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[ encountered Professor Ktizek for the first time when he defended his CSc.-degree;
I was a member of the committee. One of his results fascinated me. It has the fol-
lowing form:

Kiizek’s lemma (on a decomposition of a polygon and a polyhedron into
convex components)

a) For every polygon Q) there exists a finite number of convex polygons with
mutually disjoint interiors the union of which is €.

b) For every polyhedron © there exists a finite number of convex polyhedrons
with mutually disjoint interiors the union of which is Q.

Definition. a) By a polygon we understand every nonempty, bounded and closed
domain in R? the boundary of which can be expressed as a union of a finite number
of segments.

b) By a polyhedron we understand every nonempty, bounded and closed domain
in R? the boundary of which can be expressed as a union of a finite number of
polygons with mutually disjoint interiors.

Proof of Krizek’s lemma. The proof is presented in the three-dimensional case; this
part of Lemma will play a fundamental role in the proof of the Gauss-Ostrogradskij
theorem. In the two-dimensional case the proof is analogous but simpler.

The proof is a part of the proof of a more general theorem (see [2]). However,
because of the importance of the lemma we reproduce the corresponding part of
Kfizek’s proof in a slightly extended form.

Let Q be an arbitrary polyhedron and let 7', ..., 7™ be polygons the union of
which is the boundary 0. Let o', ..., 0™ be such planes that 7 C o', i =1,...,m.
It may happen that some of these planes coincide. Without loss of generality let us
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assume that o', ..., o (k < m) are mutually different planes and each o' (k < i < m)
belongs to the set {o',...,0"}. Let Q,...,9Q, C R? be all connected components
k

of the set Q\ J ¢ (i.e., the connected components which arise after “cutting up”
i=1

the polyhedron Q by the planes 0'). The number of these components is finite (at
most 2%). We assert that Q; (j = 1,...,7) are the sought convex polyhedrons. First

k
we show that §2; are open sets. As 9Q C |J ¢' we have
i=1

k k
a\Je=a\{Je
i=1 =1

k

This set is open because () is an open set and | J ¢' is a closed set, and components
i=1

of an open set are open.

Further we prove the convexity of ﬁj. Let j € {1,...,r} be an arbitrary fixed
integer. Each plane ¢’ (i = 1,...,k) divides the space R? into two half-spaces. Let
us denote by Q¢ the closed half-space, which is bounded by the plane ¢’ and which

_ koo —
contains €2;, and let us denote M := () @'. Then we have 2; C M. The converse

=1
inclusion will be proved by contradiction. Let us assume that there exists a point
Pe M\ Q,. AsQ;is a closed set we have R = dist (P, (2;) > 0; this means that

M\ﬁj DMQSR('P) 7é®,

where Sg(P) is an open ball of the radius R and with the center at P. Let X €
M NSz (P) be a point that does not belong to any plane o', ..., ¢* and let Y be an
arbitrary interior point of ﬁj (such a point certainly exists because €2; is a domain).
Then inside the segment XY there exists such a point Z that Z € 9€; (because
X ¢ Q;). As Z is a boundary point of ; there exists a plane ¢* (1 < s < k) such
that Z € p° and this plane separates the points X a Y because X ¢ 0°, Y ¢ ¢°.

This implies that X ¢ @°, which contradicts the fact that X € M C @Q*. Hence

k
Q=
i=1

and this intersection is evidently bounded and has at least one interior point. In
other words, §2; is a convex polyhedron.

Further, the definition of components €; (j = 1,...,7), i.e., the relation
k r
a\Je' =Jo,
i=1 j=1
implies immediately that Q = |J Q;. O
j=1
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The rest of the paper is devoted to a very important application of Kiizek’s
lemma — the proof of a general form of the Gauss-Ostrogradskij theorem.

1. The elementary form of the Gauss—Ostrogradskij theorem

Definition 1. a) A bounded domain Q C R? is called elementary with respect to
the coordinate plane (x,y) if every straight-line p parallel to the z-axis and such that
p N Q # 0 intersects the boundary 99 at two points or has with Q a common
segment which can degenerate into a point.

b) Analogously we define domains elementary with respect to the plane (x, z), or with
respect to the plane (y, z).

¢) A bounded domain € is called elementary if it is elementary with respect to all
three coordinate planes.

Remark 1. Every bounded convex domain is elementary.

Definition 2. a) We say that a set S is a part of a surface which is regular with
respect to the coordinate plane (x,y), if the points [z,y, z] € S satisfy

Z:f(xay)a [x,y] Ega:y

where S, is a simply connected two-dimensional bounded closed domain lying in the
plane (x,y) which is bounded by a simple piecewise smooth closed curve 95, and
f:S4y — R'is a real function continuous on S,, which has continuous first partial

derivatives f, = %, fy = g—i in S;, (where the symbol S,, denotes the interior of

Siy, 1€y Szy = Siy \ OS4y; these derivatives can be unbounded in S,,). The closed
domain S, is called the orthogonal projection of the part S onto the plane (x,y).
b) Similarly we say that aset S is a part of a surface which is reqular with
respect to the coordinate plane (z, z) (or (y, z)), if the points [z,y, 2] € S satisfy

y=g(z,2), [z,2] € S,

or B
€r = h(y> Z)a [y, Z] S Syz>

where the closed domains S,., S,. and the functions g : S,, — R!, h: S,, — R!
have analogous properties as the closed domain ?xy and the function f : gxy — R
The closed two-dimensional domains S,, and S, are called orthogonal projections
of the part S onto the planes (z, z) and (y, 2).

Definition 3. We say that a part S has property (R) if it satisfies at least one of
the following three conditions:

a) the part S is regular with respect to all three coordinate planes;

b) the orthogonal projection of the part S onto one of the three coordinate planes
has the two-dimensional measure equal to zero; the part S is regular with respect to
the remaining two coordinate planes;

¢) two components of the vector n(z, v, z) equal zero for all points [z,y, 2] € S.
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Lemma 1. Let a domain 2 be elementary with respect to the plane (z,y) and let
its boundary 0 consist of a finite number of parts with property (R) which have
mutually disjoint interiors. Then these parts can be divided into three groups with
the following properties:

a) The union of parts belonging to the first group forms a part D' whose points
[x,y, z] satisfy the equation

z=zu(zy), vy €Dy, (1)

where z; is a continuous function.
b) The union of parts belonging to the second group forms a part D? whose points
[x,y, z] satisfy the equation

z=2(y), [vy€D;, (2)

where z5 is a continuous function. At the same time we have

Dl _D2

xy)

Zl(l‘ay) < ZQ("L‘ay) V[:E7y] € Dal:y

¢) The normal vector n = (cos«, cosf3,cosvy) of the parts belonging to the third
group satisfies
cosy = 0.

The set of the parts belonging to the third group can be empty.

Proof. The assertion is evident. 0

Theorem 1. Let the boundary 0f2 of an elementary domain 2 be the union of
a finite number of parts with property (R). Let functions P,Q, R be continuous
on Q and let the derivatives OP/dz, 0Q/dy, OR/dz be continuous on €. Let the
positive direction of the unit normal n be the direction of the outer normal. Then

orP 0 OR
/// ( —Q + 5) dzdydz = // (Pdydz + Qdaxdz + Rdady). (3)
o0
Proof. By Lemma 1 and the Fubini theorem
z2(x,y) OR
// — dadydz = // / —dz daxdy =
DL, z1(x,y) 0z
D3y Dyy

(4)
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Owing to the orientation of the normal, we have cosy < 0 on D! and cosy > 0
on D?. Thus (4) can be rewritten in the form (where e, = 1if y < 7/2 and e, = —1
if v > m/2)

// — dadydz = 52// (z,y, zo(x,y)) dedy +€Z// (z,y,z1(z,y)) dedy.
D2, DL,

(5)
As the boundary 02 can be expressed as the union of the surfaces (1), (2) and the
parts for which cosy = 0, the right-hand side of (5) is equal to the surface integral

[, Rdzdy. Hence
/ / / dadydz = / /8 fdady. (6)

/ / / dedyds = / / P dydz, (7)
/// o dzdydz = /BQ Q dxdz. (8)

Summing (6)—(8), we obtain (3). O

Similarly we obtain

Theorem 2. Let a domain €2 be the union of a finite number of elementary domains
ﬁl, ..., Q" which have mutually disjoint interiors. Let the boundary Q' of each

domain Q' (i = 1,...,n) be the union of a finite number of parts with property (R).
Let functions P,Q, R be continuous on Q and let the derivatives dP/dx, 0Q/dy,
OR/0z be continuous on . Let the unit normal n of the boundary 9§ be oriented
in the direction of the outer normal. Then

/// (ap @Mg—f) dxdydzz//ém(dederdederRdxdy). (9)

Proof. The assumption concerning the normal n enables us to orient the normal of
each boundary 9 in the direction of the outer normal of Q’; hence

/// (ap 9@, aa]j) dxdydz—Z///l<aP oQ aa]j) dadydz

= Z // (Pdydz 4+ Q dzdz + Rdady)
i=1 7 /o
= // (Pdydz + Q dzdz + Rdxdy),
o0

because at every point P € Q which satisfies the relation P € 907 N9QF (j # k) two
opposite normals meet - one belonging to 9 and the other to 9OF. OJ
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2. A more general form of the Gauss—Ostrogradskij theorem

Verifying the assumptions of Theorem 2 concerning the domain €2 is in most cases
very difficult: Let us consider, for example, a domain (the so called “cheese ball with
many bubbles”)

Q:KO\UKla

i=1

where Ky, K1, ..., K, are balls with properties
KicKy, (i=1,...,n), K,NK;=0 (i#j; i,j=1,...,n).

To make the Gauss-Ostrogradskij theorem applicable in general use we must
substitute its assumption concerning the domain 2 by an assumption which would
enable us to check only the properties of the boundary 0.

Almost every Czech mathematician knows that satisfactory proofs of Ostrograd-
skij’s theorem are introduced in [1] and [3]. As for me, after having been acquainted
with Kiizek’s lemma I did not seek other proofs.

Definition 4. We say that a part S has property (R*) (or property (R*)) if it
satisfies conditions a)—c) (or conditions a)-d)) where
a) the part S has property (R);
b) if

z:f(:c,y), y:g(l',Z), x:h(yaz)
are functions appearing in the analytical expressions of the part S with respect to the
coordinate planes then at least one of the three relations f € C?(S.,), g € C*(Ss.),
h € C*(S,.) holds;
c) if measy Sy > 0, then the boundary 0Sy; is piecewise of class C* and has no cusp-
points;
d) at least one of the plane domains Smy, Sez, Syz is starlike. (A domain D is starlike
if there exists at least one point QQ € D such that every half-line starting from this
point intersects 0D at just one point.)

Theorem 3 (Gauss-Ostrogradskij). Let Q be a three-dimensional bounded closed
domain whose boundary 02 is the union of a finite number of parts with property (R*),
which have mutually disjoint interiors. Let functions

P, Q, R, 9P/dx, 0Q/dy, OR/0z

be continuous and bounded in a bounded three-dimensional domain Q satisfying
Q D Q. Let the unit normal n of the boundary 0f2 be oriented in the direction of
the outer normal of 02, which exists at almost all points of 0€2. Then

/// (ap 8@ g]:) dzdydz = //m Pdydz 4+ Qdzdz + Rdzdy).  (10)

314



Sketch of the proof. In a detailed proof (see [4], or [5], Chapter 20) the theorem is
first proved in the case that the parts forming 02 have property (R**). At the end
it is shown how to change the proof when these parts have only property (R*).

A) Let us choose § > 0 arbitrary but fixed (6 < 1). In this part of the proof it is shown
(in details see [4] or [5], Chapter 20) how to approximate a part with property (R**)
by a “panel-shaped” surface which consists of triangular panels whose longest side
has a length which is less or equal to §. This approximation will be constructed in
such a way that if

is a decomposition of d€ into parts with property (R™) and S? is a panel-shaped
surface approximating .5;, then

*=J5! (12)
i=1
is a boundary of a polyhedron satisfying

SIS =0 (i#jij=1,....n) (13)

and with vertices lying on J€2. The closed bounded three-dimensional domain with
the boundary 9Q° will be denoted by °.

B) As Q? is a polyhedron, we can express it by Kifzek’s lemma in the form

= 6 Uj, (14)

where Uy, ..., U, are closed convex polyhedrons. Let us orientate the normal to OU;
as the outer normal of U; (5 =1,...,m). Relation (14) and the proof of Theorem 2
yield

///Qa (ap W gf) dxdydz‘Z/// (ap oe (Zf) drdydz

- Z // (Pdydz + Qdzdz + R dzdy)
=17 JoU;

://E)Q(S(dedz—l—dedszRdxdy), (15)

because the surface integrals over OU; N OU}, altogether cancel.

C) It remains to prove that

[ (22 %g_fj)ddyd ; /// G



and

6—0

lim // (Pdydz + Qdaxdz + Rdady) = // (Pdydz + Q daxdz + Rdxdy). (17)
o0s o9

The proof of (17) is long and complicated and we refer to [4], or [5], Chapter 20.
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