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1. INTRODUCTION

In modelling the motion of a rigid plate immersing in a Newtonian fluid, Torvik and

Bagley (1984) considered the fractional differential equation

u′′(t) + AD
3
2 u(t) = au(t) + ϕ(t), A, a ∈ R, A 6= 0, (1)

subject to the initial homogeneous conditions

u(0) = 0, u′(0) = 0, (2)

where

D
3
2 u(t) =

1

Γ( 1
2
)

d2

dt2

Z t

0

(t − s)−
1
2 u(s) ds

is the Riemann-Liouville fractional derivative of order 3
2
.

In the literature equation (1) is called the Bagley-Torvik equation.

Numerical solution of problem (1), (2) was given by Podlubny (1999), analytical solutions

by Kilbas, Srivastava, Trujillo (2006), Ray, Bera (2005).
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Numerical solutions of the problem

u′′(t) + AcDαu(t) = au(t) + ϕ(t),

u(0) = y0, u′(0) = y1,

cDαu(t) =
1

Γ(2− α)

d2

dt2

Z t

0

(t − s)1−α(u(s)− u(0)− u′(0)s)ds, α ∈ (1, 2),

(Caputo fractional derivative of order α)

were discussed for α = 3
2

by Cenesiz, Keskin, Kurnaz (2010) and by Diethelm, Ford

(2002), and by Edwards, Ford, Simpson (2002) for α ∈ (1, 2). Applying the Adomian

decomposition method, analytical solutions of the above problem were obtained by

Deftardar-Gejji, Jafari (2005) for α ∈ (1, 2).

Analytical and numerical solutions of the boundary value problem

u′′(t) + AcD
3
2 u(t) = au(t) + ϕ(t),

u(0) = y0, y(T ) = y1.

were discussed by Al-Mdallal, Syam, Anwar (2010).

Wang, Wang (2010) investigated general solutions of the equations

u′′(t) + AcD
3
2 u(t) + u(t) = 0, u′′(t) + AD

3
2 u(t) + u(t) = 0.
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Existence and uniqueness results for the generalized Bagley-Torvik fractional differential

equation

u′′(t) + AcDαu(t) = f (t, u(t), cDµu(t), u′(t)), A ∈ R \ {0},

subject to the boundary conditions

u′(0) = 0, u(T ) + au′(T ) = 0, a ∈ R,

where α ∈ (1, 2), µ ∈ (0, 1), f ∈ Car([0,T ]× R3) were given by S.S. (2012).

Note that

cDαu(t) =
1

Γ(2− α)

d2

dt2

Z t

0

(t − s)1−α(u(s)− u(0)− u′(0)s)ds, α ∈ (1, 2),

cDµu(t) =
1

Γ(1− µ)

d

dt

Z t

0

(t − s)−µ(u(s)− u(0)) ds, µ ∈ (0, 1).
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2. PRELIMINARIES

The Riemann-Liouville fractional integral I γv of v : [0,T ] → R of order γ > 0 is defined

as

I γv(t) =
1

Γ(γ)

Z t

0

(t − s)γ−1v(s) ds

Properties of fractional integral:

I γ : C [0,T ] → C [0,T ], I γ : L1[0,T ] → L1[0,T ], γ ∈ (0, 1),

I γ : AC [0, 1] → AC [0, 1], γ ∈ (0, 1),

I γ : L1[0,T ] → AC [0,T ], γ ∈ [1, 2),

Iβ I γv(t) = Iβ+γv(t) for t ∈ [0,T ], where v ∈ L1[0,T ], β, γ > 0, β + γ ≥ 1

(semigroup property)

d
dt

I γ+1v(t) = I γv(t) for a.e. t ∈ [0,T ], where v ∈ L1[0,T ] and γ > 0.
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LEMMA 1. Let w ∈ C [0, 1], b ∈ C 1[0,T ], α ∈ (1, 2) and let ϕ1 ∈ AC [0, 1] be

such that ϕ1(0) = 0. Suppose that

w(t) = b(t)I 2−αw(t) + ϕ1(t) for t ∈ [0, 1].

Then for each n ∈ N there exists ϕn ∈ AC [0, 1] such that ϕn(0) = 0 and the

equality

w(t) = bn(t)I n(2−α)w(t) + ϕn(t) for t ∈ [0, 1]

holds.

COROLLARY. Let the assumptions of Lemma 1 hold. Then w ∈ AC [0, 1].

Proof. Choose n ∈ N such that n(2− α) > 2. Then I n(2−α)w = I 1I n(2−α)−1w ∈ C 1[0, 1].

Since w(t) = bn(t)I n(2−α)w(t)| {z }
C1[0,T ]

+ ϕn(t)| {z }
AC [0,T ]

for t ∈ [0, 1], we have w ∈ AC [0, 1].
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The following result is a generalization of the Gronwall lemma for integrals with singular

kernels (Henry (1989)).

LEMMA 2. Let 0 < γ < 1, b ∈ L1[0,T ] be nonnegative and let K be a positive

constant. Suppose w ∈ L1[0,T ] is nonnegative and

w(t) ≤ b(t) + K

∫ t

0

(t − s)γ−1w(s) ds for a.e. t ∈ [0,T ].

Then

w(t) ≤ b(t) + LK

∫ t

0

(t − s)γ−1b(s) ds for a.e. t ∈ [0,T ],

where L = L(γ) is a positive constant.

L = KΓ(γ)Eγγ(KΓ(γ)max{1,T}),

Eβγ(x) =
∞X
n=0

xn

Γ(nβ + γ)
Mittag-Leffler function
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Fractional derivatives

The Caputo fractional derivative cDβv of order β > 0, β 6∈ N, of x : [0,T ] → R is defined

by

cDβx(t) =
1

Γ(n − β)

dn

dtn

Z t

0

(t − s)n−β−1

 
x(s)−

n−1X
k=0

x (k)(0)

k!
sk

!
ds,

where n = [β] + 1 and where [β] means the integral part of β.

The Riemann-Liouville fractional derivative Dβv of v : [0,T ] → R of order β > 0 is given

by

Dβx(t) =
1

Γ(n − β)

dn

dtn

Z t

0

(t − s)n−β−1x(s) ds

„
=

dn

dtn
I n−βx(t)

«
,

where n = [β] + 1.
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3. FORMULATION OF OUR PROBLEM

Let A be the set of functionals φ : C [0, 1] → R which are

(i) continuous,

(ii) limc∈R, c→±∞ φ(c) = ±∞,

(We identify the set of constant functions on [0, 1] with R)

(iii) there exists a positive constant L = L(φ) such that

x ∈ C [0, 1], |x(t)| > L for t ∈ [0, 1] ⇒ φ(x) 6= 0.

(φ ∈ A, φ(x) = 0 for some x ∈ C [0, 1] ⇒ ∃ξ ∈ [0, 1] : |x(ξ)| ≤ L)

EXAMPLE. Let p, gj ∈ C(R), p be bounded, limv→±∞ gj(v) = ±∞, j = 0, 1, . . . , n, and

let 0 ≤ t1 < t2 < · · · < tn ≤ 1. Then the functionals

φ1(x) = g0

„
max
t∈[0,1]

x(t)

«
, φ2(x) = g0

„
min

t∈[0,1]
x(t)

«
,

φ3(x) = p(‖x‖) +

Z 1

0

g0(x(t))dt, φ4(x) =
nX

j=1

gj(x(tj))

belong to the set A.
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LEMMA 3. Let φ ∈ A. Then there exists a positive constant L = L(φ) such that

the estimate |c | < L holds for each λ > 0 and each solution c ∈ R of the equation

λφ(c)− φ(−c) = 0.
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We investigate the Bagley-Torvik fractional functional differential equation

u′′(t) + a(t)cDαu(t) = (Fu)(t) (3)

together with the nonlocal boundary conditions

u′(0) = 0, φ(u) = 0, (φ ∈ A). (4)

Here α ∈ (1, 2), cD is the Caputo fractional derivative, a ∈ C 1[0, 1] and

F : C 1[0, 1] → L1[0, 1] is continuous.

Note that

cDαu(t) =
1

Γ(2− α)

d2

dt2

Z t

0

(t − s)1−α(u(s)− u(0)− u′(0)s)ds, α ∈ (1, 2)

We say that a function u ∈ AC 1[0, 1] is a solution of problem (3), (4) if u satisfies (4)

and (3) holds for a.e. t ∈ [0, 1].
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We work with the following conditions on the function a and the operator F in (3).

(H1) a ∈ C 1[0, 1] and a(t) 6= 0 for t ∈ [0, 1],

(H2) F : C 1[0, 1] → L1[0, 1] is continuous and for a.e. t ∈ [0, 1] and all x ∈ C 1[0, 1], the

estimate

|(Fx)(t)| ≤ ϕ(t)ω(‖x‖+ ‖x ′‖)

holds, where ϕ ∈ L1[0, 1] and ω ∈ C [0,∞) are nonnegative, ω is nondecreasing and

lim
v→∞

ω(v)

v
= 0.
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4. OPERATORS

In order to prove the solvability of problem (3), (4), we define an operator F acting on

[0, 1]× C 1[0, 1]× R by the formula

F(λ, x , c) = (F1(λ, x , c), F2(x , c)) ,

where

F1(λ, x , c)(t) = c +

Z t

0

(Qx)(s) ds + λ

Z t

0

(t − s)(Fx)(s) ds,

F2(x , c) = c − φ(x),

and

(Qx)(t) = −a(t)I 2−αx ′(t) +

Z t

0

a′(s)I 2−αx ′(s)ds. (5)

Here the function a and the operator F are from equation (3) and φ ∈ A is from the

boundary conditions (4)
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Properties of Q, F1 and F2

Let (H1) hold. Then Q : C 1[0, 1] → C [0, 1] and Q is completely continuous.

Let (H1) and (H2) hold. Then F1 : [0, 1]× C 1[0, 1]× R → C 1[0, 1] and F1 is

completely continuous.

Let φ ∈ A. Then F2 : C 1[0, 1]× R → R and F2 is completely continuous.

F1(λ, x , c)(t) = c +

Z t

0

(Qx)(s) ds + λ

Z t

0

(t − s)(Fx)(s) ds,

F2(x , c) = c − φ(x),

(Qx)(t) = −a(t)I 2−αx ′(t) +

Z t

0

a′(s)I 2−αx ′(s) ds.
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LEMMA 4. Let (H1) and (H2) hold. Then

(a) F : [0, 1]× C 1[0, 1]× R → C 1[0, 1]× R and F is completely continuous,

(b) if (x , c) is a fixed point of F(1, ·, ·), then x is a solution of problem (3), (4)

and c = x(0).

Proof.

(b) Let (x , c) be a fixed point of F(1, ·, ·). Then x ∈ C 1[0, 1],

x(t) = c +

Z t

0

(Qx)(s) ds +

Z t

0

(t − s)(Fx)(s)ds, t ∈ [0, 1], (6)

and φ(x) = 0. Differentiating (6) gives

x ′(t) = −a(t)I 2−αx ′(t) +

Z t

0

a′(s)I 2−αx ′(s)ds +

Z t

0

(Fx)(s) ds, t ∈ [0, 1]. (7)

Therefore, x ′(0) = 0, and so x satisfies the boundary conditions (4). SinceR t

0
a′(s)I 2−αx ′(s) ds ∈ C 1[0, 1] and

R t

0
(Fx)(s)ds ∈ AC [0, 1], (7) shows that

x ′(t) = −a(t)I 2−αx ′(t) + ψ(t), t ∈ [0, 1],

where ψ ∈ AC [0, 1] and ψ(0) = 0. Hence, by Corollary, x ′ ∈ AC [0, 1]. It follows from the

R.-L. factional integrals that I 2−αx ′ ∈ AC [0, 1].
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Next we have

d

dt

»
1

a(t)

„
−x ′(t) +

Z t

0

a′(s)I 2−αx ′(s) ds +

Z t

0

(Fx)(s) ds

«–
=

(Fx)(t)− x ′′(t)

a(t)
∈ L1[0, 1] for a.e. t ∈ [0, 1].

Since, by (7), the equality

I 2−αx ′(t) =
1

a(t)

„
−x ′(t) +

Z t

0

a′(s)I 2−αx ′(s) ds +

Z t

0

(Fx)(s)ds

«
holds for t ∈ [0, 1], we have

d

dt
I 2−αx ′(t) =

(Fx)(t)− x ′′(t)

a(t)
for a.e. t ∈ [0, 1].

Consequently,

x ′′(t) + a(t)
d

dt
I 2−αx ′(t)| {z }

cDαx(t)

= (Fx)(t) for a.e. t ∈ [0, 1].
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Since I 2−αx ′(t) = I 3−αx ′′(t) = I 1I 2−αx ′′(t), we have d
dt

I 2−αx ′(t) = I 2−αx ′′(t) a.e. on

[0, 1]. Since x ′′ ∈ L1[0, 1], it follows that cDαx(t) = I 2−αx ′′(t) for a.e. t ∈ [0, 1]. Hence
d
dt

I 2−αx ′(t) = cDαx(t) a.e. on [0, 1], and therefore x is a solution of (3). As a result x is

a solution of problem (3), (4), and (6) gives c = x(0).
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LEMMA 5. Let (H1) and (H2) hold. Then there exists a positive constant S such that

for each λ ∈ [0, 1] and each fixed point (x , c) of the operator F(λ, ·, ·) the estimate

‖x‖ < S , ‖x ′‖ < S , |c| < S

holds.
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5. EXISTENCE RESULTS

We need the following result (Deimling (1985)).

LEMMA 6. Let X be a Banach space and let Ω ⊂ X be open bounded and symmetric

with respect to 0 ∈ Ω. Let F : Ω → X be a compact operator and G = I − F , where I
is the identical operator on X . If x 6= Fx for x ∈ ∂Ω and G(−x) 6= λG(x) on ∂Ω for all

λ ≥ 1, then deg(I − F ,Ω, 0) 6= 0.
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THEOREM 1. Let (H1) and (H2) hold. Then problem (3), (4) has at least one solution.

Proof. We have to show that F(1, ·, ·) has a fixed point (x , c). Then x is a solution of

problem (3), (4) and c = x(0). Let S be a positive constant from Lemma 5 and let

L = L(φ) be from Lemma 3 (note that |c| < L holds for each λ > 0 and each solution

c ∈ R of λφ(c)− φ(−c) = 0). Let W = max{S , L} and

Ω = {(x , c) ∈ C 1[0, 1]× R : ‖x‖ < W , ‖x ′‖ < W , |c| < W }.

We prove by Lemma 6 that deg{I − F(0, ·, ·),Ω, 0} 6= 0, where I is the identical

operator on C 1[0, 1]× R. Note that

G(x , c) = (x , c)−F(0, x , c) =

„
x(t)− c −

Z t

0

(Qx)(s) ds, φ(x)

«
.

Let (x , c) be a fixed point of F(λ, ·, ·) for some λ ∈ [0, 1]. Then, by Lemma 5,

(x , c) 6∈ ∂Ω, and therefore, by the homotopy property,

deg(I − F(1, ·, ·),Ω, 0) = deg(I − F(0, ·, ·),Ω, 0). Hence deg(I − F(1, ·, ·),Ω, 0) 6= 0.

The last relation implies that F(1, ·, ·),Ω, 0) has a fixed point.
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EXAMPLE. Let ϕ1, ϕ2 ∈ L1[0, 1], h ∈ C [0,∞), p ∈ C(R), limv→∞
h(v)
v

= 0 and

lim|v|→∞
p(v)
v

= 0. Define an operator F : C 1[0, 1] → L1[0, 1] by

(Fx)(t) = ϕ1(t)

„
h(‖x ′‖) +

Z t

0

p(x(s))ds

«
+ ϕ2(t).

Then F satisfies condition (H2). To check it we take ϕ(t) = |ϕ1(t)|+ |ϕ2(t)| and

ω(v) = h̃(v) + p̃(v), where h̃(v) = max{h(ν) : 0 ≤ ν ≤ v}, p̃(v) = max{p(ν) : |ν| ≤ v},
v ∈ [0,∞).
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The special case of (3) is the fractional differential equation

u′′(t) + a(t)cDαu(t) = f (t, u(t), cDγu(t), u′(t)), (8)

where α ∈ (1, 2), γ ∈ (0, 1) and f satisfies the condition

(H3) f ∈ Car([0, 1]× R3) and for a.e. t ∈ [0, 1] and all (x , y , z) ∈ R3 the estimate

|f (t, x , y , z)| ≤ ϕ(t)ρ(|x |+ |y |+ |z |)

holds, where ϕ ∈ L1[0, 1] and ρ ∈ C [0,∞) are nonegative, ρ is nondecreasing and

limv→∞
ρ(v)

v
= 0.
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The following theorem gives an existence result for problem (8), (4).

THEOREM 2. Let (H1) and (H3) hold. Then problem (8), (4) has at least one solution.

Proof. Let F be an operator acting on C 1[0, 1] and given by

(Fx)(t) = f (t, x(t), cDγx(t), x ′(t)).

F satisfies condition (H2) for ω(v) = ρ
“

2v
Γ(2−γ)

”
. The solvability of problem (8), (4)

follows from Theorem 1.
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6. UNIQUENESS RESULTS

Let B be the set all functionals φ : C [0, 1] → R which are

(i) continuous,

(ii) increasing, that is,

x , y ∈ C [0, 1] x(t) < y(t) for t ∈ [0, 1] ⇒ φ(x) < φ(y).

EXAMPLE. Let gj ∈ C(R) be increasing (j = 0, 1, . . . , n), and let

0 ≤ t0 ≤ t1 < · · · < tn ≤ 1. Then the functionals

φ1(x) = g0

„
max
t∈[0,1]

x(t)

«
, φ2(x) = g0

„
min

t∈[0,1]
x(t)

«
,

φ3(x) =

Z 1

0

g0(x(t))dt, φ4(x) =
nX

j=1

gj(x(tj))

belong to B.
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We discuss equation (8), where f (t, x , y , z) = ϕ(t)p(t, x , y , z), that is, the equation

u′′(t) + a(t)cDαu(t) = ϕ(t)p(t, u(t), cDγu(t), u′(t)), (9)

where α ∈ (1, 2), γ ∈ (0, 1). Together with (9) the boundary conditions

u′(0) = 0, φ(u) = 0, (φ ∈ B) (10)

and

u′(0) = 0, φ(u) = 0, (φ ∈ A ∩ B) (11)

equation are investigated.
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u′′(t) + a(t)cDαu(t) = ϕ(t)p(t, u(t), cDγu(t), u′(t))

THEOREM 3. Let

(S1) a ∈ C 1[0, 1], ϕ ∈ L1[0, 1] are such that a < 0, a′ ≥ 0 on [0, 1] and ϕ > 0 a.e. on

[0, 1],

(S2) p ∈ C([0, 1]× R3) and p(t, x , y , z) is increasing in the variable x and nondecreasing

in the variables y and z,

(S3) the exists κ > 0 such that for each ρ ∈ R the estimate

|p(t, ρ+ x1, y1, z1)− p(t, ρ+ x2, y2, z2)| ≤ kρ(|x1 − x2|+ |y1 − y2|+ |z1 − z2|)

holds for xj , yj , zj ∈ [−κ, κ], where kρ ∈ C [0, 6κ], kρ is nondecreasing and

lim sup
v→0+

kρ(v)

v
<∞,

hold. Then problem (9), (10) has at most one solution.
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EXAMPLE. Let q1 ∈ C 1(R), q2, q3 ∈ C(R) ∩ C 1[−1, 1], q1 be increasing and q2, q3 be

nondecreasing. Let pj ∈ C([0, 1]× R2) (j = 1, 2, 3) be positive and bounded. Then the

function

p(t, x , y , z) = p1(t, y , z)q1(x) + p2(t, x , z)q2(y) + p3(t, x , y)q3(z)

satisfies conditions (S2) and (S3) with κ = 1.
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THEOREM 4. Let (S1)− (S3) and

(S4) for t ∈ [0, 1] and (x , y , z) ∈ R3 the estimate

|p(t, x , y , z)| ≤ h(|x |+ |y |+ |z |)

is fulfilled, where h ∈ C [0,∞), h is nondecreasing and

lim
v→∞

h(v)

v
= 0.

hold. Then problem (9), (11) has a unique solution.

EXAMPLE. Let q1 ∈ C 1(R), q2, q3 ∈ C(R) ∩ C 1[−1, 1], q1 be increasing and q2, q3 be

nondecreasing. Let pj ∈ C([0, 1]× R2) (j = 1, 2, 3) be positive and bounded. Besides,

limv→∞
1
v

max{|qj(−v)|, |qj(v)|} = 0 for j = 1, 2, 3. Then the function

p(t, x , y , z) = p1(t, y , z)q1(x) + p2(t, x , z)q2(y) + p3(t, x , y)q3(z)

satisfies conditions (S2)− (S4).
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