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Abstract

Adaptive finite element method based on multilevel correction scheme is proposed

to solve Steklov eigenvalue problems. In this method, each adaptive step involves

solving associated boundary value problems on the adaptive partitions and small

scale eigenvalue problems on the coarsest partitions. Solving eigenvalue problem in

the finest partition is not required. Hence the efficiency of solving Steklov eigenvalue

problems can be improved to the similar efficiency of the adaptive finite element

method for the associated boundary value problems. The efficiency of the proposed

method is also investigated by a numerical experiment.

1. Introduction

The main goal of this paper is to present a multilevel correction type of adap-
tive finite element method (AFEM) for Steklov eigenvalue problems. These type of
eigenvalue problems arise in a number of applications (see, e.g., [1, 6, 7, 10, 11, 15]).
The analysis of finite element methods for Steklov eigenvalue problems have been
given in [2, 3, 8, 9, 14, 16, 17] and the references cited therein.

In this paper, we are concerned with the following model problem
{

−∆u+ u = 0 in Ω,
∂u
∂ν

= λu on ∂Ω,
(1)

where Ω ⊂ R2 is a bounded polygonal domain and ∂
∂ν

the outward normal derivative
on ∂Ω.

As we know, the AFEM is a very useful and efficient way for solving eigenvalue
problems. Recently, one active topic is to use AFEM to solve the Steklov eigenvalue
problems (see, e.g., [4, 13, 21]). The purpose of this paper is to propose and analyze
a multilevel correction type of AFEM to solve Steklov eigenvalue problems based on
the recent work on multi-level correction method (see [18, 23]). In the new scheme,
the cost of solving eigenvalue problems is almost the same as solving the associated
boundary value problems.
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The corresponding weak form of the problem (1) is:
Find λ ∈ R and u ∈ H1(Ω) such that ‖u‖b = 1 and

a(u, v) = λb(u, v) ∀v ∈ H1(Ω), (2)

where

a(u, v) =

∫

Ω

(
∇u∇v + uv

)
dΩ, (3)

b(u, v) =

∫

∂Ω

uvds, ‖u‖b = b(u, u)
1

2 . (4)

Evidently the bilinear form a(·, ·) is symmetric, continuous and coercive over the
product space H1(Ω)×H1(Ω).

From [5], we know the eigenvalue problem (2) has an eigenvalue sequence {λj} :

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞,

and the associated eigenfunctions

u1, u2, · · · , uj, · · · ,

where b(ui, uj) = δij . In the sequence {λj}, the λj are repeated according to their
geometric multiplicity.

An outline of the paper goes as follows. In section 2, we introduce finite element
method for the Steklov eigenvalue problem and the corresponding error estimates.
A multilevel correction type of AFEM for Steklov eigenvalue problems is given in
section 3. In section 4, a numerical example is presented to demonstrate the efficiency
of the AFEM and some concluding remarks are given in the last section.

2. Discretization by finite element method and error estimates

In this paper, the letter C (with or without subscripts) denotes a generic posi-
tive constant which may be different at different occurrences. For convenience, the
symbols ., & and ≈ will be used in this paper. That x1 . y1, x2 & y2 and x3 ≈ y3,
mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3
and C3 that are independent of mesh sizes.

Set V := H1(Ω). Let us define the finite element approximation of (2). First we
generate a shape-regular decomposition of the computing domain Ω ⊂ Rd (d = 2, 3)
into triangles for d = 2 (tetrahedrons for d = 3). The diameter of a cell T ∈ Th is
denoted by hT . The mesh diameter h describes the maximum diameter of all cells
T ∈ Th. Based on the partition Th, we construct the linear finite element space
denoted by Vh ⊂ V . Let Eh denote the set of interior faces (edges or sides) of Th

and E∂Ω the faces on the boundary ∂Ω.
Therefore we can define the approximation of eigenpair (λ, u) of (2) by the finite

element method as:
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Find (λh, uh) ∈ R× Vh such that b(uh, uh) = 1 and

a(uh, vh) = λhb(uh, vh) ∀vh ∈ Vh. (5)

Similarly, we know from [5] the eigenvalue problem (5) has eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h,

and the corresponding eigenfunctions

u1,h, u2,h, · · · , uk,h, · · · , uNh,h,

where b(ui,h, uj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element
space Vh).

Let Ph be the finite element projection operator of V onto Vh defined by

a(w − Phw, v) = 0 ∀w ∈ V and ∀v ∈ Vh. (6)

Obviously

‖Phw‖1 ≤ ‖w‖1 ∀w ∈ V. (7)

Define ηa(h) as

ηa(h) = sup
f∈H1/2(∂Ω),‖f‖1/2,∂Ω=1

inf
v∈Vh

‖Kf − v‖1, (8)

where the operator K : H−1/2(∂Ω) 7→ V is defined as

a(Kf, v) = b(f, v) ∀f ∈ H−1/2(∂Ω) and ∀v ∈ V. (9)

For the aim of convergence analysis by the finite element method, we introduce the
following regularity result for the boundary value problem (9).

Lemma 2.1. ([9, (4.10)], [7, Proposition 4.4]) For the Steklov type boundary value
problem (9), if f ∈ L2(∂Ω), then Kf ∈ H1+γ/2(Ω) and

‖Kf‖1+γ/2 ≤ C‖f‖b, (10)

where γ = 1 if Ω is convex and γ < π
ω
(with ω being the largest inner angle of Ω).

Furthermore, if f ∈ H
1

2 (∂Ω), we have Kf ∈ H1+γ(Ω) and

‖Kf‖1+γ ≤ C‖f‖1/2,∂Ω. (11)

In order to derive the error estimate of eigenpair approximation in the norm
‖ · ‖−1/2,∂Ω, we need the following error estimate of the finite element projection
operator Ph in the norm ‖ · ‖−1/2,∂Ω.
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Lemma 2.2. ([5, Lemma 3.3 and Lemma 3.4], [3, Proposition 3.1])

ηa(h) = o(1) as h→ 0, (12)

and

‖w − Phw‖−1/2,∂Ω . ηa(h)‖w − Phw‖1 ∀w ∈ V. (13)

Proof. In order to obtain the error estimate in ‖ · ‖−1/2,∂Ω, we chose a function
ϕ ∈ H1/2(∂Ω) such that ‖ϕ‖1/2,∂Ω = 1 and ‖u− Phu‖−1/2,∂Ω = b(u − Phu, ϕ). Then
we have

‖u− Phu‖−1/2,∂Ω = b(ϕ, u− Phu) = a(Kϕ, u− Phu)

= a(Kϕ− ψh, u− Phu) ∀ψh ∈ Vh. (14)

This means we obtain the desired result (13) and the proof is complete.

From the minimum-maximum principle [5], the following upper bound result
holds

λi ≤ λi,h, i = 1, 2, · · · , Nh.

Let M(λi) denote the eigenspace corresponding to the eigenvalue λi which is defined
by

M(λi) =
{
w ∈ V : w is an eigenfunction of (2) corresponding to λi

and ‖w‖b = 1
}
. (15)

Then we define

δh(λi) = sup
w∈M(λi)

inf
v∈Vh

‖w − v‖1. (16)

For the eigenpair approximations by finite element method, there exist the fol-
lowing error estimates.

Proposition 2.1. ([5, P. 699], [3] and [7])
(i) For any eigenfunction approximation ui,h of (5) (i = 1, 2, · · · , Nh), there is an
eigenfunction ui of (2) corresponding to λi such that ‖ui‖b = 1 and

‖ui − ui,h‖1 ≤ Ciδh(λi). (17)

Furthermore,

‖ui − ui,h‖−1/2,∂Ω ≤ Ciηa(h)‖ui − ui,h‖1. (18)

(ii) For each eigenvalue, we have

λi ≤ λi,h ≤ λi + Ciδ
2
h(λi). (19)
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3. Adaptive multilevel correction algorithm for eigenvalue problem

In this section, we present a residual type of a posteriori error estimate and give
the multilevel correction type of AFEM for Steklov eigenvalue problems.

We follow the classic routine to define an a posteriori error estimator for (5)
(see [4, 13]). Let us define the element residual RK(uh)

RK(uh) := uh in T ∈ Th, (20)

and the jump residual JE(uh) by

JE(uh) :=

{
1
2

(
∇u+h · ν+ +∇u−h · ν−

)
:= 1

2
[[∇uh]]E · νE for E ∈ Eh,

∇uh · ν − λhuh for E ∈ E∂Ω,

where E is the common side of elements T+ and T− with outward normals ν+ and ν−,
νE = ν−, and ωE := T+ ∩ T− that share the same edge E.

For the element T ∈ Th, we define the local error indicator ηh(uh, T ) by

ηh(uh, T ) :=

(
h2T‖RT (uh)‖

2
0,T +

∑

E∈Eh,E⊂∂T

hE‖JE(uh)‖
2
0,E

)1/2

, (21)

and the error indicator for a subdomain ω ⊂ Ω by

ηh(uh, ω) :=

(
∑

T∈Th,T⊂w

η2h(uh, T )

)1/2

. (22)

Thus ηh(uh,Ω) denotes the error estimator of uh with respect to Th.
Now we summarize the reliability and the efficiency of the a posterior error esti-

mator (see, e.g., [4, 13]):

Lemma 3.1. ([4, 13]) The error estimator (22) has the reliability

‖u− uh‖1 .
{
ηh(uh,Ω) +

λ + λh
2

‖u− uh‖0,∂Ω
}
. (23)

Furthermore, the error estimator has the efficiency
a) For T ∈ Th, if ET ∩ ∂Ω = ∅

ηh(uh, T ) . ‖u− uh‖
2
1,ωT

, (24)

where ωT contains all the elements that share at least a side with T .
b) For T ∈ Th, if ET ∩ ∂Ω 6= ∅

ηh(uh, T ) .
{
‖u− uh‖1,ωT

+
∑

E∈ET∩∂Ω

hE‖λu− λhuh‖0,E
}
. (25)
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The adaptive procedure consists of loops of the form

Solve → Estimate → Mark → Refine.

Now we state our adaptive finite element method to compute the Steklov eigen-
value problem (5) in the multilevel correction framework.

Adaptive Algorithm C

1. Pick up an initial mesh Th0
with mesh size h0.

2. Construct the finite element space Vh0
and solve the following eigenvalue

problem to get the discrete solution (λh0
, uh0

) ∈ R × Vh0
such that ‖uh0

‖b = 1
and

a(uh0
, vh0

) = λh0
b(uh0

, vh0
) ∀vh0

∈ Vh0
. (26)

3. Let k = 0.
4. Compute the local error indicators ηhk

(uhk
, T ).

5. Construct T̂hk
⊂ Thk

by Marking Strategy E and parameter θ.
6. Refine Thk

to get a new conforming mesh Thk+1
by procedure Refine.

7. Solve the following source problem on Thk+1
for the discrete solution ũhk+1

∈
Vhk+1

:

a(ũhk+1
, vhk+1

) = λhk
b(uhk

, vhk+1
) ∀vhk

∈ Vhk
. (27)

8. Construct the new finite element space Vh0,hk+1
= Vh0

+span{ũhk+1
} and solve

the eigenvalue problem to get the solution (λhk+1
, uhk+1

) ∈ R×Vh0,hk+1
such that

‖uhk+1
‖b = 1 and

a(uhk+1
, vhh0,hk+1

) = λhk+1
b(uhk+1

, vh0,hk+1
) ∀vh0,hk+1

∈ Vh0,hk+1
. (28)

9. Let k = k + 1 and go to Step 4.

Here we use the iterative or recursive bisection (see, e.g., [19, 22]) of elements
with the minimal refinement condition in the procedure REFINE. The Marking

Strategy adopted in Adaptive Algorithm C was introduced by Dörfler [12] and
Morin et al. [20] and can be defined as follows.

Marking Strategy E
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Given a parameter 0 < θ < 1:
1. Construct a minimal subset T̂h from Th by selecting some elements in Th such
that

∑

T∈T̂h

η2h(uh, T ) ≥ θη2h(uh,Ω).

2. Mark all the elements in T̂h.

Now we state some convergence results of this type of AFEM for Steklov eigen-
value problems.

Lemma 3.2. ([18]) Assume the current eigenpair approximation (λhk
, uhk

) ∈ R×Vhk

has the following error estimates

‖u− uhk
‖1 . εhk

(λ), (29)

‖u− uhk
‖−1/2,∂Ω . ηa(h0)‖u− uhk

‖1, (30)

|λ− λhk
| . ε2hk

(λ). (31)

Then after one adaptive step in Adaptive Algorithm C, the resultant approxima-
tion (λhk+1

, uhk+1
) ∈ R× Vhk+1

has the following error estimates

‖u− uhk+1
‖1 . εhk+1

(λ), (32)

‖u− uhk+1
‖−1/2,∂Ω . ηa(h0)‖u− uhk

‖1, (33)

|λ− λhk+1
| . ε2hk+1

(λ), (34)

where εhk+1
(λ) := ηa(h0)εhk

(λ) + ε2hk
(λ) + δhk+1

(λ).

Theorem 3.1. ([18]) Assume ηa(H) & δh1
(λ) ≥ δh2

(λ) ≥ · · · ≥ δhn(λ). The
obtained eigenpair approximation (λhn, uhn) after n adaptive steps in Adaptive

Algorithm C has the error estimate

‖uhn − u‖1 . εhn(λ), (35)

|λhn − λ| . ε2hn
(λ), (36)

where εhn(λ) =
n∑

k=1

ηa(h0)
n−kδhk

(λ).

4. Numerical results

In this section, we give a numerical example to illustrate the efficiency of the
Adaptive Algorithm C for the model Steklov eigenvalue problem. We set the
computing domain as the L-shape one Ω = (−1,−1)× (−1, 1)/[−1, 0]× [−1, 0] and
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Initial mesh
Mesh after 10 iterations

Figure 1: The initial triangulation and the one after 10 adaptive iterations.
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Figure 2: The a posteriori error estimates of eigenfunction approximations by Adap-

tive Algorithm C and standard AFEM.

compare the accuracy with the standard AFEM in [13]. Figure 1 shows the initial
mesh and the mesh after 10 adaptive iterations ofAdaptive Algorithm C. In order
to check the efficiency of Adaptive Algorithm C, we compare the numerical re-
sults of Adaptive Algorithm C with those of standard AFEM. The corresponding
numerical results are shown in Figure 2.

From the results presented in Figure 2, we find the accuracy of Adaptive

Algorithm C is almost the same as the standard AFEM.
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5. Concluding remarks

In this paper, we propose a type of AFEM for Steklov eigenvalue problems based
on multilevel correction scheme. An numerical experiment is provided to demonstrate
the efficiency of the AFEM. The convergence and optimality analysis should be the
topic in our future work.
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