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Abstract

The finite element method is applied to a convection-diffusion problem posed on the
unite square using a tensor product mesh and bilinear elements. The usual proofs that
establish superconvergence for this setting involve a rather high regularity of the exact
solution - typically u ∈ H

3(Ω), which in many cases cannot be taken for granted. In this
paper we derive superconvergence results where the right hand side of our a priori esti-
mate no longer depends on the H

3 norm but merely requires finiteness of some weaker
functional measuring the regularity. Moreover, we consider the streamline diffusion sta-
bilization method and how superconvergence is affected by the regularity of the solution.
Finally, numerical experiments for both discretizations support and illustrate the theoreti-
cal results.

1. Introduction

We consider the scalar convection-diffusion boundary value problem

Lu := −ε∆u+ b · ∇u+ cu = f in Ω = (0, 1)2, (1)

u = 0 on ∂Ω.

Here, 0 < ε ≪ 1 is a small parameter. We assume f ∈ L2(Ω), c ∈ L∞(Ω),b ∈ (W 1
∞(Ω))2

and

c− 1

2
divb ≥ ω > 0. (2)

As a discretization for (1) we use the finite element method. Introducing the Hilbert
space

H1
0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0}

the variational formulation of the given boundary value problem reads:
Find u ∈ H1

0 (Ω) such that

a(u, v) := ε

∫

Ω

∇u · ∇v dx +

∫

Ω

b · ∇u v dx +

∫

Ω

c uv dx =

∫

Ω

fv dx, for all v ∈ H1
0 (Ω).

(3)
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The natural norm in which one shows coercivity of the bilinear form is the ε-weighted
H1 norm

‖u‖21,ε := |u|21,ε + ‖u‖20, with |u|21,ε := ε|u|21.
Moreover, on subdomains D ⊆ Ω we will work with fractional order Sobolev spaces
Hs(D) (s ∈ R+), the elements of which are finite in the corresponding norm

‖u‖2m+σ,D := ‖u‖2m,D + |u|2σ,D with

|u|2σ,D :=
∑

|α|=m

∫∫

D×D

|u(α)(x)− u(α)(y)|2
|x− y|2+2σ

dxdy, m ∈ N, σ ∈ (0, 1). (4)

Furthermore, for D = Ω we drop the set index Ω in the notation of (semi-)norms.
In this paper we will discretize (3) with bilinear finite elements on tensor product

meshes Th with respective mesh size hx and hy. The parameter h is going to denote the
maximal element diameter of the current mesh.

From standard finite element analysis it is well known that the error can be bounded
by

‖u− uh‖1,ε ≤ Ch |u|2,Ω.
Also, it is a known phenomenon that superconvergence is achieved for the difference of
the interpolant uI and the FE-solution uh, measured in the same norm. For example, an
analysis as in [9] using Lin-identities yields

‖uI − uh‖1,ε ≤ Ch2‖u‖3,Ω.
However, in many cases the regularity requirements for superconvergence are not realistic,
not even for the simple model problem

−∆u = 1, u|δΩ = 0,

where due to corner singularities one may assume that at best

u ∈ H3−δ(Ω), ∀δ > 0.

If the coefficients of (1) themselves have low regularity the situation is even worse. For
instance, if the right hand side has some singularity which forces f to lie in some low
order Sobolev space then by the lifting property of the solution operator this carries over
to the solution u:

f ∈ Hσ(Ω) =⇒ u ∈ H2+σ(Ω),

i.e. it is clear that in the general case we cannot expect u ∈ H3(Ω).

Remark 1. Also note that for domains with obtuse angles, for instance the case of convex

polygons, the effect of corner singularities can be even stronger. If we consider Dirichlet

boundary conditions near some vertex P corresponding to the maximal interior angle α,
the solution u locally behaves as r

π
α , with r being the distance from P , and hence forces

u to lie at best in the Sobolev space H1+ π
α
−δ(Ω) for all δ > 0.
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Now naturally the question arises: How does lower regularity of u affect the phe-
nomenon of supercloseness? Moreover, does the rate of convergence depend on the regu-
larity in some “continuous” way? In this paper we address those issues both theoretically
and numerically and derive superconvergence results where the right hand side of our
a priori estimate no longer depends on the H3 norm but merely requires finiteness of
some weaker functional, e.g. the fractional Sobolev seminorm | . |2+σ, σ ∈ (0, 1), or equiv-
alent norms in interpolation spaces.

The paper is structured as follows. In Section 2 we derive bounds for the standard
Galerkin method, followed by corresponding numerical experiments in Section 3. Sub-
sequently, we discuss the extension of the estimates to the streamline diffusion FEM in
Section 4 and present numerical results for the SDFEM in Section 5.

Indeed, it is our aim to extend the analysis to stabilized methods on layer-adapted
meshes, similarly as in [9]. That analysis is based on a solution decomposition and uses,
for instance for the smooth part of the solution S, bounds of the type

‖SI − Sh‖1,ε ≤ C(N−1 lnN)2(|S|3 + ‖S‖2,∞).

In the present paper where we mostly consider isotropic meshes we therefore tried to
avoid the application of the theory of interpolation spaces to obtain results in fractional
order Sobolev spaces. While we succeeded in the error analysis of the Galerkin part (see
Section 2) we had some trouble with the convective term and some stabilization term
of the SDFEM (see Section 4). For these terms we, so far, have no alternatives as to
apply interpolation spaces. The main ingredients and results of this theory needed in this
article are presented in the Appendix.

2. Galerkin error analysis

Let
Vh := {v ∈ H1

0 (Ω) : v|T ∈ Q1(T ), for all T ∈ Th}
be the bilinear finite element space. Then the Galerkin approximation uh of u solves

a(uh, v) =

∫

Ω

fv dx, for all v ∈ Vh.

In the sequel we suppose that u ∈ H2(Ω) and denote by uI ∈ Vh the nodal interpolant
of the exact solution. To get an estimation of the error ‖uI − uh‖1,ε we make use of
coercivity of the bilinear form a(., .) of (3) and apply Galerkin orthogonality:

αcoerc‖uI − uh‖21,ε ≤ a(uI − uh, u
I − uh) = a(uI − u, uI − uh). (5)

Consequently, for an arbitrary function v ∈ Vh we will estimate the following three terms:

a(u− uI , v) = ε

∫

Ω

∇(u− uI) · ∇v dx +

∫

Ω

b · ∇(u− uI)v dx+

∫

Ω

c (u− uI)v dx.

2.1. The diffusion term

Let us first bound the diffusion term of the Galerkin part given by

ε

∫

Ω

∇(u− uI) · ∇v dx = ε

∫

Ω

(u− uI)xvx dx+ ε

∫

Ω

(u− uI)yvy dx.
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Clearly, it is enough to estimate integrals on an arbitrary element that only involve
derivatives with respect to the first argument. In combination with the triangle inequality,
summing up all contributions will give an upper bound.
The key observation for this type of integrals is the fact that on every element a similar
expression vanishes for quadratic polynomials:

∫

T

(p− pI)xvx dx = 0, for all p ∈ P2. (6)

Hence, we insert additional degrees of freedom by just subtracting zero on every element
and subsequently bound the interpolation error of u− p :

ε|
∫

T

(u− uI)xvx dx| = ε|
∫

T

((u− p)− (u− p)I)xvx dx|

≤ Cε (hx‖(u− p)xx‖0,T + hy‖(u− p)xy‖0,T ) ‖vx‖0,T , (7)

Note that we are still in the position to choose some particular polynomial p ∈ P2. The
following lemma motivates this choice.

Lemma 1. Let D ⊂ R
2 be a bounded domain. Then for all σ ∈ (0, 1) and w ∈ Hσ(D)

‖ w − Πw ‖0,D≤
diam(D)1+σ

|D| 12
|w|σ,D, (8)

where Πw := 1
|D|

∫

D
w dx denotes the average of w over D.

Proof. By the Cauchy-Schwarz inequality we obtain

∫

D

(

w(x)− 1

|D|

∫

D

w(x′) dx′

)2

dx ≤ 1

|D|

∫

D

∫

D

(w(x)− w(x′))
2
dx′ dx

Since the diameter of D is the supremum of all distances of points in D, we have for all
x,x′ ∈ D: |x− x′| ≤ diam(D) and hence,

∫

D

(

w(x)− 1

|D|

∫

D

w(x′) dx′

)2

dx ≤ diam(D)2+2σ

|D|

∫∫

D×D

|w(x)− w(x′)|2
|x− x′|2+2σ

dx′ dx.

We now continue to estimate (7). If we denote by uxx|T and uxy |T the averages of the
two partial derivatives of u on some element T and insert the quadratic polynomial

p(x, y) =
1

2
uxx|T x2 + uxy |T xy

into (7), Lemma 1 yields the fractional estimate

ε|
∫

T

(u− uI)xvx dx| ≤ Cεhσ (hx|uxx|σ, T + hy|uxy|σ, T ) ‖vx‖0,T ,
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on every element T ∈ Th and hence globally

ε|
∫

Ω

∇(u− uI) · ∇v dx| ≤ Cε
1

2h1+σ|u|2+σ,Ω‖v‖1,ε,Ω. (9)

After some closer look on the constant in (9) coming from Lemma 1, one easily checks that
it unfavourably depends on the element aspect ratio hx/hy. However, by working with
interpolation spaces, it is possible to improve this bound to obtain anisotropic estimates
of the difference of a function and its mean in the L2 norm. To derive this estimate let us
consider rectangular domains in the sequel. We start with the following one dimensional
consideration.

Lemma 2. Let h > 0, I := (0, h) and u ∈ H1(I). Define Π : H1(I) → R to be the

averaging operator: Πu := 1
h

∫ h

0
u dx. Then

‖u−Πu‖0,I ≤
√
3

3
h |u|1,I.

Proof. The estimate is an immediate consequence of the Bramble-Hilbert Lemma. After
assuming that u lies in the dense subset C1(I) a direct calculation yields the same estimate
plus the constant involved.

Next we will apply this lemma in two dimensions to obtain an anisotropic estimate
for rectangular domains.

Lemma 3. Let hx, hy > 0, R := (0, hx)× (0, hy), u ∈ H1(R). Define ΠR : H1(R) → R

to be the averaging operator over R, i.e. ΠRu :=
1

hxhy

∫

R

u dx. Then

‖u− ΠRu‖0,R ≤
√
3

3
(hx ‖ux‖0,R + hy ‖uy‖0,R).

Proof. The idea is to apply Lemma 2 consecutively in the two dimensions. Let us therefor
define two operators Πx and Πy that act on only one respective dimension:

(Πxu)(y) :=
1

hx

∫ hx

0

u(s, y)ds, (Πyu)(x) :=
1

hy

∫ hy

0

u(x, t)dt.

Also note that since C1(R) is dense in H1(R) the function u is again assumed to be
continuously differentiable on R. One easily verifies that ΠR = Πx ◦ Πy = Πy ◦ Πx. By
the triangle inequality, our quantity of interest will first be split into two parts:

‖u− ΠRu‖0 ≤ ‖u−Πxu‖0 + ‖Πxu−ΠRu‖0. (10)

An application of Lemma 2 on the first term yields

‖u− Πxu‖20 =
∫ hy

0

[

∫ hx

0

(

u(x, y)− 1

hx

∫ hx

0

u(s, y)ds

)2

dx

]

dy

≤ h2
x

3

∫ hy

0

[
∫ hx

0

((∂xu)(x, y))
2dx

]

dy =
h2
x

3
‖ux‖20.
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Similarly, for the second part an application of Lemma 2 gives

‖ΠRu− Πxu‖20 =
∫ hx

0

[
∫ hy

0

(Πy(Πxu)− (Πxu)(y))
2 dy

]

dx

≤
h2
y

3

∫ hx

0

[
∫ hy

0

1

hx

∫ hx

0

((∂yu)(s, y))
2dsdy

]

dx ≤
h2
y

3
‖uy‖20.

Finally, collecting both estimates in (10) concludes the proof.

Our next aim is to get equivalent estimates if we assume u ∈ H2+σ(Ω) for some
σ ∈ (0, 1). The essential tool will be Theorem 3 (see Appendix) that allows to “inter-
polate” the known result from Lemma 2 and Lemma 3 to an estimate that is valid in
interpolated spaces.

Thus, using the same notation as in Theorem 3, let us define the respective spaces
and the action of the operator T as follows

A1 := L2(Ω), A2 := H1(Ω),

B := L2(Ω), Tu := u−ΠΩu

Indeed, for the rectangle R := (x0, x0 + hx)× (y0, y0 + hy) we know from Lemma 3 that

‖Tu‖0, R ≤ 1

3

√
3hR |u|1,R with hR :=

√

h2
x + h2

y (11)

and therefore ‖T‖H1(R)→L2(R) ≤ 1
3

√
3 hR.

By Cauchy-Schwarz the projection ΠR is L2 stable, i.e.

‖ΠRu‖0, R = |ΠRu| |R| 12 =
1

|R| 12

∣

∣

∣

∣

∫

R

u dx

∣

∣

∣

∣

≤ ‖u‖0, R.

Hence,

‖Tu‖0,R ≤ ‖u‖0, R + ‖ΠRu‖0, R ≤ 2 ‖u‖0,R (12)

which yields ‖T‖L2(R)→L2(R) ≤ 2. Eventually, an application of Theorem 3 (Appendix)
yields a bound on the operator norm of T considered on its domain [L2(R), H1(R)]2,σ:

‖T‖[L2(R),H1(R)]2,σ→L2(R) ≤ 21−σ(
1

3

√
3h)σ.

Summarizing we derived the following

Lemma 4. Let hx, hy > 0, R := (x0, x0 + hx)× (y0, y0 + hy), u ∈ [L2(R), H1(R)]2,σ for

some σ ∈ [0, 1] and the averaging operator ΠR be defined as above. Then the following

estimate holds

‖u−ΠRu‖0,R ≤ Chσ‖u‖[L2(R),H1(R)]2,σ ,

where h := diam(R) and the occuring constant C is independent of the element aspect

ratio.
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Now let us continue to get an anisotropic estimate of the diffusion term. Resuming (7)
we proceed in the same fashion as before: Define uxx|T := ΠTuxx and uxy |T := ΠTuxy

to be the averages of the respective functions on element T and insert the particular
polynomial

p(x, y) =
1

2
uxx|T x2 + uxy |T xy

into (7). Eventually, Lemma 4 yields the fractional estimate

ε|
∫

T

(u− uI)xvx dx| ≤ Cεhσ
(

hx‖uxx‖[L2(T ),H1(T )]2,σ + hy‖uxy‖[L2(T ),H1(T )]2,σ

)

‖vx‖0,T ,

on every element T ∈ Th and hence globally using Lemma 8 of the Appendix:

ε|
∫

Ω

∇(u− uI) · ∇v dx| ≤ Cε
1

2h1+σ
(

‖uxx‖[L2(Ω),H1(Ω)]2,σ + ‖uxy‖[L2(Ω),H1(Ω)]2,σ

)

|v|1,ε,Ω.

Finally, by applying norm equivalence of the fractional Sobolev norm and the norm in
the interpolation space (cf. Theorem 4 in the Appendix) we can summarize the result in
the following

Lemma 5. Let the function u satisfy the regularity assumption u ∈ H2+σ(Ω) for some

σ ∈ [0, 1]. Then the following estimate holds with a constant C independent of the mesh:

ε|
∫

Ω

∇(u− uI) · ∇v dx| ≤ Cε
1

2h1+σ‖u‖2+σ,Ω‖v‖1,ε,Ω. (13)

2.2. The convection term

Let us now continue with the estimation of the convection term
∫

Ω

b · ∇(u− uI)v dx

under low regularity assumptions. First note that without loss of generality it is possible
to assume that the vector field b is piecewise constant on every element. This can easily
be seen by inserting an elementwise constant interpolant b̂ of b:

|
∫

Ω

(b− b̂) · ∇(u− uI)v dx| ≤ h‖b‖1,∞,Ω |u− uI |1,Ω ‖v‖0,Ω ≤ Ch2|u|2,Ω ‖v‖0,Ω.

Thus, we integrate by parts and obtain
∫

Ω

b · ∇(u− uI)v dx = −
∫

Ω

(u− uI)(∇ · b)v dx−
∫

Ω

(u− uI)b · ∇v dx. (14)

The first term can be handled by standard interpolation estimates,

|
∫

Ω

(u− uI)(∇ · b)v dx| ≤ Ch2|u|2,Ω ‖v‖0,Ω.

Hence only the second term still makes trouble. Motivated by what has been done in the
previous subsection we will again add and subtract the second order polynomials

p|T (x, y) =
1

2
uxx|T x2 +

1

2
uyy |T y2
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on every element. Thus, the second term of (14) can be split into
∫

Ω

(u− uI)b · ∇v dx =
∑

T

∫

T

((u− p)− (u− p)I)b · ∇v dx +
∑

T

∫

T

(p− pI)b · ∇v dx.

(15)

This decomposition allows us to treat the first part similar to the steps applied to the
diffusion term. Additionally, an inverse inequality gives

∣

∣

∣

∣

∣

∑

T

∫

T

((u− p)− (u− p)I)b · ∇v dx

∣

∣

∣

∣

∣

≤ Ch2
∑

T

|u− p|2, T ‖b · ∇v‖0, T

≤ Ch1+σ |u|2+σ,Ω ‖v‖0,Ω.

We continue with the second term in (15). Since p ∈ P2 and b · ∇v ∈ P1 one can show
directly that

∑

T

∫

T

(p− pI)b · ∇v dx = − 1

12

∑

T

(

h2
x

∫

T

pxxb · ∇v dx+ h2
y

∫

T

pyyb · ∇v dx

)

,

and hence estimate
∣

∣

∣

∣

∣

∑

T

∫

T

(p− pI)b · ∇v dx

∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∣

∑

T

(h2
x uxx|T + h2

y uyy |T )

∫

T

(b1vx + b2vy) dx

∣

∣

∣

∣

∣

(16)

After expanding (16) every single contributions of these four summands can be estimated
in the same way. As an example we demonstrate the steps for one occuring term. Hereby,
the set T̃h is obtained by discarding from Th all elements which share an edge with the
east boundary, {x ∈ ∂Ω : x = 1}, of Ω. Moreover, for every element T ∈ T̃h, T

+ shall
denote the “east” neighboring element of T . The sets eT and wT refer to the “east” or
the “west” boundary of T , respectively:

∑

T∈Th

h2
x uxx|T

∫

T

b1vx dx = h2
x

∑

T∈Th

uxx|T b1|T

(
∫

eT

−
∫

wT

)

v dy

= h2
x

∑

T∈T̃h

(uxx|T b1|T − uxx|T+ b1|T+)

∫

eT

v dy

= h2
x

∑

T∈T̃h

(uxx|T (b1|T − b1|T+) + b1|T+(uxx|T − uxx|T+))

∫

eT

v dy.

(17)

Before we can continue to estimate the differences of the means on neighboring elements
we need the following two lemmas.

Lemma 6. Let u ∈ H1(I) be defined on the interval I := (0, 2h) for some h > 0 and let

Π(a,b)u := 1
b−a

∫ b

a
u(x) dx be the mean value operator on the interval (a, b) ⊂ I. Then the

difference of the two neighboring means Π(0,h)u and Π(h,2h)u can be bounded by

|Π(0,h)u− Π(h,2h)u| ≤
2
√
2

3
h

1

2 |u|1, I .
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Proof. Let us first assume that the function u ∈ C1(I). Essentially, we insert a zero
such that we can introduce the derivative of u by means of the fundamental theorem of
calculus. The general statement follows from the density of C1(I) in H1(I):

|Π(0,h)u−Π(h,2h)u| =
1

h

∣

∣

∣

∣

∫ h

0

(u(x)− u(h))dx+

∫ 2h

h

(u(h)− u(y))dy

∣

∣

∣

∣

≤ 1

h

∫ h

0

∣

∣

∣

∣

∫ x

h

u′(s)ds

∣

∣

∣

∣

dx+
1

h

∫ 2h

h

∣

∣

∣

∣

∫ h

y

u′(s)ds

∣

∣

∣

∣

dy

≤ 2

3
h

1

2

(

|u|1, (0,h) + |u|1, (h,2h)
)

.

Lemma 7. Let D ⊂ R
2 be open such that D̄ := T̄1 ∪ T̄2 with the neighboring rectangles

T1 := (0, hx)× (0, hy) and T2 := (hx, 2hx)× (0, hy).

Then the neighboring means of some function u ∈ H1(D) can be bounded by

|ΠT1
u− ΠT2

u| ≤ 2
√
2

3

h
1

2
x

h
1

2
y

‖ux‖0, D.

Proof. We want to apply Lemma 6. Thus, write

|ΠT1
u− ΠT2

u| = 1

hy

∣

∣

∣

∣

∫ hy

0

1

hx

(
∫ hx

0

u(x, y)dx−
∫ 2hx

hx

u(x, y)dx

)

dy

∣

∣

∣

∣

≤ 2
√
2

3

h
1

2
x

hy

∣

∣

∣

∣

∣

∫ hy

0

(
∫ 2hx

0

((∂xu)(x, y))
2dx

)

1

2

dy

∣

∣

∣

∣

∣

≤ 2
√
2

3

h
1

2
x

h
1

2
y

‖ux‖0,D.

The fractional version of Lemma 7 is again derived in interpolation spaces.

Corollary 1. Let the assumptions be as in Lemma 7 and σ ∈ [0, 1]. Then

|ΠT1
u− ΠT2

u| ≤ C
h
σ− 1

2
x

h
1

2
y

‖u‖[L2(D),H1(D)]2,σ .

Proof. Since

|ΠT1
u− ΠT2

u| ≤
√
2

h
1

2
xh

1

2
y

‖u‖0,D

the statement follows from Lemma 7 using interpolation spaces.
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Eventually, from (17) we move on by estimating

∣

∣

∣

∣

∣

∣

∑

T∈Th

h2
x uxx|T

∫

T

b1vxdx

∣

∣

∣

∣

∣

∣

≤ Ch2
x

∑

T∈T̃h

(

hx |uxx|T |+
h
σ− 1

2
x

h
1

2
y

‖uxx‖[L2(T∪T+),H1(T∪T+)]2,σ

)

∫

eT

v dy

≤ Ch2
x

(

‖uxx‖0,Ω + hσ−1
x ‖uxx‖[L2(Ω),H1(Ω)]2,σ

)

‖v‖0,Ω
≤ Ch1+σ

x ‖u‖2+σ,Ω‖v‖0,Ω.

Altogether, we continue from (16) and obtain

∣

∣

∣

∣

∣

∑

T

∫

T

(p− pI)b · ∇v dx

∣

∣

∣

∣

∣

≤ Ch1+σ ‖u‖2+σ,Ω‖v‖0,Ω.

Summarizing, the convection term admits the following bound:
∫

Ω

b · ∇(u− uI)v dx ≤ Ch1+σ ‖u‖2+σ,Ω‖v‖0,Ω. (18)

Remark 2. Note that by using standard interpolation estimates, one obtains a bound of

order O(h2) for the reaction term.

Finally, the collection of every single contribution together with (5) allows to summa-
rize the results in the following

Theorem 1. Let σ ∈ [0, 1] and assume u ∈ H2+σ(Ω) for the exact solution of (3).
Furthermore, let uI be the nodal interpolant of u and uh its bilinear finite element approxi-

mation. Then the following bound holds:

‖uI − uh‖1,ε ≤ C(ε
1

2h1+σ + h1+σ + h2)‖u‖2+σ. (19)

3. Numerical experiment for the Galerkin method

Let us now have a look on how numerical experiments reflect the order of convergence
suggested by the theoretical estimates. Because the Galerkin method is not the adequate
method for ε ≪ 1 we only present results for ε = 1 and consider the following convection-
diffusion-reaction boundary value problem

−∆u − 0.5ux − uy + u = 1, u|∂Ω = 0

in domains Ωa that are parallelograms spanned by the two vectors

(

1
0

)

,

(

−x0

1

)

, x0 ≥ 0.

It is well known that the solution exhibits corner singularities in dependence of the obtuse
angle at the origin. Hence, the parameter x0 controls the strength of the singularity at the
origin and thereby the regularity of the solution. A closer investigation using regularity
theory in non-smooth domains (cf. [8], [3] and [6]) reveals that the solution has the
following regularity in dependence of the parameter x0:

u ∈ Hs−δ(Ω), ∀δ > 0, with s = 1 +
1

0.5 + arctan(x0)/π
.
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x0 0.75 0.5 0.25
TOC 1.4188 1.5442 1.7302

EOC(l − 2) 1.4308 1.5627 1.7555
EOC(l − 1) 1.4241 1.5534 1.74865
EOC(l) 1.4230 1.5504 1.7430

Table 1: Rates of convergence for ‖uI − uh‖1,ε.

For three different values of x0 we compare in Table 1 the theoretical and experimental
orders of convergence (TOC/EOC) for the quantity ‖uI−uh‖1,ε. The EOCs are displayed
for the last three levels of uniform grid refinement. Since for this example we cannot access
the exact solution, a reference solution is computed on level l + 1 using biquadratic Q2

elements that substitutes for the exact solution. One observes that the numerical rates
are astonishingly close to the theoretical orders of supercloseness.

4. SDFEM error analysis

Let us now turn to the streamline-diffusion finite element method (SDFEM) as a dis-
cretization for the boundary value problem (1). Using the same finite element space Vh

as in Section 2, the discrete problem related to the SDFEM reads as follows:

Find u ∈ Vh such that for all v ∈ Vh

aSD(u, v) :=a(u, v)+
∑

T∈Th

δT (−ε∆u+ b · ∇u+ cu, b · ∇v)T =(f, v)+
∑

T∈Th

δT (f,b · ∇v)T ,

(20)

where (., .) and (., .)T denote the standard L2 scalar products on Ω or T respectively. The
parameters δT have to be chosen for all elements T . If for an arbitrary element we define
the local Péclet number by

PeT :=
‖b‖∞,ThT

2ε

then the analysis of the SDFEM (cf. [7]) suggests on isotropic meshes to choose the
following values for δT :

δT =

{

δ0hT/‖b‖∞,T , if PeT > 1

δ1h
2
T/ε, if PeT ≤ 1,

with appropriate user chosen constants δ0 and δ1. Next we introduce the streamline-
diffusion norm

‖v‖2SD := ε|v|21 + ‖v‖20 +
∑

T∈Th

δT‖b · ∇v‖20,T , (21)

in which one shows coercivity of the bilinear form, cf. [7]. Since the SDFEM still preserves
consistency of the discretization we have, similar to (5),

αSD‖uI − uh‖2SD ≤ aSD(u
I − uh, u

I − uh) = aSD(u
I − u, uI − uh). (22)
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The streamline-diffusion finite element method was proposed by Hughes et al. in [4] and
first analyzed by Johnson and Nävert [5] in order to handle the known instabilities of the
Galerkin method. It was proved in the SD-norm that for linear or bilinear elements

‖u− uh‖SD ≤ C(ε
1

2 + h
1

2 )h|u|2, (23)

which carries over to a bound for ‖uI−uh‖SD and also implies convergence in L2 with order

O(h
3

2 ) (assuming ε ≤ Ch, the convection-dominated case). Remark that for problem (1)
the application of the Nitsche-Trick for proving optimal L2 convergence is not possible.

In several papers the optimal accuracy of the SDFEM in L2 was discussed depending
on the geometry of the mesh (see [12]). Using Lin identities (cf. [10], [9] and [11]) one
can prove a supercloseness result on tensor product meshes or uniform triangular meshes
of the type

‖uI − uh‖SD ≤ C(ε
1

2h2 + h2)(|u|3 + |u|2,∞) (24)

which implies L2 convergence of optimal order O(h2) in the convection-dominated case.
By imitating the techniques for the Galerkin bilinear form in Section 2 on the two

essential additional stabilizing terms in (20) we derive the following bounds

∑

T

δT

∫

T

b · ∇(u− uI)b · ∇v dx ≤ Ch1+σ‖u‖2+σ,Ω‖v‖SD,Ω,

ε
∑

T

δT

∫

T

∆ub · ∇v dx ≤ Cεhσ‖u‖2+σ,Ω‖v‖SD.

Together with the estimates for the Galerkin bilinear form, inequalitites (22) and (23)
the above bounds yield the result

‖uI − uh‖SD ≤ C(ε
1

2h1+σ + hmax{ 3

2
,1+σ} + ε

1

2 min{h, ε 1

2hσ})‖u‖2+σ,Ω

≤ Chmax{ 3

2
,1+σ}‖u‖2+σ,Ω, for ε ≤ Ch.

For σ < 1
2
these estimates seem to be suboptimal since the regularity does not have

any impact on the rate of convergence in this case. In fact, it is possible to improve
these bounds by pursuing a different strategy. The idea is to take the known bounds
for H2- and H3-regularity and apply Theorem 3 of the Appendix to obtain fractional
estimates. The bounds (24) obtained via Lin identities, however, are not practicable for
the interpolation theorem, since they involve norms in two different spaces to measure
the regularity. However, using the techniques from the Galerkin estimates above, it is
possible to get rid of the | . |2,∞ norm at the right hand side of (24):

Let us first consider the convection term. From the derivation of (18) and the analysis
leading to the standard estimate (23) (cf. [7]) one recalls that

∣

∣(b · ∇(u− uI), v)
∣

∣ ≤ Ch2‖u‖3‖v‖SD,
∣

∣(b · ∇(u− uI), v)
∣

∣ ≤ Ch
3

2 |u|2‖v‖SD,Ω. (25)

For every v ∈ Vh let us define the operator Tv : H2(Ω) → R : u 7→
∫

Ω
b · ∇(u − uI)v dx.

Since from (25) we know upper bounds for ‖Tv‖H2(Ω)→R and ‖Tv‖H3(Ω)→R an application
of Theorem 3 yields the interpolated estimate

|
∫

Ω

b · ∇(u− uI)v dx| ≤ Ch
3

2
+σ

2 ‖u‖2+σ‖v‖SD. (26)
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‖u‖2 ‖u‖3 ‖u‖2+σ

∫

b · ∇(u− uI)v h
3

2 h2 h
3

2
+σ

2

∑

δT
∫

b · ∇(u− uI)b · ∇v h
3

2 h2 h
3

2
+σ

2

ε
∑

δT
∫

∆(u− uI)b · ∇v ε
1

2h εh ε
1

2
+σ

2 h

Table 2: Interpolation results.

Analogously, a similar definition of operators {Tv}v∈Vh
adapted to the remaining terms

in the stabilized bilinear form aSD(., .) together with Theorem 3 of the Appendix yields
their respective fractional bounds. Table 2 shows the known error bounds for H2- and
H3-regularity and the interpolated result. A collection of every single contribution and
the representation of the error (22) yields the final estimate that only requires H2+σ-
regularity:

Theorem 2. Let σ ∈ [0, 1] and assume u ∈ H2+σ(Ω) for the exact solution of (3).
Furthermore, let uI be the nodal interpolant of u and uh its bilinear finite element approxi-

mation using streamline diffusion stabilization. Then the following bound holds:

‖uI − uh‖SD ≤ C(ε
1

2h1+σ + h
3

2
+σ

2 + h2 + ε
1

2
+σ

2 h) ‖u‖2+σ. (27)

5. Numerical Experiments for the SDFEM

The folowing numerical experiment shall illustrate the dependency of the rate of
supercloseness on the regularity of the solution in comparison with (27). Thus, consider
the following homogeneous Dirichlet boundary value problem in the domain Ω = (0, 1)2

with ε = 10−3:

−ε∆u−
(

1 + x
1 + y

)

· ∇u+ (2 + x2)u = f. (28)

We assume the exact solution of (28) to be

uex(x) = |x|−αxy(1− x)(1− y)

and determine the source term f such that uex satisfies the differential equation (28).
A closer investigation shows that the parameter α > 0 controls the regularity in the
following way

uex ∈ H3−α−δ(Ω), ∀δ > 0.

For the computations we choose several values for α. The corresponding regularity of uex

together with the experimental orders of supercloseness of the last three uniform refine-
ments are displayed in Table 3. Concerning the decay of ‖uI − uh‖SD one observes that
indeed the order of convergence depends on the regularity of the solution. However, the
observed rates reflect slightly better convergence properties than the theory predicts.
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s : uex ∈ Hs(Ω) 2.1 2.2 2.3 2.7
EOC(l − 2) 1.6251 1.7398 1.8549 2.0416
EOC(l − 1) 1.6176 1.7294 1.8442 2.0260
EOC(l) 1.6140 1.7229 1.8366 2.0162

Table 3: EOC for ‖uI − uh‖SD.

A. Appendix - Interpolation Spaces

Here we give a short survey of some facts about interpolation spaces as far as their
properties have been used in the article. The interpolation spaces are to be understood
in the sense of the “real interpolation method”. For more information and a proof of the
main theorems the reader is referred to [2] and [1].

First, for two Banach spaces A1 and A2 with A2 ⊂ A1 we give a definition of the
interpolation space [A1, A2]2,σ (which is also a Banach space).

Definition 1. Let A1, A2 with A2 ⊂ A1 be two Banach spaces and σ ∈ (0, 1). The Banach
space [A1, A2]2,σ consists of all u ∈ A1 that are finite in the following norm

‖u‖[A1,A2]2,σ :=

(

∫ ∞

0

t−2σ−1

(

inf
v∈A2

(‖u− v‖A1
+ t‖v‖A2

)

)2

dt

)
1

2

. (29)

Moreover we agree on the convention that [A1, A2]2,0 := A1 and [A1, A2]2,1 := A2.

Concerning interpolation spaces, the main tool used in this article is the following
Theorem formulated in terms of operators on these very spaces.

Theorem 3. Let A1, A2 with A2 ⊂ A1 and B be three Banach spaces and let T be

a linear operator that maps A1 to B. Furthermore let A12 denote the interpolation space

[A1, A2]2,σ for some σ ∈ (0, 1). Then T can be considered as a linear operator from A12

to B. Moreover, the corresponding operator norm satisfies

‖T‖A12→B := sup
u∈A12\{0}

‖Tu‖B
‖u‖A12

≤ ‖T‖1−σ
A1→B ‖T‖σA2→B.

Furthermore, it is possible to characterize the following particular interpolation spaces
as fractional order Sobolev spaces. A proof of the subsequent theorem can be found, e.g.,
in [2].

Theorem 4. Let σ ∈ [0, 1]. For all domains Ω with Lipschitz boundary one has

Hσ(Ω) = [L2(Ω), H
1(Ω)]σ,2

and the norms are equivalent.

Also note that in order to sum up estimates that were derived locally one needs the
following summation property for (29) which follows from a direct calculation.

Lemma 8. Let Ω be a domain and T a partition on Ω. Then
∑

T∈Th

‖u‖2[L2(T ),H1(T )]σ,2
≤ 2‖u‖2[L2(Ω),H1(Ω)]σ,2

.
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