)‖, and

‖ε̃×⊥(Ai)‖ ≤ ‖ε̃0⊥(Ai)‖+ hm−1

for all i 6= i0. Also

ε̃0 = ε̃0
‖(A1,A2,...,A`A

) + ε̃0
⊥(A1) + · · ·+ ε̃0

⊥(A`A
), and

ε̃× = ε̃×
‖(A1,A2,...,A`A

) + ε̃×
⊥(A1) + · · ·+ ε̃×

⊥(A`A
),

where the vectors on each right hand side are all pair-wise orthogonal, and
ε̃0
‖(A1,A2,...,A`A

) = ε̃×
‖(A1,A2,...,A`A

) by the induction hypothesis. By Lemma
17,

‖ε̃0‖ − ‖ε̃0 − ε̃0⊥(Ai0
) + ε̃×

⊥(Ai0
)‖ ≥ dm−1

200 ·m3
· ‖ε̃0‖.

Furthermore, by the repeated use of Lemma 18,

‖ε̃0‖ − ‖ε̃×‖ ≥
dm−1

200 ·m3
· ‖ε̃0‖ − (`A − 1)hm−1.

From the properties of ∗γ , for some εγ ∈ RG, where ‖εγ‖ ≤ γ and ε
‖Kt
γ = 0,

it holds

εt = εt−1 ∗DK
t + R̂t−1 ∗ εKt + εγ .

By Proposition 20 and Lemma 21,

ε̃t = ε̃× ∗DK
t + (R̂t−1 ∗ εKt )⊥(LgK) + ε⊥(LgK)

γ .
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Since ‖ε̃× ∗DK
t ‖ ≤ ‖ε̃×‖ and ‖R̂t−1 ∗ εKt ‖ ≤ ‖εKt ‖,

‖ε̃t‖ ≤ ‖ε̃0‖ −
dm−1

200 ·m3
· ‖ε̃0‖+ (`A − 1) · hm−1 + ‖R̂t−1 ∗ εKt ‖+ ‖εγ‖

≤ ‖ε̃0‖ −
dm−1

200 ·m3
· ‖ε̃0‖+m · hm−1 + e1 + γ.

Since β ≥ 600 ·m3(m · hm−1 + e1 + γ)/dm−1,

‖ε̃t‖ ≤ (1− 2
3
· dm−1

200 ·m3
) · ‖ε̃0‖

Sub-case 1b) ‖ε̃0⊥(A1,A2,...,A`A
)‖ < α. Then ‖ε̃0‖(A1,A2,...,A`A

)‖ >
√
β2 − α2 >

β − α, since 0 < α < β. By induction hypothesis, ε̃0‖(A1,A2,...,A`A
) =

ε̃×
‖(A1,A2,...,A`A

) and ‖ε̃×⊥(A1,A2,...,A`A
)‖ ≤ α + `Ahm−1 ≤ (3/2)α. Thus,

‖ε̃0‖/2 ≤ β−α ≤ ‖ε̃×‖ ≤ β+mhm−1. In particular, ‖ε̃×‖ ≤ β+ (1/2)α and
‖ε̃0‖/2 ≤ ‖ε̃×‖. By Lemma 19,

‖ε̃×⊥(B1,B2,...,B`B
)‖ ≥ β − α

2 ·m3/2
− (3/2)α

≥ 3α.

By Proposition 23,

‖ε̃×⊥(B1,B2,...,B`B
) ∗RKt ‖ ≤ λ(RKt ) · ‖ε̃×⊥(B1,B2,...,B`B

)‖.

Hence by Lemma 17,

‖ε̃× ∗RKt ‖ ≤

(
1− 1

2
·
(

3α
β + (1/2)α

)2

· (1− λ(RKt ))

)
· ‖ε̃×‖

≤
(

1− 1
32 ·m3

· 1
cG

)
· ‖ε̃×‖

≤ ‖ε̃×‖ −
1

64 ·m3
· 1
cG
· ‖ε̃0‖

≤ ‖ε̃0‖+mhm−1 −
1

64 ·m3
· 1
cG
· ‖ε̃0‖.

Since,

εt = εt−1 ∗RKt + D̂t−1 ∗ εKt + εγ .

By Proposition 20 and Lemma 21,

ε̃t = ε̃× ∗RKt + (D̂t−1 ∗ εKt )⊥(LgK) + ε⊥(LgK)
γ .

Since β ≥ 3 · 64 ·m3(m · hm−1 + e1 + γ)/dm−1,

‖ε̃t‖ ≤ ‖ε̃0‖+m · hm−1 −
1

64 ·m3
· 1
cG
· ‖ε̃0‖+ e1 + γ

≤ (1− 2
3
· 1

64 ·m3
· 1
cG

)‖ε̃0‖.
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Case 2) α ≤ 60 ·m3/2(m · hm−1 + e1 + γ)/dm−1. In this case we claim that

‖ε̃t‖ ≤ ‖ε̃0‖+mhm−1 + e1 + γ.

Again, by induction hypothesis applied to D̂t−1, R̂t−1 and each Ai = LgiK×

‖ε̃×‖ ≤ ‖ε̃0‖+ (`A − 1)hm−1.

Furthermore,

‖ε̃t‖ ≤ ‖ε̃×‖+ e1 + γ.

Thus, this case follows.

Cases 1 and 2 put together give that

‖ε̃0‖ > 600 ·m3 · d−1
m−1 · (m · hm−1 + e1 + γ) ⇒ ‖ε̃t‖ ≤ (1− 2 · dm) · ‖ε̃0‖

‖ε̃0‖ ≤ 600 ·m3 · d−1
m−1 · (m · hm−1 + e1 + γ) ⇒ ‖ε̃t‖ ≤ ‖ε̃0‖+mhm−1 + e1 + γ.

This is true when L×gK× ( LgK. In general case we partition the chain
of convolutions into blocks where each block except possibly for the last one
satisfy:

1. 〈
⋃
Li〉 g 〈

⋃
Ki〉 ( LgK, where the union is taken over all the groups

but the last one involved in the block, and

2. 〈
⋃
Li〉 g 〈

⋃
Ki〉 = LgK, where the union is taken over all the groups

involved in the block.

The last block of convolutions may not satisfy the second property in which
case we know by the induction hypothesis that the convolutions of the last
block increase `2-norm of the error at most by an additive term m · hm−1.

Thus we see that if ‖ε̃0‖ is large enough, the `2-norm of the error will
shrink by a factor of at least (1− 2 · dm) in each block. Once the `2-norm of
the error is below the threshold 600 ·m3 · d−1

m−1 · (m · hm−1 + e1 + γ) it may
increase in a given block by at most mhm−1 + e1 + γ but to no more than
600 ·m3 · d−1

m−1 · (m · hm−1 + e1 + γ) +mhm−1 + e1 + γ. The last incomplete
block may increase the error by the additional term m · hm−1.

Overall we see that in the general case

‖ε̃t‖ ≤ max ( (1− 2 · dm) · ‖ε̃0‖+m · hm−1,

600 ·m3 · d−1
m−1 · (m · hm−1 + e1 + γ) + 2m · hm−1 + e1 + γ)

The choice of hm shows that

hm =
1200 ·m4

dm−1
· hm−1

≥ 600 ·m3 · d−1
m−1 · (m · hm−1 + e1 + γ) + 2m · hm−1 + e1 + γ.
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Furthermore, if hm −m · hm−1 ≤ ‖ε̃0‖ then dm · ‖ε̃0‖ > m · hm−1. Hence,

‖ε̃t‖ ≤ max((1− dm) · ‖ε̃0‖, hm).

The preservation of
∑

a∈LgK εt(a) follows from the fact that each convolution
acts on cosets that always partition LgK and from Lemma 22. 2
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