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I encountered Professor Kř́ıžek for the first time when he defended his CSc.-degree;
I was a member of the committee. One of his results fascinated me. It has the fol-
lowing form:

Kř́ıžek’s lemma (on a decomposition of a polygon and a polyhedron into
convex components)

a) For every polygon Ω there exists a finite number of convex polygons with
mutually disjoint interiors the union of which is Ω.

b) For every polyhedron Ω there exists a finite number of convex polyhedrons
with mutually disjoint interiors the union of which is Ω.

Definition. a) By a polygon we understand every nonempty, bounded and closed
domain in R

2 the boundary of which can be expressed as a union of a finite number
of segments.
b) By a polyhedron we understand every nonempty, bounded and closed domain
in R

3 the boundary of which can be expressed as a union of a finite number of
polygons with mutually disjoint interiors.

Proof of Kř́ı̌zek’s lemma. The proof is presented in the three-dimensional case; this
part of Lemma will play a fundamental role in the proof of the Gauss–Ostrogradskij
theorem. In the two-dimensional case the proof is analogous but simpler.

The proof is a part of the proof of a more general theorem (see [2]). However,
because of the importance of the lemma we reproduce the corresponding part of
Kř́ıžek’s proof in a slightly extended form.

Let Ω be an arbitrary polyhedron and let π1, . . . , πm be polygons the union of
which is the boundary ∂Ω. Let ̺1, . . . , ̺m be such planes that πi ⊂ ̺i, i = 1, . . . , m.
It may happen that some of these planes coincide. Without loss of generality let us
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assume that ̺1, . . . , ̺k (k ≤ m) are mutually different planes and each ̺i (k < i ≤ m)
belongs to the set {̺1, . . . , ̺k}. Let Ω1, . . . ,Ωr ⊂ R3 be all connected components

of the set Ω \
k⋃

i=1

̺i (i.e., the connected components which arise after “cutting up”

the polyhedron Ω by the planes ̺i). The number of these components is finite (at
most 2k). We assert that Ωj (j = 1, . . . , r) are the sought convex polyhedrons. First

we show that Ωj are open sets. As ∂Ω ⊂
k⋃

i=1

̺i we have

Ω \
k⋃

i=1

̺i = Ω \
k⋃

i=1

̺i.

This set is open because Ω is an open set and
k⋃

i=1

̺i is a closed set, and components

of an open set are open.
Further we prove the convexity of Ωj . Let j ∈ {1, . . . , r} be an arbitrary fixed

integer. Each plane ̺i (i = 1, . . . , k) divides the space R
3 into two half-spaces. Let

us denote by Qi the closed half-space, which is bounded by the plane ̺i and which

contains Ωj , and let us denote M :=
k⋂

i=1

Qi. Then we have Ωj ⊂ M . The converse

inclusion will be proved by contradiction. Let us assume that there exists a point
P ∈ M \ Ωj . As Ωj is a closed set we have R = dist (P,Ωj) > 0; this means that

M \ Ωj ⊃ M ∩ SR(P) 6= ∅,

where SR(P) is an open ball of the radius R and with the center at P . Let X ∈
M ∩ SR(P) be a point that does not belong to any plane ̺1, . . . , ̺k and let Y be an
arbitrary interior point of Ωj (such a point certainly exists because Ωj is a domain).
Then inside the segment XY there exists such a point Z that Z ∈ ∂Ωj (because
X /∈ Ωj). As Z is a boundary point of Ωj there exists a plane ̺s (1 ≤ s ≤ k) such
that Z ∈ ̺s and this plane separates the points X a Y because X /∈ ̺s, Y /∈ ̺s.
This implies that X /∈ Qs, which contradicts the fact that X ∈ M ⊂ Qs. Hence

Ωj =
k⋂

i=1

Qi

and this intersection is evidently bounded and has at least one interior point. In
other words, Ωj is a convex polyhedron.

Further, the definition of components Ωj (j = 1, . . . , r), i.e., the relation

Ω \
k⋃

i=1

̺i =

r⋃

j=1

Ωj ,

implies immediately that Ω =
r⋃

j=1

Ωj. �
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The rest of the paper is devoted to a very important application of Kř́ıžek’s
lemma – the proof of a general form of the Gauss-Ostrogradskij theorem.

1. The elementary form of the Gauss–Ostrogradskij theorem

Definition 1. a) A bounded domain Ω ⊂ R
3 is called elementary with respect to

the coordinate plane (x, y) if every straight-line p parallel to the z-axis and such that
p ∩ Ω 6= ∅ intersects the boundary ∂Ω at two points or has with ∂Ω a common
segment which can degenerate into a point.
b) Analogously we define domains elementary with respect to the plane (x, z), or with
respect to the plane (y, z).
c) A bounded domain Ω is called elementary if it is elementary with respect to all
three coordinate planes.

Remark 1. Every bounded convex domain is elementary.

Definition 2. a) We say that a set S is a part of a surface which is regular with
respect to the coordinate plane (x, y), if the points [x, y, z] ∈ S satisfy

z = f(x, y), [x, y] ∈ Sxy

where Sxy is a simply connected two-dimensional bounded closed domain lying in the
plane (x, y) which is bounded by a simple piecewise smooth closed curve ∂Sxy, and
f : Sxy → R

1 is a real function continuous on Sxy which has continuous first partial
derivatives fx ≡ ∂f

∂x
, fy ≡ ∂f

∂y
in Sxy (where the symbol Sxy denotes the interior of

S̄xy, i.e., Sxy = S̄xy \ ∂Sxy; these derivatives can be unbounded in Sxy). The closed
domain S̄xy is called the orthogonal projection of the part S̄ onto the plane (x, y).
b) Similarly we say that a set S is a part of a surface which is regular with
respect to the coordinate plane (x, z) (or (y, z)), if the points [x, y, z] ∈ S̄ satisfy

y = g(x, z), [x, z] ∈ S̄xz,

or
x = h(y, z), [y, z] ∈ S̄yz,

where the closed domains Sxz, Syz and the functions g : Sxz → R
1, h : Syz → R

1

have analogous properties as the closed domain Sxy and the function f : Sxy → R
1.

The closed two-dimensional domains Sxz and Syz are called orthogonal projections
of the part S̄ onto the planes (x, z) and (y, z).

Definition 3. We say that a part S has property (R) if it satisfies at least one of
the following three conditions:
a) the part S is regular with respect to all three coordinate planes;
b) the orthogonal projection of the part S onto one of the three coordinate planes
has the two-dimensional measure equal to zero; the part S is regular with respect to
the remaining two coordinate planes;
c) two components of the vector n(x, y, z) equal zero for all points [x, y, z] ∈ S.
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Lemma 1. Let a domain Ω be elementary with respect to the plane (x, y) and let
its boundary ∂Ω consist of a finite number of parts with property (R) which have
mutually disjoint interiors. Then these parts can be divided into three groups with
the following properties:
a) The union of parts belonging to the first group forms a part D̄1 whose points
[x, y, z] satisfy the equation

z = z1(x, y), [x, y] ∈ D̄1
xy, (1)

where z1 is a continuous function.
b) The union of parts belonging to the second group forms a part D̄2 whose points
[x, y, z] satisfy the equation

z = z2(x, y), [x, y] ∈ D̄2
xy, (2)

where z2 is a continuous function. At the same time we have

D̄1
xy = D̄2

xy,

z1(x, y) ≤ z2(x, y) ∀[x, y] ∈ D̄1
xy.

c) The normal vector n = (cosα, cosβ, cos γ) of the parts belonging to the third
group satisfies

cos γ ≡ 0.

The set of the parts belonging to the third group can be empty.

Proof. The assertion is evident. �

Theorem 1. Let the boundary ∂Ω of an elementary domain Ω be the union of
a finite number of parts with property (R). Let functions P,Q,R be continuous
on Ω and let the derivatives ∂P/∂x, ∂Q/∂y, ∂R/∂z be continuous on Ω. Let the
positive direction of the unit normal n be the direction of the outer normal. Then

∫∫∫

Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz =

∫∫

∂Ω

(P dydz +Q dxdz +R dxdy). (3)

Proof. By Lemma 1 and the Fubini theorem

∫∫∫

Ω

∂R

∂z
dxdydz =

∫∫

D1
xy

{∫ z2(x,y)

z1(x,y)

∂R

∂z
dz

}
dxdy =

=

∫∫

D2
xy

R(x, y, z2(x, y)) dxdy −

∫∫

D1
xy

R(x, y, z1(x, y)) dxdy.

(4)
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Owing to the orientation of the normal, we have cos γ < 0 on D1 and cos γ > 0
on D2. Thus (4) can be rewritten in the form (where εz = 1 if γ < π/2 and εz = −1
if γ > π/2)

∫∫∫

Ω

∂R

∂z
dxdydz = εz

∫∫

D2
xy

R(x, y, z2(x, y)) dxdy + εz

∫∫

D1
xy

R(x, y, z1(x, y)) dxdy.

(5)
As the boundary ∂Ω can be expressed as the union of the surfaces (1), (2) and the
parts for which cos γ = 0, the right-hand side of (5) is equal to the surface integral∫∫

∂Ω
R dxdy. Hence ∫∫∫

Ω

∂R

∂z
dxdydz =

∫∫

∂Ω

R dxdy. (6)

Similarly we obtain

∫∫∫

Ω

∂P

∂x
dxdydz =

∫∫

∂Ω

P dydz, (7)
∫∫∫

Ω

∂Q

∂y
dxdydz =

∫∫

∂Ω

Q dxdz. (8)

Summing (6)–(8), we obtain (3). �

Theorem 2. Let a domain Ω be the union of a finite number of elementary domains

Ω
1
, . . . ,Ω

n
which have mutually disjoint interiors. Let the boundary ∂Ωi of each

domain Ωi (i = 1, . . . , n) be the union of a finite number of parts with property (R).
Let functions P,Q,R be continuous on Ω and let the derivatives ∂P/∂x, ∂Q/∂y,
∂R/∂z be continuous on Ω. Let the unit normal n of the boundary ∂Ω be oriented
in the direction of the outer normal. Then

∫∫∫

Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz =

∫∫

∂Ω

(P dydz +Q dxdz +R dxdy). (9)

Proof. The assumption concerning the normal n enables us to orient the normal of
each boundary ∂Ωi in the direction of the outer normal of Ωi; hence

∫∫∫

Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz =

n∑

i=1

∫∫∫

Ωi

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz

=

n∑

i=1

∫∫

∂Ωi

(P dydz +Q dxdz +R dxdy)

=

∫∫

∂Ω

(P dydz +Q dxdz +R dxdy),

because at every point P ∈ Ω which satisfies the relation P ∈ ∂Ωj ∩∂Ωk (j 6= k) two
opposite normals meet - one belonging to ∂Ωj and the other to ∂Ωk. �
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2. A more general form of the Gauss–Ostrogradskij theorem

Verifying the assumptions of Theorem 2 concerning the domain Ω is in most cases
very difficult: Let us consider, for example, a domain (the so called “cheese ball with
many bubbles”)

Ω̄ = K̄0 \
n⋃

i=1

Ki ,

where K̄0, K̄1, . . . , K̄n are balls with properties

K̄i ⊂ K0 (i = 1, . . . , n), K̄i ∩ K̄j = ∅ (i 6= j; i, j = 1, . . . , n).

To make the Gauss–Ostrogradskij theorem applicable in general use we must
substitute its assumption concerning the domain Ω by an assumption which would
enable us to check only the properties of the boundary ∂Ω.

Almost every Czech mathematician knows that satisfactory proofs of Ostrograd-
skij’s theorem are introduced in [1] and [3]. As for me, after having been acquainted
with Kř́ıžek’s lemma I did not seek other proofs.

Definition 4. We say that a part S̄ has property (R∗) (or property (R∗∗)) if it
satisfies conditions a)–c) (or conditions a)–d)) where
a) the part S̄ has property (R);
b) if

z = f(x, y), y = g(x, z), x = h(y, z)

are functions appearing in the analytical expressions of the part S̄ with respect to the
coordinate planes then at least one of the three relations f ∈ C2(S̄xy), g ∈ C2(S̄xz),
h ∈ C2(S̄yz) holds;
c) if meas2Sst > 0, then the boundary ∂Sst is piecewise of class C2 and has no cusp-
points;
d) at least one of the plane domains S̄xy, S̄xz, S̄yz is starlike. (A domain D̄ is starlike
if there exists at least one point Q ∈ D such that every half-line starting from this
point intersects ∂D at just one point.)

Theorem 3 (Gauss–Ostrogradskij). Let Ω be a three-dimensional bounded closed
domain whose boundary ∂Ω is the union of a finite number of parts with property (R∗),
which have mutually disjoint interiors. Let functions

P, Q, R, ∂P/∂x, ∂Q/∂y, ∂R/∂z

be continuous and bounded in a bounded three-dimensional domain Ω̃ satisfying
Ω̃ ⊃ Ω. Let the unit normal n of the boundary ∂Ω be oriented in the direction of
the outer normal of ∂Ω, which exists at almost all points of ∂Ω. Then

∫∫∫

Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz =

∫∫

∂Ω

(P dydz +Q dxdz +R dxdy). (10)
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Sketch of the proof. In a detailed proof (see [4], or [5], Chapter 20) the theorem is
first proved in the case that the parts forming ∂Ω have property (R∗∗). At the end
it is shown how to change the proof when these parts have only property (R∗).

A) Let us choose δ > 0 arbitrary but fixed (δ < 1). In this part of the proof it is shown
(in details see [4] or [5], Chapter 20) how to approximate a part with property (R∗∗)
by a “panel-shaped” surface which consists of triangular panels whose longest side
has a length which is less or equal to δ. This approximation will be constructed in
such a way that if

∂Ω =
n⋃

i=1

S̄i, Si ∩ Sj = ∅ (i 6= j) (11)

is a decomposition of ∂Ω into parts with property (R∗∗) and S̄δ
i is a panel-shaped

surface approximating S̄i, then

∂Ωδ :=
n⋃

i=1

S̄δ
i (12)

is a boundary of a polyhedron satisfying

Sδ
i ∩ Sδ

j = ∅ (i 6= j; i, j = 1, . . . , n) (13)

and with vertices lying on ∂Ω. The closed bounded three-dimensional domain with
the boundary ∂Ωδ will be denoted by Ω̄δ.

B) As Ω̄δ is a polyhedron, we can express it by Kř́ıžek’s lemma in the form

Ω̄δ =
m⋃

j=1

Ūj, (14)

where Ū1, . . . , Ūm are closed convex polyhedrons. Let us orientate the normal to ∂Uj

as the outer normal of Ūj (j = 1, . . . , m). Relation (14) and the proof of Theorem 2
yield

∫∫∫

Ωδ

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz =

m∑

j=1

∫∫∫

Uj

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz

=
m∑

j=1

∫∫

∂Uj

(P dydz +Q dxdz +R dxdy)

=

∫∫

∂Ωδ

(P dydz +Q dxdz +R dxdy), (15)

because the surface integrals over ∂Uj ∩ ∂Uk altogether cancel.

C) It remains to prove that

lim
δ→0

∫∫∫

Ωδ

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz =

∫∫∫

Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz (16)
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and

lim
δ→0

∫∫

∂Ωδ

(P dydz +Q dxdz +R dxdy) =

∫∫

∂Ω

(P dydz +Q dxdz +R dxdy). (17)

The proof of (17) is long and complicated and we refer to [4], or [5], Chapter 20.
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