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A simple mixing problem

Consider two tanks filled with brine, which are connected by
a pair of pipes. One pipe brings brine from the first tank to the
second tank at a given rate, while the second pipe carries brine
in the opposite direction at the same rate. Assuming that the
initial concentrations in both tanks are known and that we have
a perfect mixing in both tanks, find the concentrations in both
tanks after a given period of time.
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Mixing problems with many tanks

Most authors restrict themselves to mixing problems
involving two or three tanks arranged in various
configurations (cascade with brine flowing in a single
direction only, linear arrangement of tanks connected by
pairs of pipes, cyclic arrangement of tanks, etc.).
The problem leads to a linear system of differential
equations for the unknown concentrations, which is solved
by calculating the eigenvalues and eigenvectors of the
corresponding matrix.
With n tanks, there is a great variety of mixing problems.
Can we still solve the corresponding DEs analytically?
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Star arrangement of tanks (1)

T1

T2

T3

T4

T5

T6

T7

T8

Flow through each pipe: f gallons per unit of time.
The volume V in each tank remains constant.
xi(t) = concentration of salt in tank Ti at time t .

x ′1(t) = −(n − 1)f
x1(t)

V
+

n∑
i=2

f
xi(t)

V

x ′i (t) = f
x1(t)

V
− f

xi(t)
V

, 2 ≤ i ≤ n.
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Star arrangement of tanks (2)

Without loss of generality, we may assume that f = V .
Then x ′(t) = Ax(t), where

A =


−(n − 1) 1 · · · 1

1 −1 · · · 0
...

...
. . .

...
1 0 · · · −1

 .

det(A− λI) = Dn, where

Dk = det


−(n − 1)− λ 1 · · · 1

1 −1− λ · · · 0
...

...
. . .

...
1 0 · · · −1− λ

 =

= −(−1− λ)k−2 + (−1− λ)Dk−1, D1 = −(n − 1)− λ.
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Star arrangement of tanks (3)

Solution:
Dk = (−1− λ)k−2λ(k + λ)

The eigenvalues of A:
λ = 0 and λ = −n (simple)
λ = −1 (multiplicity n − 2)

Eigenvectors are easy to find. In particular, the eigenspace
corresponding to λ = 0 is spanned by (1, . . . ,1).

Corollary: Every solution approaches the state where all tanks
contain the same amount of salt (a globally asymptotically
stable equilibrium).
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Tanks in a row (1)

T1 T2 T3 T4 T5 T6 T7 T8

Flow through each pipe: f gallons per unit of time.
The volume V in each tank remains constant.
xi(t) = concentration of salt in tank Ti at time t .

x ′1(t) = −f
x1(t)

V
+ f

x2(t)
V

x ′i (t) = f
xi−1(t)

V
− 2f

xi(t)
V

+ f
xi+1(t)

V
, 2 ≤ i ≤ n − 1

x ′n(t) = −f
xn−1(t)

V
− f

xn(t)
V
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Tanks in a row (2)

Without loss of generality, we may assume that f = V .
Then x ′(t) = Ax(t), where

A =



−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1


.

Preliminary information:
All eigenvalues are real and contained in [−4,0].
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Tanks in a row (3)

det(A− λI) = (−1− λ)Dn−1 − Dn−2,

where

Dk = det



−2− λ 1 0 · · · 0 0
1 −2− λ 1 · · · 0 0
0 1 −2− λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −2− λ 1
0 0 0 · · · 1 −1− λ


=

= (−2− λ)Dk−1 − Dk−2, D1 = −1− λ, D0 = 1.

Solution:
Dk = cos(kγ) + cot(γ/2) sin(kγ),

where γ ∈ [0, π], cos γ = −(λ+ 2)/2, sin γ =

√
4−(λ+2)2

2 .
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Tanks in a row (4)

det(A− λI) = 2 cot
(γ

2

)
sin (nγ)

n distinct eigenvalues:

λk = −2 cos
kπ
n
− 2, k ∈ {1, . . . ,n}

The eigenspace corresponding to λn = 0 is spanned by
(1, . . . ,1), the remaining eigenvalues are negative.
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Tanks in a row (5)

Consider the BVP for the one-dimensional heat equation

∂f
∂t

(t , x) = k
∂2f
∂x2 (t , x), x ∈ [a,b],

∂f
∂x

(t ,a) =
∂f
∂x

(t ,b) = 0.

Discretize the spatial domain and replace second-order
derivatives by the second-order central differences to get

y ′0(t) .
=

k
(∆x)2 (−y0(t) + y1(t)),

y ′i (t) .
=

k
(∆x)2 (yi−1(t)− 2yi(t) + yi+1(t)), i ∈ {1, . . . ,n},

y ′n(t) .
=

k
(∆x)2 (yn−1(t)− yn(t)),

where yi(t) = f (t ,a + i∆x).
⇒ mixing problem for n tanks in a row
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Tanks in a circle (1)

T1

T2 T3

T4

T5

T6T7

T8

A =



−2 1 0 · · · 0 0 1
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
1 0 0 · · · 0 1 −2


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Tanks in a circle (2)

A is a circulant matrix with eigenvalues

λj = −2 + 2 cos(2πj/n), j ∈ {0, . . . ,n − 1}.

The eigenspace corresponding to λ0 = 0 is spanned by
(1, . . . ,1), the remaining eigenvalues are negative.

This type of mixing problem can be interpreted as the spatial
discretization of the one-dimensional heat equation on a circle.
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Qualitative analysis of a general mixing problem

For a general mixing problem, is it always true that every
solution approaches the state with all tanks containing the
same amount of salt?

1 All tanks hold the same constant volume V of brine;
consequently, the total amount of brine flowing into
a particular tank equals the total amount of brine flowing
out of the tank.

2 Each pipe connecting a pair of tanks transports the same
volume f of brine per unit of time. By a suitable choice of
time units, we can assume that f/V = 1.

3 The mixing problem is irreducible in the following sense:
The tanks cannot be divided into two disjoint nonempty
groups such that the pipes always lead between tanks
from the same group.
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Graph representation

The mixing problem can be represented by a directed
graph, which is connected and balanced, i.e., the indegree
deg−(v) of an arbitrary vertex v equals its outdegree
deg+(v).
Every balanced connected graph is strongly connected.

How does the corresponding matrix A look like? By the first
condition, the sum of each row of A is zero. By the second
condition, aij = 1 if there is a pipe transporting brine from the
i-th tank to the j-th tank, aii equals minus the number of pipes
originating in the i-th tank, and all remaining entries of A are
zero.
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Laplacian matrix

Given a directed graph G = (V ,E) with n vertices v1, . . . , vn,
the matrix L = {lij}ni,j=1 given by

lij =


deg+(vi) if i = j ,
−1 if i 6= j and (vi , vj) ∈ E ,
0 otherwise

(where deg+(v) stands for the outdegree of the vertex v ) is
known as the Laplacian matrix of G.

Observations:
L = −A
L has a zero eigenvalue with (1, . . . ,1) as the
corresponding eigenvector.
All remaining eigenvalues of L have positive real parts.

To finish the analysis, it is enough to show that the zero
eigenvalue is a simple one.
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Laplacian matrix eigenvalues

Lemma

If L is the Laplacian matrix of a balanced directed graph on
n vertices and x ∈ Rn is an arbitrary vector, then

xT Lx =
1
2

∑
(vi ,vj )∈E

(xi − xj)
2.

Theorem

The null space of the Laplacian matrix of a connected balanced
directed graph has dimension 1.

Theorem
For the Laplacian matrix of a connected balanced directed
graph, the zero eigenvalue is a simple one.
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