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Abstract

We combine the theory of radial basis functions with the finite difference method
to solve the inverse heat problem, and use five standard radial basis functions in the
method of the collocation. In addition, using the newly proposed numerical procedure,
we also discuss some experimental numerical results.

1. Introduction

In the present work, we study the inverse problem of finding p(t) and u(x, t),
which satisfy

ut = uxx + p(t)ux + f(x, t), in QT ,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

ux(0, t) = g1(t), 0 ≤ t ≤ T,

ux(1, t) = g2(t), 0 ≤ t ≤ T,

(1)

along with an extra condition

u(x∗, t) = h(t), 0 ≤ t ≤ T, (2)

where x∗ = 0 or 1, QT = {(x, t), 0 < x < 1, 0 < t < T}, T > 0, and u0, g1 > 0,
g2 < 0, are known functions.

Recently, considerable efforts have been made in dealing with inverse problems
in partial differential equations. These inverse problems not only have the intrinsic
mathematical interests, but also have a variety of applications in industry and engi-
neering sciences (cf. [15, 17, 4, 14, 25, 22, 21, 10, 24, 23, 7, 6, 31, 9, 2, 3, 30, 1, 28, 20]
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for examples). They arise, for example, in the study of heat conduction processes,
thermoelasticity, chemical diffusion, and control theory [10, 8, 13, 11, 5, 16].

The existence and the uniqueness of the above inverse problem have been inves-
tigated in [12, 8, 13]. Also some other numerical and theoretical discussions about
this problem can be found in [26] and [27]. From (1) and (2) we have

h′(t) = uxx(0, t) + p(t)ux(0, t) + f(0, t),

and it follows that

p(t) =
h′(t)− uxx(0, t)− f(0, t)

g1(t)
,

and thus the inverse problem (1)–(2) is equivalent to the following non–local parabolic
problem

ut = uxx +
h′(t)− uxx(0, t)− f(0, t)

g1(t)
ux + f(x, t), in QT ,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

ux(0, t) = g1(t), 0 ≤ t ≤ T,

ux(1, t) = g2(t), 0 ≤ t ≤ T,

(3)

where h′(t) > 0, uxx(0, t) < 0, u0(x) > 0, g1(t) > 0, and g2(t) < 0.

2. Radial basis functions

The numerical solution of partial differential equations by Radial Basis Functions
(RBFs) methods is based on a scattered data interpolation. Let x1, · · · , xN ∈ Ω ⊂ Rd

be a given set of scattered data. A radial basis function φi(x) = φ(‖x−xi‖2) depends
only on the distance between x ∈ Rd and a fixed point xi ∈ Rd, such that the radial
basis function φi is radially symmetric about the center xi. Some well–known RBFs
are listed in Table 1.

Name of Radial Basis Function Definition

Multiquadric (MQ) φ(r) =
√
c2 + r2

Inverse Quadratic (IQ) φ(r) = 1
c2+r2

Inverse Multiquadric (IMQ) φ(r) = 1√
c2+r2

Gaussian (GA) φ(r) = exp(−cr2)
Thin Plate Splines φ(r) = r2 log(r)

Table 1: Some well–known functions that generate RBFs.
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Let r be the Euclidean distance between a fixed point xi ∈ Rd and an arbitrary
point x ∈ Rd, i.e. r = ‖x−xi‖2. A radial function interpolation problem may be de-
scribed as follows: For given data fi = f(xi) (i = 1, · · · , N) and x = (x1, x2, · · · , xd),
the interpolation RBF approximation is

Sf (x) =
N∑
i=1

αiφi(x) + Ψ(x), (4)

where αi are chosen such that Sf (xi) = fi, and the above equation can be written
without the additional polynomial Ψ. In that case, φ must be unconditionally pos-
itive definite to guarantee the solvability of the resulting system (e.g., Gaussian or
inverse multiquadrics, Sobolev splines or compactly supported functions). However,
Ψ is usually required when φ is conditionally positive definite, i.e., when φ has a poly-
nomial growth towards infinity. Examples are thin plate splines and multiquadrics.

If Pdq denotes the space of d–variate polynomials of order not exceeding q, and
letting the polynomials P1, · · · , Pm be the basis of Pdq in Rd, then the polynomial Ψ
is usually written in the following form:

Ψ(x) =
m∑
i=1

ζiPi(x), (5)

where m = (q − 1 + d)!/(d!(q − 1)!).
To determine the coefficients (α1, · · · , αN) and (ζ1, · · · , ζm), the collocation

method is used. However, in addition to the N equations resulting from collocating
equation (4) at the N points, an extra m equations are required. This is insured by
the m conditions for (4),

N∑
j=1

αjPi(xj) = 0, i = 1, · · · ,m. (6)

In a similar representation as (4), for any linear partial differential operator L, Lu
can be approximated by

Lu(x) '
N∑
i=1

αiLφ(x, xi) + LΨ(x).

3. Implementation of the meshless method

In this section, we combine the theory of radial basis functions with the finite
difference method to solve the non–local parabolic problem (3).

Since our problem depends on time, the idea of the proposed numerical scheme
is to interpolate the unknown function u by the following RBFs φj (j = 1, 2, . . . , N):

u(x, t) '
N∑
j=1

αj(t)φj(x), (7)
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where αj(t) are the unknown coefficients depending on time. Since each radial basis
function does not depend on time, the time derivative of u is simply given in terms
of the time derivatives of the coefficients:

∂u(x, t)

∂t
'

N∑
j=1

dαj(t)

dt
φj(x),

and the first and second partial derivatives of u with respect to x are respectively
given as follows:

∂u(x, t)

∂x
'

N∑
j=1

αj(t)
dφj(x)

dx
,

∂2u(x, t)

∂x2
'

N∑
j=1

αj(t)
d2φj(x)

dx2
.

First, let us discretize (3) according to the following θ–method

u(x, t+ δt)− u(x, t)

δt
=θ

[
∇2u(x, t+ δt) +

h′(t+ δt)

g1(t+ δt)
∇u(x, t+ δt)

− 1

g1(t+ δt)
∇2u(0, t+ δt)∇u(x, t+ δt)

− 1

g1(t+ δt)
f(0, t+ δt)∇u(x, t+ δt) + f(x, t+ δt)

]
+ (1− θ)

[
∇2u(x, t) +

h′(t)

g1(t)
∇u(x, t)

− 1

g1(t)
∇2u(0, t)∇u(x, t)

− 1

g1(t)
f(0, t)∇u(x, t) + f(x, t)

]
,

(8)

where u(x, t) is the temperature at the position x and at time t, ∇ the gradient dif-
ferential operator, 0 ≤ θ ≤ 1, and δt is the time step size. Rearranging equation (8),
using the notation u(x, tn) = un where tn = tn−1 + δt, we obtain

un+1 − un

δt
=θ

[
∇2un+1 +

hn+1

gn+1
1

∇un+1 − 1

gn+1
1

∇2un+1
0 ∇un+1

− 1

gn+1
1

fn+1
0 ∇un+1 + fn+1

]
+ (1− θ)

[
∇2un +

hn

gn1
∇un − 1

gn1
∇2un0∇un −

1

gn1
fn0∇un + fn

]
,

(9)

where gn1 = g1(t
n), hn = h′(tn), fn = f(x, tn), fn0 = f(0, tn), and un0 = u(0, tn). The

nonlinear term in the above equation is linearized by using the following term [29]:

(∇u · ∇2u)n+1 = (∇u)n+1(∇2u)n + (∇u)n(∇2u)n+1 − (∇u)n(∇2u)n.
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Rearranging equation (9), we have

un+1 − ξ
[
∇2un+1 + hn+1γn+1∇un+1 − γn+1∇2un+1

0 ∇un

− γn+1∇2un0∇un+1 − γn+1fn+1
0 ∇un+1

]
= un − β

[
∇2un + hnγn∇un − γn∇2un0∇un − γnfn0∇un

]
+ ξγn+1∇2un0∇un + ξfn+1 − βfn,

(10)

where ξ = θδt, β = −(1− θ)δt, and γn = 1
gn1

.

Assuming that there are (N − 2) interpolation points, then u(x, tn) can be
approximated by

un(x) '
N−2∑
j=1

αnj φj(x) + αnN−1x+ αnN , (11)

where αj(t
n) = αnj . To determine the interpolation coefficients (α1, · · · , αN), we

employ the collocation method by applying (11) at every point xi (i = 1, · · · , N−2).
Thus, we have

un(xi) '
N−2∑
j=1

αnj φj(xi) + αnN−1xi + αnN . (12)

The additional conditions due to (6) are written as:

N−2∑
j=1

αnj =
N−2∑
j=1

αnj xj = 0. (13)

Writing (12) together with (13) in a matrix form, we have

[u]n = A[α]n, (14)

where [u]n = [un1 · · · unN−2 0 0]T , [α]n = [αn1 · · ·αnN ]T , and A = [aij, 1 ≤ i, j ≤ N ] is
given by

A =


φ1,1 · · · φ1,N−2 x1 1

...
. . .

...
...

...
φN−2,1 · · · φN−2,N−2 xN−2 1
x1 · · · xN−2 0 0
1 · · · 1 0 0

 .

There are p = (N−4) internal (domain) points and two boundary points. There-
fore, the (N ×N) matrix A can be split into

A = Ad + Ab1 + Ab2 + Ae,
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where

Ad = [aij for (2 ≤ i ≤ N − 3, 1 ≤ j ≤ N) and 0 elsewhere],

Ab1 = [aij for (i = 1, 1 ≤ j ≤ N) and 0 elsewhere],

Ab2 = [aij for (i = N − 2, 1 ≤ j ≤ N) and 0 elsewhere],

Ae = [aij for (N − 1 ≤ i ≤ N, 1 ≤ j ≤ N) and 0 elsewhere].

Using the notation LA to designate the matrix of the same dimension as A and
containing the elements ãij = Laij, 1 ≤ i, j ≤ N , then (10) together with boundary
conditions can be written, in the matrix form, as follows:

[Cξ +B +D + Ae][α]n+1 =[Cβ][α]n + (a+ c)(∇H[α]n) · (∇2G[α]n)

+ b(∇H[α]n) + ξfn+1 − βfn + F n+1,
(15)

where a = βγn, b = βγnfn0 , c = ξγn+1,

H = ∇Ab1 +∇Ab2 +∇Ad, B = ∇Ab1 +∇Ab2, Cξ = Ad− ξ∇2Ad− ξhn+1γn+1∇H

D = c[∇H[α]n∇2G+∇2G[α]n∇H + fn+1
0 ∇H], Cβ = Ad − β∇2Ad − βhnγn∇H,

and

G = [φ
′′

1(0) · · · φ′′

N−2(0) 0 0], F n = [(g1)
n
1 0 · · · 0 (g2)

n
N−2 0 0]T .

Assuming M = [Cξ + B + D + Ae], in general the well–posedness of (15) and the
solvability of such a system are open, and see the paper of Fasshauer [18] for details.
However, recently Franke and Schaback [19] gave the first the convergence proof and
the error bound for the solution of the partial differential equation with collocation
and radial basis functions. They have showed that the radial basis functions have
to be much smoother than the smoothness required for a weak solution of the dif-
ferential operator. As far as the Laplace operator and the thin plate splines or the
multiquadrics are concerned, the requirements are met to guarantee the positive def-
initeness of the resulting matrix and therefore insure the solvability of the system,
and see Reference [19] for details.

It follows from rewriting (15) in the following form

[α]n+1 =M−1[Cβ][α]n + (a+ c)M−1(∇H[α]n) · (∇2G[α]n)

+ bM−1(∇H[α]n) +M−1(ξfn+1 − βfn + F n+1),
(16)

and making use of (14) that the vector temperature [u]n+1 is computed from [u]n by
using

[u]n+1 =AM−1[Cβ]A−1[u]n + (a+ c)M−1(∇HA−1[u]n) · (∇2GA−1[u]n)

+ bM−1(∇HA−1[u]n) +M−1(ξfn+1 − βfn + F n+1),
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where [u]0 = A[α]0, and [α]0 can be computed by the initial condition. Finally, the
approximate value of p(t) is given by

p(tn) =
h′(tn)− uxx(0, tn)− f(0, tn)

g1(tn)
,

where

uxx(0, t
n) =

N∑
j=1

αnj
d2φj(0)

dx2
.

4. Numerical experiments

To show the efficiency of the new method on the inverse parabolic partial dif-
ferential equation, three examples are given. These tests are chosen such that their
analytical solutions are known. However, the method developed in this paper can
be applied to more complicated problems. Since the equation (16) is valid for any
value of 0 ≤ θ ≤ 1, we will use θ = 0 (thus the scheme is explicit, and the stability
limitation is ∆t ≤ 1

2
(∆x)2), θ = 1

2
(the scheme is the famous Crank–Nicholson), and

θ = 1 (the scheme is implicit).
We use the L2 and the L∞ error norms to measure the difference between the

numerical and analytical solutions. Let ũ denote the approximated solution. The
L2 error norm is defined by

L2 = ‖u− ũ‖2 =

√√√√ 1

N

N∑
j=1

|uj − ũj|2,

and the L∞ error norm is defined by

L∞ = ‖u− ũ‖∞ = max
1≤j≤N

|uj − ũj|.

Example 4.1. We wish to solve the inverse problem (1)–(2) with the following con-

ditions:

u0(x) = (0.5− x)x,

g1(t) = 0.5,

g2(t) = −1.5,

h(t) = 2 sin(t)− 2t,

f(x, t) = 2 cos(t)(0.5 + 2x),

x∗ = 0, and T = 1, for which the exact solution is

u(x, t) = −(x− 0.5)x+ 2 sin(t)− 2t,

p(t) = 2 cos(t).
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t L∞–error (u) L2–error (u)

0 1× 10−10 1× 10−18

0.1 4× 10−6 3× 10−6

0.2 7× 10−5 7× 10−5

0.4 4× 10−5 4× 10−5

0.6 1× 10−4 1× 10−4

0.8 6× 10−5 3× 10−5

1 1× 10−4 1× 10−4

Table 2: The L∞ and the L2 errors for u with c = 0.0005, dt = 0.001, dx = 0.2 for

Example 4.1 and using the GA–RBF and the Crank–Nicholson scheme.

t L∞–error (p)

0 1× 10−7

0.1 1× 10−6

0.2 2× 10−6

0.4 1× 10−5

0.6 4× 10−5

0.8 9× 10−5

1 1× 10−4

Table 3: The errors between the analytical solution and the estimated solution p,

with c = 0.0005, dt = 0.001, dx = 0.2, for Example 4.1, and using the GA–RBF and

the Crank–Nicholson scheme.

The L∞ and the L2 errors are displayed for u in Table 2 for t = 0, 0.1, 0.2, 0.4,
0.6, 0.8 and 1, by using the GA–RBF and the Crank–Nicholson scheme. Also, the
corresponding errors between the analytical and the estimated function p are listed
in Table 3. The graph of the analytical and the estimated functions for u in t = 1
is given in Figure 1(b). In addition, the maximum error variations of the algorithm
with different radial basis functions are depicted in Figure 1 and Figure 2.

Example 4.2. In this example, we consider the inverse problem (1)–(2) with the

following conditions:

u0(x) = 2 + (0.5− x)x,

g1(t) = 0.5,

g2(t) = −1.5,

h(t) = 2t4 − 2t,

f(x, t) = 8t3(0.5 + 2x),
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(a) Numerical solution of u(x, t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

(b) The analytical and the numerical solutions

of u(x, 1).

Figure 1: The GA–RBF and the Crank–Nicholson scheme with c = 0.0005, dt =

0.001, dx = 0.2.

t L∞–error (u) L2–error (u)

0 8× 10−10 21× 10−21

0.1 26× 10−6 21× 10−6

0.2 29× 10−5 26× 10−5

0.4 24× 10−4 22× 10−4

0.6 82× 10−4 76× 10−4

0.8 18× 10−3 16× 10−3

1 25× 10−3 20× 10−3

Table 4: the L∞ and the L2 errors for u, with c = 0.0005, dt = 0.001, dx = 0.2, by

using the MQ–RBF and the explicit scheme.

x∗ = 0, and T = 1, for which the exact solution is

u(x, t) = −(x− 0.5)x+ 2t4 − 2t,

p(t) = 4t3.

The L∞ and the L2 errors are obtained for u in Table 4 for t = 0, 0.1, 0.2, 0.4, 0.6,
0.8 and 1, by using the MQ–RBF and the explicit scheme. Also, the corresponding
errors between the analytical and the estimated functions p are listed in Table 5.
The graph of the analytical and the estimated functions for u in t = 0.4 is given in
Figure 3(b). Moreover, the maximum error variations of the algorithm with different
radial basis functions are presented in Figure 3 and Figure 4.
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(a) The absolute errors for u by using the GA–
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(b) The absolute errors for u by using the MQ–

RBF

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Inverse Multiquadric(IMQ)

(c) The absolute errors for u by using the IMQ–
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(d) The absolute errors for u by using the IQ–
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Figure 2: The absolute errors for u(x, t) with T = 1, c = 0.0005, dt = 0.001, dx = 0.2

and the Crank–Nicholson scheme.

Example 4.3. We consider the inverse problem (1)–(2) with the following condi-

tions:

u0(x) = (0.5− x)x,

g1(t) = 0.5,

g2(t) = −1.5,

h(t) = 2t2 − 2t,

f(x, t) = 4t(0.5 + 2x),

x∗ = 0,
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t L∞–error (p)

0 1× 10−6

0.1 2× 10−5

0.2 4× 10−5

0.4 8× 10−5

0.6 1× 10−4

0.8 2× 10−4

1 1× 10−3

Table 5: The errors between the analytical solution and the estimated solution p,

with c = 0.0005, dt = 0.001, dx = 0.2, by using the MQ–RBF and the explicit

scheme.

(a) The numerical solution of u(x, t)

0 0.2 0.4 0.6 0.8 1
-1.3

-1.2
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-0.9

-0.8

-0.7

-0.6

(b) The analytical and the numerical solu-

tions of u(x, 0.4).

Figure 3: The MQ–RBF and the explicit scheme with c = 0.0005, dt = 0.001,

dx = 0.2.

and T = 1, for which the exact solution is

u(x, t) = −(x− 0.5)x+ 2t2 − 2t,

p(t) = 4t.

The L∞ and the L2 errors are obtained for u in Table 6 for t = 0, 0.1, 0.2, 0.4, 0.6,
0.8 and 1, by using the IMQ–RBF and the implicit scheme. Also, the corresponding
errors of the analytical and the estimated functions p are listed in Table 7. The graph
of the analytical and the estimated functions for u in t = 0.1 is given in Figure 5(b).
In addition, the maximum error variations of the algorithm with different radial basis
functions are given in Figure 5 and Figure 6.

24



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 10

-3

Gaussian(GA)

(a) The absolute errors for u by using the GA–

RBF

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

Multiquadric(MQ)
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(c) The absolute errors for u by using the IMQ–
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Figure 4: The absolute errors for u(x, t) with T = 1, c = 0.0005, dt = 0.001, dx = 0.2

and the Crank–Nicholson scheme.

5. Conclusions

Radial basis functions are used to solve an inverse parabolic equation. The mesh-
less property of the RBFs method is the most important advantage of this scheme
over the traditional mesh dependent techniques such as finite difference methods, fi-
nite element methods, and boundary element methods. The mesh free nature of the
new technique allows us to solve the problems with non–regular geometry. A com-
parison with some well known finite difference methods for numerical solution of the
inverse parabolic problem shows that the present method is more accurate. In con-
clusion we mention that the RBFs technique can be extended to similar two and three
dimensional inverse parabolic problems subject to temperature overspecification.
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t L∞–error (u) L2–error (u)

0 1× 10−10 57× 10−23

0.1 38× 10−5 37× 10−5

0.2 39× 10−4 39× 10−4

0.4 78× 10−4 74× 10−4

0.6 11× 10−4 9× 10−4

0.8 12× 10−3 78× 10−4

1 4× 10−3 25× 10−3

Table 6: The L∞ and the L2 errors for u, with c = 0.0005, dt = 0.001, dx = 0.2, by

using the IMQ–RBF and the implicit scheme.

t L∞–error (p)

0 3× 10−6

0.1 4× 10−5

0.2 9× 10−5

0.4 1× 10−4

0.6 2× 10−4

0.8 4× 10−4

1 4× 10−3

Table 7: The errors between the analytical solution and the estimated solution p,

with c = 0.0005, dt = 0.001, dx = 0.2, by using the IMQ–RBF and the implicit

scheme.

(a) The numerical solution of u(x, t)
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(b) The analytical and the numerical solu-

tions of u(x, 0.1).

Figure 5: The IMQ–RBF and the implicit scheme with c = 0.0005, dt = 0.001,

dx = 0.2.
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(c) The absolute errors for u by using the IMQ–
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Figure 6: The absolute errors for u(x, t) with T = 1, c = 0.0005, dt = 0.001, dx = 0.2

and the Crank–Nicholson scheme.
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