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On the rectangle D = [a, b] X [c, d] we consider the equation

’U,;Iz(t, "E) = p(t, w)u (T(t’ :Z}), /J,(t, :C)) + q(t7 :D)

> p,q: D — R integrable
> 7:D — [a,b], u: D — [c,d] measurable

1)



On the rectangle D = [a, b] X [c, d] we consider the equation

ugz(tr "E) = p(t, :z:)u (T(t’ :Z}), /J,(t, .’.C)) + q(t7 :D)

> p,q: D — R integrable
> 7:D — [a,b], u: D — [c,d] measurable

1)

Solution: A function u: D — R absolutely continuous on I in the sense of Carathéodory

satisfying equality (1) almost everywhere in D.



On the rectangle D = [a, b] X [c, d] we consider the equation

ui’m(t,fl?) :p(t,:v)u(r(t,w),/.z(t,:c)) —I—q(t,:l)) (1)

> p,q: D — R integrable
> 7:D — [a,b], u: D — [c,d] measurable

Solution: A function u: D — R absolutely continuous on I in the sense of Carathéodory
satisfying equality (1) almost everywhere in D.

We cannot pass between equation (1) and the wave equation

u(t, ) — upa(t,2) = B¢, 2)u(7(t,2), 4(t, 2)) + (2, 2).



Consider now, on the interval [a, b], the n-dimensional system of linear ordinary
differential equations
v = P(t)v + q(t),

()



Consider now, on the interval [a, b], the n-dimensional system of linear ordinary
differential equations
v = P(t)v + q(t),

It is well known that every solution v to system (2) admits the representation

v(t) = C(¢,to)v(to) +/ C(t,s)q(s)ds fort € [a,b],

to

where o € [a,b] and C is the Cauchy matrix of the system v’ = P(t)v, i.e., for every
to € [a,b], C(:,t0) is a fundamental matrix of the system v’ = P(t)v, which satisfies
C(to,to) = En.
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Consider now, on the interval [a, b], the n-dimensional system of linear ordinary
differential equations
v = P(t)v + q(t), (2)

It is well known that every solution v to system (2) admits the representation
t
v(t) = C(¢,to)v(to) +/ C(t,s)q(s)ds fort € [a,b],
to

where o € [a,b] and C is the Cauchy matrix of the system v’ = P(t)v, i.e., for every
to € [a,b], C(:,t0) is a fundamental matrix of the system v’ = P(t)v, which satisfies
C(to,to) = En.

Remark. If n = 1 then, for every tg € [a,b], C(,%0) is a solution to the problem
v' = P(t)v, v(to) = 1.
Indeed, we have
[ Py
C(t,s) =eJs for t,s € [a, b]

in this case.



|ule = p(t,2)u + q(t, 2) (1)

Every solution u to the equation (1) admits the representation
t

) = Zsla, Jula, ) + [ Zinls, (s, )t
a

T t F
+ / Z (@, )ty (a, m)dn + / / Ze2(5,m)q(s, m)dnds

for (t,z) € D, where Z; . are the Riemann functions of the equation u;, = p(¢, z)u.



| ute = p(t,2)u +g(t,2) (1)

Every solution u to the equation (1) admits the representation
t

) = Zsla, Jula, ) + [ Zinls, (s, )t
a

T t F
+ / Z (@, )ty (a, m)dn + / / Ze2(5,m)q(s, m)dnds

for (t,z) € D, where Z; . are the Riemann functions of the equation u;, = p(¢, z)u.

The Riemann function Zi, z, is defined as a solution to the Darboux problem
ug = p(t, z)u,

u(t,zo) =1 fort € [a,b], u(to,z) =1 forz € [c,d].




u(t,z) = Z,2(a,c)u(a,c) + / Zt,2(s, c)us(s, c)ds+

T t P
+ / Z (e, )ty (a, m)dn + / / Zeo(s,m)q(s, m)dnds

Proposition

Let

Zio(s,m) >0 fora<s<t<b c<n<z<d

Then the implication
w € AC(D),
wiy(t,z) > p(t, z)w(t, =) for a.e. (t,z) €D,
w(a,c) > 0,
wi(t,c) >0 for a.e. t € [a,b],
wy(a,z) >0 for a.e. z € [c,d]
holds.

= w(t,z) >0 for (t,z) €D




Let (to,zo) € D. On [a,to] X [c, zo] we consider the Darboux problem

Utz = —ku (k>0)
u(t,zo) =1 fort € [a,b], u(to,z) =1 for z € [c,d]

3)
(4)




Let (to,zo) € D. On [a,to] X [c, zo] we consider the Darboux problem

Ute = —ku (k>0) (3)
u(t,zo) =1 fort € [a,b), u(to,z) =1 forz € [c,d] (4)

If u is looked for in the form u(t,z) = v(z), where z = /(to — t)(zo — z), then (3), (4)

is reduced to

V'(2) + % V'(z) +4kv(z) =0,  w(0) =1 (5)

on the interval [0, \/(to —a)(zo — c)], which has a solution
v(z) = Jo (2\/%2).




Let (to,zo) € D. On [a,to] X [c, zo] we consider the Darboux problem

Utz = —ku (k>0)
u(t,zo) =1 fort € [a,b], u(to,z) =1 for z € [c,d]

3)
(4)

The Riemann function Z, 2, of the equation (3) satisfies

Zog oo (£, 2) = Jo (2 k(to — £)(zo0 — z)) for (¢,2) € [a, to] X [c, zo]-



Let (to,zo) € D. On [a,to] X [c, zo] we consider the Darboux problem

Utz = —ku (k>0) (3)
u(t,zo) =1 fort € [a,b], u(to,z) =1 forz € [c,d] (4)

The Riemann function Z, 2, of the equation (3) satisfies
Bromo(t,2) = Jo (2v/k(to — (e0 —2) ) for (t,2) € [a, o] X [c, .

Therefore, the condition (%) holds, i.e.,

Zeo(s,m) >0 fora<s<t<b c<n<z<d, (+)
if and only if
2/k(b—a)(d— ) < jo,
i.e., )

Jo
ks 4(b—a)(d—c)’



ugz(tr :ZJ) = p(t, :z:)u (T(t’ (E), /.L(t, :E)) + q(t’ (E)

Definition

(1)

We say that a theorem on differential inequalities (maximum principle) holds for the

equation (1) if the implication

w € AC(D), )
wiy(t,z) > p(t,a:)w(r(t,x),y(t,a:)) for a.e. (t,z) € D,
w(a,c) >0, =

wi(t,c) > 0 for a.e. t € [a,b],

wo(a,z) >0 for a.e. z € [c,d]
holds.

w(t,z) >0
for (¢,z) €D




uilz(trw) :p(t,w)u(T(t,w),/.L(t,a:)) +q(t’w) (1)

Definition

We say that a theorem on differential inequalities (maximum principle) holds for the
equation (1) if the implication

w € AC(D), )
Wl (t,2) > p(t, 2w (r(t, 2), w(t,2)) for a.e. (4,2) € D,
w(t,z) >0
-
2 E) 21 for (¢,z) €D

wi(t,c) > 0 for a.e. t € [a,b],

wo(a,z) >0 for a.e. z € [c,d]

holds.

In what follows we restrict our-self to the case where

p(t,z) <0 fora.e (t,z) € D. (5)



ue(t, ) = p(t, 2)u(7(t, ), u(t,2)) +q(t, z) 1)

Proposition

Let maximum principle holds for equation (1) with non-positive p then the inequalities
T(t,z) <t, pwp(t,z)<z fora.e (t,z)€D. (6)

hold, i.e., equation (1) is delayed in both arguments.




ue(t, ) = p(t, 2)u(7(t, ), u(t,2)) +q(t, z) 1)

Proposition

Let maximum principle holds for equation (1) with non-positive p then the inequalities
T(t,z) <t, pwp(t,z)<z fora.e (t,z)€D. (6)

hold, i.e., equation (1) is delayed in both arguments.

Theorem 1

Let conditions (5) and (6) hold. Then maximum principle holds for equation (1) provided
that there exists a function v € C(D) N ACwc([a, b] X[c, d[) satisfying the inequalities

y(t,z) >0 for (¢, z) € [a,b] X[c,d],
Ve (t, z) < p(t,m)'y(r(t,m),p(t,m)) for a.e. (t,z) €D,
Yi(t,c) <0 fora.e. t € [a,b],
vs(a,z) <0 fora.e. z € [c,d]




u;lz(tr .’E) = p(t, z)u (T(t’ :l:), /J,(t, :E)) + q(t’ w)

Corollary 1
Let conditions (5) and (6) hold and

//D lp(t, z)|dtdz < 1.

Then maximum principle holds for equation (1).

(1)

Remark. The number 1 in Corollary 1 is optimal, in general. A counter-example is
constructed with
7(¢,z) = a, u(t,z) =c.




u;lz(trx) :p(t,z)u(r(t,:v),u(t,a:)) +q(t’w) (1)

Corollary 1
Let conditions (5) and (6) hold and

//D lp(t, z)|dtdz < 1.

Then maximum principle holds for equation (1).

Remark. The number 1 in Corollary 1 is optimal, in general. A counter-example is
constructed with

7(¢,z) = a, u(t,z) =c.
Proposition

Let 7(¢t,z) =¢t, u(t,z) =z, p(t,z) = k < 0. Then maximum principle holds for equation
(1) if and only if

)
k|(b— a)(d - c) < JZO ~ 1.4458.




uty(t,z) = p(t, z)u(7(t, 2), u(t, ©)) +q(t, z)

Jv . ..the first positive zero of the Bessel function J, (v > —1)
E,(2):=2z""J,(z) forz>0

ko El’+1(jl’)
v =
EV+1(0)

(1)



ue(t, ) = p(t, 2)u(r(t ), u(t,2)) +q(t,2) (1)

Corollary 2
Let conditions (5) and (6) hold and there exist numbers a € [0, 1[, B € [0, @] such that
the inequalities

p(¢, z)| < b—a)(d—0)’

B 72a
(E'_a (z[T(t, z), a:]) —E_, (z[t, :v])) lp(t, z)| < 5 m E,_. (Z[T(t, z), :c]),

<Ea (z[t,z]) — z[t, p(t, )] >|p(t )| < — (b— i)_(‘:i_ 3 Bi_o (Z[T(t,(E),(E])

are satisfied a.e. in D, where

Alé, @] := % % for (¢,z) € D.

Then maximum principle holds for equation (1).




uie(t, ) = p(t, 2)u(7(t ), u(t,2)) +q(t,z) (1)

Corollary 3

Let conditions (5) and (6) hold and there exist numbers a € [0,1[, B € [0, @] such that
the inequalities

p(t, )| < 1b—a)(d—0)’

(z —c)(t—7(t,2))|p(t,z)| < B as

(t - a’) (:I: - .U‘(tia:)) |p(t,$)| S (CY - ﬂ)]ia

are satisfied a.e. in D. Then maximum principle holds for equation (1).




uie(t, ) = p(t, 2)u(7(t ), u(t,2)) +q(t,z) (1)

Corollary 3

Let conditions (5) and (6) hold and there exist numbers a € [0, 1[, B € [0, @] such that
the inequalities

p(t, )| < 1b—a)(d—0)’

(z —c)(t—7(t,2))|p(t,z)| < B as

(t - a’) (:I: - ,U.(t,Z)) |p(t1$)| S (Ol - ﬂ)]ia

are satisfied a.e. in D. Then maximum principle holds for equation (1).

Remark. The numb(.ar W in.Corollaries 2 and 3 is optimal, in general.
A counter-example is constructed with

rt,e)=t,  ulte)=e  plte) =k <0,
where we can choose o = 8 = 0 and we know that the inequality

-2

m is sufficient and necessary.



u;’m(t,iﬂ) :p(t,m)u(T(t,a:),u(t,:c)) +q(t:$) (1)

Corollary 2

Let conditions (5) and (6) hold and there exist numbers a € [0, 1[, S € [0, @] such that
the inequalities

iia
lp(t, z)| < Ab—a)d—0)"

Z|\T z),T — V4 T T éﬁia 1 z T
<E0¢( [ (t: )1 ]) E*a( [t1 ]))'p(t: )| S 2 (b—a)(d—C)Eia( [t1 ]))

(E'_a (z[t,a:]) — z[t, u(t, )] )|p(t z)| < (b— i;&_ 39 EBi_o (z[t,z])

are satisfied a. e. in D, where

z[t, z] = ]_Ta % for (t,z) € D.

Then maximum principle holds for equation (1).




Sketch of the proof of Corollary 2

We put
v(t,z) = E_qo (z[t,:c]) for (t,z) € D
_Ja [(t—a)(z—c)
Al = Va0
and apply
Theorem 1

Let conditions (5) and (6) hold. Then maximum principle holds for equation (1) provided
that there exists a function v € C(D) N ACwc([a, b] X[c, d]) satisfying the inequalities

y(t,z) >0 for (t,z) € [a,b] X[c,d],
Viw(t, ) < p(t,a:)'y(r(t,a:),p(t,z)) for a.e. (¢,z) € D,
7i(t,c) <0 fora.e. t€ [a,b],
ve(a,z) <0 fora.e. z € [c,d]




We put

v(t,z) = E_qo (z[t,a:]) for (t,z) €D
_J-a [(t—a)(z—0)
2ol =S\ b a)d—o

(s)+ = Jm(s)+( —"‘—2) J-a(s) =0

DA



Sketch of the proof of Corollary 2

We put

v(t,z) = E_qo (z[t,:c]) for (t,z) € D

(t—a)(z —c)

e
2ol =S\ b a)d—o

Tlals) 4 0 als) + (1 - “) Ja(s)=0

1—-2«a

E" (s)+ E (s)+ E_a(s)=0



Sketch of the proof of Corollary 2

We put

v(t,z) = E_qo (z[t,:c]) for (t,z) € D

p m':j;a (t—a)(z —c)
el =5\ eoa)a—o

(s)+ - Ja(s)+< °’2)J_a(s):o

1—-2«a

E" (s)+ E (s)+ E_a(s)=0

j_?d )'y(t ,T) + 'B "/t(t z)+ %%’2@"@)

Veo(t, ) = W EDCED)



Sketch of the proof of Corollary 2

We put

v(t,z) = E_qo (z[t,:c]) for (t,z) € D

_Ja [(t=a)lz=0)
2ol =S\ b a)d—o

7" (s) + % T o(s) + ( °’2) J_a(s) =0

1—-2«a

E" (s)+ E (s)+ E_a(s)=0

Ly 1ta) o) + o)

C4(b— a)a t

" _
Ytz (tr :E) - (d

We need to show that

Yio(t,2) < p(t,2)7(7(t, 2), u(t, 2))



Yalts) = — g 69 + Eaitn) + 2o s)

Vio(t,2) < p(t,2)7 (7(t, 2), u(t, 2))

v(t,z) >0 for every (t,z) € D, (¢,z) # (b,d),
7Ye(t,z) <0 for every (¢, z) €]a,b] x [c,d],
Y=(t,z) <0 for every (¢,z) € [a,b]x]c,d],

Yiw(t,z) <0 for every (¢,z) €]a,b] x ¢, d[



2
Lo ate)+ L it2)+ LAt )

4(b—a)

Vio(t,2) < p(t,2)7 (7(t, 2), u(t, 2))

0 for every (t,z) € D, (¢,z) # (b,d),
t,z) €la,b] x [¢,d],
t,z) € [a,b]x ]c, d],

v(t,
7t (
Ya(

’Ytz(t: T

o~
8
IN V

, 0 for every

[
IN

, T 0 for every

) @,
) @,
) (t,
) < t,

0 for every (t,z) €]a,b] x ], d[

v(r(t,2), u(t,2)) =(t,2) - / Ye(s,z)ds — ] 71,(t,n)dn+/t ]72’7,(8,n)dnds

7(t,2) w(tz) 7(t,2) p(t,e)

t T

<a(te) - / Ys(s, z)ds — / Va(t, m)dn

7(t,2) w(t,z)



R CORE R AU R R A o

Veo(t, ) = Tab—a)d—0)

Vio(t,2) < p(t,2)7 (7(t, 2), u(t, 2))

v(t,z) >0 for every (t,z) € D, (¢,z) # (b,d),
Y:(t, ) <0 for every (¢,z) €]a,b] x [, d],
Y=(t,z) <0 for every (t,z) € [a,b]X ]c,d],

Yiz(t,z) <0 for every (t,z) €la,b] x e, d]

v(r(t,2), u(t,2)) =(t,2) - / Ye(s,z)ds — ] 71,(t,n)dn+/t ]72’7,(8,n)dnds

() pte) T(t2) u(te)
t T
<9(t,z) - / Yo(s,z)ds — / Yn(t, m)dn
T(t,z) w(t,z)

—rtta) - ete)ite) [ s ueia) [

T(t,z) p(t,z)

dn
Y(t,n)



Vo (t,2) < p(t,2)7(7(t, 2), u(t, 2))

f
Jia
lp(t, z)| < ab—a)d—0

t

1p(t,2)| o(t, 2) /

r(te) PS5

“ dn a—pB
relvee) [ et <o




Vo (t,2) < p(t,2)7(7(t, 2), u(t, 2))

f
Jia
lp(t, z)| < ab—a)d—0

t

1p(t,2)| o(t, 2) /

r(te) PS5

“ dn a—pB
relvee) [ et <o




