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Abstract

In this paper, we investigate the a priori and the a posteriori error analysis for the
finite element approximation to a regularization version of the variational inequality
of the second kind. We prove the abstract optimal error estimates in the H1- and
L2-norms, respectively, and also derive the optimal order error estimate in the L∞-
norm under the strongly regular triangulation condition. Moreover, some residual–
based a posteriori error estimators are established, which can provide the global upper
bounds on the errors. These a posteriori error results can be applied to develop the
adaptive finite element methods. Finally, we supply some numerical experiments to
validate the theoretical results.

1. Introduction

Many important physics and engineering problems, such as contact with friction,
obstacle problems, problems in plasticity and viscoplasticity, etc.( see, for example,
[4, 8, 10–13]) can be formulated as variational inequalities. The aim of this article is
to present some a priori and a posteriori error estimates based on the finite element
approximation for the following variational inequality: Find u ∈ V such that

a(u, v − u) + jγ(v)− jγ(u) ≥ (f, v − u) ∀v ∈ V, (1.1)

where

a(u, v) =

∫
Ω

(∇u · ∇v + µuv)dx, (f, v) =

∫
Ω

f v dx, (1.2)

jγ(v) =

∫
ΓN

ψ(v)ds, V =
{
v ∈ H1(Ω) : v = 0, on Γ \ ΓN

}
, (1.3)
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and Ω ⊂ R2 is a convex polygonal domain, µ > 0 is a constant, Γ = ∂Ω, ΓN ⊂ Γ,
meas(ΓN) > 0, and

ψ(v) =


gv − γ

2
g2, v ≥ γg,

1
2γ
v2, |v| ≤ γg,

−gv − γ
2
g2, v ≤ −γg,

(1.4)

with the constant g > 0 and the small parameter γ > 0. Problem (1.1)–(1.4) is
a regularization version of the variational inequality of the second kind:

a(u, v − u) + j(v)− j(u) ≥ (f, v − u) ∀v ∈ V, j(v) =

∫
ΓN

g|v|, (1.5)

and when γ → 0, its solution u = uγ converges to the solution u of problem (1.5).
See, for example, [8,10]. Since

|jγ(v)− j(v)| ≤ 1

2
γg2meas(ΓN) ∀v ∈ H1(Ω),

it is easy to see that
‖uγ − u‖1 ≤

√
γ g(meas(ΓN))

1
2 .

Finite element methods for the variational inequalities of the second kinds (includ-
ing their regularization versions) have been studied for many years simply because of
their practical importance, but the bound on the discretization error in the literature
is suboptimal [1, 8–10]. In existing work, the finite element discretizations are di-
rectly applied to the variational inequalities, which makes the finite element analysis
very difficult because of the inequality constraint. In this paper, we establish the
finite element discretization by a different way. We first transform the variational in-
equality problem (1.1) into an equivalent variational problem, and then construct the
finite element approximation and give the unique existence and stability of the finite
element solution. By this approach, we establish the abstract error estimates in the
H1- and L2-norms, respectively, which imply the optimal convergence on both the
approximation order of the finite element space and the regularity required for the
exact solution. In addition, when the solution is smooth enough, we further derive
the optimal order error estimate in the L∞-norm under the strongly regular triangu-
lation condition [17]. Moreover, we study the a posteriori error estimate of the finite
element solution. We know that an a posteriori error estimate is set as a theoretical
basis for the adaptive computations based on h, p, and hp finite element methods,
and in this article, we give some residual-based a posteriori estimators which yield
global upper bounds on the discretization errors in the H1- and L2-norms. It should
be pointed out that for the finite element approximations to variational inequalities
of the second kind (including their regularization forms), it is very difficult to obtain
the optimal order error estimates in the L2- and L∞-norms. Hence, our method and
result here provide some theoretical significance into the literature.
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This paper is organized as follows. In Section 2, we transform the variational
inequality problem (1.1) into an equivalent variational problem, and then construct
the finite element discretization and discuss the unique existence and the stability of
the finite element solution. In Section 3, some abstract error estimates are established
and the optimal order error estimates are derived in the H1-, L2- and L∞-norms,
respectively. Section 4 is devoted to the a posteriori error analysis of the finite
element solution. Finally, in Section 5, we present some numerical examples to
illustrate our theoretical analysis.

In this paper, we adopt the standard notation Wm
p for the Sobolev space on the

domain Ω with the corresponding norm ‖·‖m.p, and when p = 2, Wm
2 = Hm, ‖·‖m,2 =

‖ · ‖m. Denote by (·, ·) and ‖·, ·‖ the inner product and the norm, respectively, in
the L2-space. We will also use the letter C to denote a generic positive constant
independent of the mesh size h.

2. Equivalent problem and its finite element approximation

First we derive the equivalent variational form of problem (1.1). In (1.1) taking
v = u± t w, t > 0, w ∈ V , we obtain

±a(u,w) +

∫
ΓN

ψ(u± tw)− ψ(u)

t
ds ≥ ±(f, w) ∀w ∈ V.

Setting t→ 0+ and noting that

lim
t→0+

ψ(u± tw)− ψ(u)

t
= ±ψ′(u)w = ±ϕ(u)w,

we see that the solution u of problem (1.1) satisfies

a(u, v) +

∫
ΓN

ϕ(u)v ds = (f, v) ∀v ∈ V, (2.1)

where

ϕ(t) = ψ′(t) =


g, t ≥ γg,
t/γ, |t| ≤ γg,
−g, t ≤ −γg.

Formula (2.1) gives the equivalent variational form of problem (1.1)–(1.4).

Lemma 2.1. The function ϕ(t) ∈ H1(−∞,∞) and it satisfies the following Lips-
chitz’s condition and the monotonicity condition:

|ϕ(u)− ϕ(v) | ≤ 1

γ
|u− v | ∀u, v ∈ R, (2.2)

(ϕ(u)− ϕ(v))(u− v) ≥ 0 ∀u, v ∈ R. (2.3)
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Proof. It follows from a straightforward calculation that

ϕ′(t) =


1

γ
, |t| ≤ γg

0, |t| > γg,

and

ϕ(u)− ϕ(v) =

∫ u

v

ϕ′(t) dt =

∫ 1

0

ϕ′(v + τ(u− v)) dτ (u− v),

which, together with ϕ′(t) ≥ 0, leads to (2.2)–(2.3). �

Corollary 2.1. The solution of problem (2.1) is unique and satisfies the inequality

‖u‖1 ≤
1

µ0

‖f‖, where µ0 = min{ 1, µ }.

Proof. Assume that u1 and u2 are the solutions of problem (2.1). Then, we have

a(u1 − u2, v) +

∫
ΓN

(ϕ(u1)− ϕ(u2))v ds = 0, v ∈ V.

Taking v = u1−u2, the uniqueness is obtained by using Lemma 2.1 and the coercivity
of a(u, v). Now setting v = u in (2.1), from Lemma 2.1 we know that ϕ(u)u ≥ 0
(noting that ϕ(0) = 0), which yields

a(u, u) ≤ (f, u).

Thus, the stability estimate is derived. �

From book [8], we have known that there exists a solution u ∈ V to problem (1.1).
Then according to Corollary 2.1 and the equivalence of problems (1.1) and (2.1), we
can conclude that problem (2.1) has a unique solution which is also the unique
solution of problem (1.1).

Let Jh = ∪{e} be a regular finite element triangulation of domain Ω para-
meterized by the mesh size h = max he so that Ω = ∪e∈Jh{ e }, where he is the
diameter of the element e . We assume that the triangulation is made such that the
vertices of ΓN are also the mesh points of the triangulation Jh. Introduce the finite
element space Vh ⊂ V as follows:

Vh = { vh ∈ C(Ω) : vh|e ∈ Pk(e), vh|Γ\ΓN
= 0 ∀e ∈ Jh },

where Pk(e) is the set of polynomials of degree at most k on e. The finite element
approximation of problem (2.1) is defined to seek uh ∈ Vh such that

a(uh, vh) +

∫
ΓN

ϕ(uh)vh ds = (f, vh) ∀vh ∈ Vh. (2.4)
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Theorem 2.1. Problem (2.4) admits a unique solution, which satisfies the stability
estimate

‖uh‖1 ≤
1

µ0

‖f‖.

Proof. It follows from taking vh = uh in (2.4), using Lemma 2.1 and the coercivity
of a(u, v) that we can immediately obtain the stability. Below we discuss the unique
existence.

Let {ψi }Ni=1 be the basis function system of space Vh. Then we can set uh =∑N
i=1 uiψi(x) ∀uh ∈ Vh. Now we rewrite equation (2.4) as

A
→
u +

→
ϕ (
→
u) =

→
f or

→
u= T

→
u= A−1(

→
f −

→
ϕ (
→
u)), (2.5)

where A = (a(ψi, ψj))N×N is a positive definite matrix and

→
u = (u1, u2, · · · , uN )T ,

→
ϕ= (ϕ1, ϕ2, · · · , ϕN )T ,

ϕj =

∫
ΓN

ϕ(
∑
uiψi(x))ψj ds, j = 1, 2, · · · , N.

From Lemma 2.1 we know that
→
ϕ (
→
u) is Lipschitz continuous, and hence the mapping

T : RN → RN is a compact mapping. Furthermore, from the stability estimate, we

see that any solution
→
u of equation:

→
u= σT

→
u, σ ∈ [0, 1],

lies in a bounded set of RN . Then, by the Brouwer fixed point theory (see Theo-
rem 10.3 in [6]), the mapping T has a fixed point in RN , that is, the solution to the
discrete system of equations (2.5) exists. The proof of uniqueness is similar to that
of Corollary 2.1. �

3. A priori error analysis in various norms

Let c0 be the positive constant in the trace theorem such that

‖u‖L2(ΓN ) ≤ c0‖u‖1 ∀u ∈ H1. (3.1)

Theorem 3.1. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively, µ1 = max{ 1, µ }. Then, we have the following abstract error estimates in the
H1-norm and the L2-norm:

‖u− uh‖1 ≤
1

µ0

(
µ1 +

c2
0

γ

)
inf
vh∈Vh

‖u− vh‖1, (3.2)

‖u− uh‖ ≤
(
µ1 +

c2
0

γ

)
sup

q∈L2(Ω)

{
1

‖q‖
inf
vh∈Vh

‖w − vh‖1

}
‖u− uh‖1, (3.3)

where, for given q ∈ L2(Ω), w ∈ V is the unique solution of the elliptic problem (3.5)
below.
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Proof. From (2.1) and (2.4) we derive the error equation

a(u− uh, vh) +

∫
ΓN

(ϕ(u)− ϕ(uh))vh ds = 0 ∀vh ∈ Vh. (3.4)

Hence, using Lemma 2.1 and the trace theorem, we have for vh ∈ Vh that

µ0‖u− uh‖2
1 ≤a(u− uh, u− uh)

=a(u− uh, u− vh)−
∫

ΓN

(ϕ(u)− ϕ(uh))(vh − uh) ds

=a(u− uh, u− vh)−
∫

ΓN

(ϕ(u)− ϕ(uh))(vh − u) ds

−
∫

ΓN

(ϕ(u)− ϕ(uh))(u− uh) ds

≤ µ1‖u− uh‖1‖u− vh‖1 +
1

γ

∫
ΓN

|u− uh| | vh − u| ds

≤ µ1‖u− uh‖1‖u− vh‖1 +
c2

0

γ
‖u− uh‖1‖u− vh‖1.

Then, estimate (3.2) is obtained.

In order to derive the error estimate in the L2-norm, let us consider the auxiliary
problem: For any given q ∈ L2(Ω), find w ∈ V such that

A(w, v) = (q, v) ∀v ∈ V, (3.5)

where

A(w, v) = a(w, v) +

∫
ΓN

βw v ds, β(x) =
ϕ(u)− ϕ(uh)

u− uh
. (3.6)

From Lemma 2.1 we know that β(x) ∈ L∞(Ω) and

0 ≤ β(x) ≤ 1

γ
, x ∈ Ω.

This implies from the coercivity of a(u, v) and (3.1) that

µ0‖w‖2
1 ≤ A(w,w), |A(w, v)| ≤

(
µ1 +

1

γ
c2

0

)
‖w‖1‖v‖1 ∀w, v ∈ V.

Thus, we see that A(w, v) is a coercive, symmetric and bounded bilinear form on
V × V , so that the solution w of problem (3.5) uniquely exists. Now, it follows from
taking v = θ = u − uh in (3.5), and utilizing equation (3.4), the definition of β,
Lemma 2.1 and the trace theorem that for vh ∈ Vh we have
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(u− uh, q) = a(θ, w) +

∫
ΓN

βw θ ds

= a(θ, w − vh)−
∫

ΓN

(ϕ(u)− ϕ(uh)) vh ds+

∫
ΓN

βw θ ds

= a(θ, w − vh) +

∫
ΓN

(ϕ(u)− ϕ(uh)) (w − vh) ds

≤ µ1‖u− uh‖1‖w − vh‖1 +
1

γ
c2

0‖u− uh‖1‖w − vh‖1.

Because both q ∈ L2(Ω) and vh ∈ Vh are arbitrary, we arrive at the conclusion
claimed in (3.3). �

Let uI ∈ Vh be the usual interpolation approximation of a continuous function u
with the approximation properties [2]:

‖u− uI‖0,p,e + he‖u− uI‖1,p,e ≤ Ch1+s
e ‖u‖1+s,p,e, 0 < s ≤ k, 2 ≤ p ≤ ∞, e ∈ Jh.

(3.7)
Then, from Theorem 3.1, we immediately obtain the following conclusion.

Corollary 3.1. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively. Then, uh converges to u in the H1-norm, and if u ∈ H1+s(Ω) we have

‖u− uh‖1 ≤ Chs‖u‖1+s, 0 < s ≤ k . (3.8)

Furthermore, assuming that the solution w of problem (3.5) belongs to H1+α(Ω),
0 < α ≤ 1 and ‖w‖1+α ≤ C‖q‖, we have

‖u− uh‖ ≤ Chα+s‖u‖1+s, 0 < s ≤ k, 0 < α ≤ 1. (3.9)

Obviously, the error estimates (3.8) and (3.9) (with α = 1) are optimal on both
the approximation order of the finite element space and the regularity required for
the exact solution.

Remark 3.1. According to the regularity theory of elliptic problems [6, 7], when
the domain Ω and function β(x) satisfy some smooth conditions, we indeed have
that the solution w ∈ H2(Ω) and ‖w‖2 ≤ C(Ω)‖q‖.

Below we will discuss the error estimate in the L∞-norm by using the linear finite
element space. We need an additional assumption on the triangulation Jh (see, for
example, [17]).

Definition 31 A quadrilateral ♦ABCD is called an approximate parallelogram if
(see Figure 1)

|
−→
AB −

−→
DC | ≤ Ch2 , |

−→
BC −

−→
AD | ≤ Ch2.
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Definition 32 A triangulation Jh is called strongly regular, if any two adjacent tri-
angular elements of Jh form an approximate parallelogram (see Figure 1).

Under the strongly regular triangulation condition, we have the well known inter-
polation elementary estimate for the linear finite element space Vh (see Theorem 4.8
in [17]).

| a(u− uI , vh) | ≤ Ch2( ‖u‖2,∞ + ‖u‖3) ‖vh‖1, vh ∈ Vh. (3.10)

By means of this estimate, we can prove the following result.

Theorem 3.2. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively. Assume that the triangulation Jh is strongly regular, Vh is the linear finite
element space, and u ∈ W 2

∞ ∩H3. Then we have

‖u− uh‖0,∞ ≤ C

(
1 +

1

γ

)
h2| ln h |

1
2 ( ‖u‖2,∞ + ‖u‖3 ).

Proof. It follows from equation (3.4), Lemma 2.1, the elementary estimate (3.10)
and the trace theorem that

µ0‖uI − uh‖2
1 ≤ a(uI − uh, uI − uh)

= a(uI − u, uI − uh)−
∫

ΓN

(ϕ(u)− ϕ(uI) + ϕ(uI)− ϕ(uh))(uI − uh) ds

≤ a(uI − u, uI − uh)−
∫

ΓN

(ϕ(u)− ϕ(uI))(uI − uh) ds

≤ Ch2( ‖u‖2,∞ + ‖u‖3)‖uI − uh‖1 +
1

γ
‖u− uI‖L2(ΓN )‖uI − uh‖L2(ΓN )

≤ Ch2( ‖u‖2,∞ + ‖u‖3)‖uI − uh‖1 + C
1

γ
h2‖u‖3‖uI − uh‖1,
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where we have used the fact that

‖u− uI‖L2(ΓN ) ≤ Ch2‖u‖2,∂Ω ≤ Ch2‖u‖3,Ω,

which results in a super-approximation estimate,

‖uI − uh‖1 ≤ C

(
1 +

1

γ

)
h2( ‖u‖2,∞ + ‖u‖3). (3.11)

Now, we have by using the weak embedding inequality in the finite element space [17]
that,

‖vh‖0,∞ ≤ C| ln h|
1
2‖vh‖1, vh ∈ Vh. (3.12)

Thus, we obtain from (3.11)–(3.12) that

‖u− uh‖0,∞ ≤ ‖u− uI‖0,∞ + C| ln h|
1
2‖uI − uh‖1

≤ ‖u− uI‖0,∞ + Ch2| ln h|
1
2 ( ‖u‖2,∞ + ‖u‖3),

which, together with ‖u− uI‖0,∞ ≤ h2‖u‖2,∞, completes the proof. �

4. A posteriori error analysis

In this section, we will derive some residual-based a posteriori error estimators
which provide global upper bounds and local lower bounds on the error u− uh. To
this end, we need to introduce some notions.

Let Jh be a regular finite element triangulation of domain Ω. We denote by Eh =
∪{ l ⊂ ∂e : e ∈ Jh} the union of all the edges of Jh, and E0

h = ∪{ l ⊂ ∂e\∂Ω : e ∈ Jh}
the union of all the interior edges of Jh. Let l be an edge shared by two adjacent
elements e1 and e2 of Jh, and ni = n|∂ei the unit normal vector external to ∂ei. For

a piecewise smooth function v on triangulation Jh, we define the jump

[
∂v

∂n

]
of
∂v

∂n
on l ∈ E0

h as follows: [
∂v

∂n

]
= ∇v1 · n1 +∇v2 · n2, on l ∈ E0

h,

where ∇vi = ∇v|∂ei is the trace of ∇v from the interior of ei.

Below we assume that there exists an interpolation function πhv ∈ Vh satisfying
that (e.g., the Clément interpolant (see, for example, [3]))

‖v − πhv‖s,e ≤ Ch1−s
e ‖v‖1,ωe , s = 0, 1, v ∈ H1(ωe), e ∈ Jh, (4.1)
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where ωe = ∪{e′ ∈ Jh : e′ ∩ e 6= Ø}. Define the error estimators as follows:

η(s)(uh) =

(∑
e∈Jh

‖hse(f + ∆uh − µuh)‖2
0,e

) 1
2

,

η(s)
b

(uh) =

(∑
l∈E0h

∥∥∥∥hs−1/2
l

[
∂uh
∂n

]∥∥∥∥2

0,l

) 1
2

,

η
(s)
N (uh) =

( ∑
l⊂ΓN

∥∥∥∥hs−1/2
l

(
∂uh
∂n

+ ϕ(uh)

)∥∥∥∥2

0,l

) 1
2

, s ≥ 1,

where hl is the length of the edge l ∈ Eh. Obviously, all these quantities are com-
putable in terms of the finite element solution uh.

Let u ∈ H1(Ω) be the solution of problem (2.1). Following a variational argument,
it is easy to see that u is characterized by the following boundary value problem in
the distribution sense:

−∆u+ µu = f, in Ω, (4.2)

u = 0, on Γ \ ΓN ,
∂u

∂n
+ ϕ(u) = 0, on ΓN . (4.3)

Theorem 4.1. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively, u ∈ H1(Ω). Then, there exists a constant C, independent of u, uh, γ and the
mesh size h, such that

‖u− uh‖1 ≤ C(η(1)(uh) + η
(1)
b (uh) + η

(1)
N (uh)). (4.4)

Proof. Denote the error function θ = u − uh. Using the error equation (3.4) and
integration by parts, we have that for vh ∈ Vh,

µ0‖θ‖2
1 ≤a(θ, θ) = a(θ, θ − vh) + a(θ, vh)

=a(θ, θ − vh)−
∫

ΓN

(
ϕ(u)− ϕ(uh)

)
vh

=
∑
e∈Jh

(−∆θ + µθ, θ − vh)e +
∑
e∈Jh

∫
∂e

∂θ

∂n
(θ − vh)−

∫
ΓN

(
ϕ(u)− ϕ(uh)

)
vh

=
∑
e∈Jh

(f + ∆uh − µuh, θ − vh)e +
∑
l∈E0h

∫
l

[
∂θ

∂n

]
(θ − vh)

+

∫
ΓN

∂θ

∂n
(θ − vh)−

∫
ΓN

(
ϕ(u)− ϕ(uh)

)
vh
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=
∑
e∈Jh

(f + ∆uh − µuh, θ − vh)e −
∑
l∈E0h

∫
l

[
∂uh
∂n

]
(θ − vh)

+

∫
ΓN

(
∂θ

∂n
+ ϕ(u)− ϕ(uh)

)
(θ − vh)−

∫
ΓN

(
ϕ(u)− ϕ(uh)

)
θ

≤
∑
e∈Jh

(f + ∆uh − µuh, θ − vh)e −
∑
l∈E0h

∫
l

[
∂uh
∂n

]
(θ − vh)

−
∫

ΓN

(
∂uh
∂n

+ ϕ(uh)

)
(θ − vh),

where in the last inequality, we have utilized the boundary value condition (4.3) and
property (2.3) of function ϕ. By taking vh = πhθ, we obtain

µ0‖θ‖2
1 ≤

∑
e∈Jh

‖f + ∆uh − µuh‖0,e ‖θ − πhθ‖0,e

+
∑
l∈E0h

∥∥∥∥[∂uh∂n

]∥∥∥∥
0,l

‖θ − πhθ‖0,l

+
∑
l⊂ΓN

∥∥∥∥∂uh∂n
+ ϕ(uh)

∥∥∥∥
0,l

‖θ − πhθ‖0,l,

from which and the well known trace inequality (see Lemma 2.3 in [16]), we obtain∫
∂e

|u|2ds ≤ C
(
h−1
e ‖u‖2

0,e + he‖∇u‖2
0,e

)
∀u ∈ H1(e). (4.5)

This, together with the approximation property (4.1), completes the proof. �

In order to derive the a posteriori error estimate in the L2-norm, we need to
introduce the auxiliary problem once again in the distribution sense:

−∆w + µw = u− uh in Ω , (4.6)

w = 0 on Γ \ ΓN ,
∂w

∂n
+ β(x)w = 0 on ΓN , (4.7)

where β(x) = (ϕ(u)− ϕ(uh))/(u− uh). We assume that problem (4.6)–(4.7) admits
a solution w ∈ H1+α(Ω) satisfying

‖w‖1+α ≤ C‖u− uh‖, 0 < α ≤ 1.

Theorem 4.2. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively, u ∈ H1(Ω). Then, there exists a constant C, independent of u, uh and the
mesh size h, such that

‖u− uh‖ ≤ C
(
η(1+α)(uh) + η

(1+α)
b (uh) + η

(1+α)
N (uh)

)
, 0 < α ≤ 1. (4.8)

327



Proof. Let wI ∈ Vh be the interpolation of function w, θ = u − uh. From equa-
tions (4.6)–(4.7) and the error equation (3.4), we have

‖θ‖2 =a(w, θ)−
∫

ΓN

∂w

∂n
θ = a(w, θ) +

∫
ΓN

βw θ

=a(θ, w − wI)−
∫

ΓN

(
ϕ(u)− ϕ(uh)

)
wI +

∫
ΓN

βw θ

=a(θ, w − wI) +

∫
ΓN

(
ϕ(u)− ϕ(uh)

)
(w − wI)

=
∑
e∈Jh

(f + ∆uh − µuh, w − wI)e +
∑
e∈Jh

∫
∂e

∂θ

∂n
(w − wI)

+

∫
ΓN

(ϕ(u)− ϕ(uh)) (w − wI)

=
∑
e∈Jh

(f + ∆uh − µuh, w − wI)e +
∑
l∈E0h

∫
l

[
∂θ

∂n

]
(w − wI)

+

∫
ΓN

(
∂θ

∂n
+ ϕ(u)− ϕ(uh)

)
(w − wI)

=
∑
e∈Jh

(f + ∆uh − µuh, w − wI)e −
∑
l∈E0h

∫
l

[
∂uh
∂n

]
(w − wI)

−
∫

ΓN

(
∂uh
∂n

+ ϕ(uh)

)
(w − wI).

Then, it follows from using the trace inequality (4.5), the approximation
property (3.7), and noting ‖w‖1+α ≤ C‖θ‖ that the proof is completed. �

In practical finite element computations, it is desirable to implement them in an
adaptive fashion. A typical procedure is to start with a coarse mesh first, and then
use some a posteriori error estimators, say, provided in this section, as a guidance to
properly refine the mesh locally or globally to achieve the desired accuracy. Many
articles have discussed such adaptive algorithms, see, e.g., [5, 14] and the references
therein, so we omit the further discussion here.

5. Numerical experiments

In this section we present some numerical examples to validate our theoretical
analysis. The related data in problem (1.1)–(1.4) are Ω = (0, 1) × (0, 1), µ = 1,
g = 1, ΓN = {x = 1}. We take the exact solution as

uγ(x, y) =

(
sinx− γ cos 1 + sin 1

1 + γ
x

)
sinπy, γ > 0, (x, y) ∈ Ω,
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and the corresponding source term as

f =

(
(2 + π2) sinx− (1 + π2)

γ cos 1 + sin 1

1 + γ
x

)
sin πy.

We first partition Ω into a uniform square of mesh size h, and then divide each
square into two right triangles in the same configuration. The linear finite element
is used in the experiments. Denote by eh the error between the exact solution and
the numerical solution on mesh size h under some suitable norm, and the numerical
convergence order is computed by

α =
ln(eh/e1)

lnh
,

In Table 1 and Table 2, we display the error and orders of convergence for numerical
solutions in the L2- and L∞-norms, respectively. We see that the computation
accuracy is very high and the theoretical orders of convergence are achieved, noticing
that γ << 1.

mesh size γ = 0.01 γ = 0.001

h error order error order

1 3.5617e-1 - 3.6272e-1 -

1/20 0.95e-4 2.7470 0.532e-3 2.1780

1/40 0.59e-4 2.3600 0.487e-3 1.7927

1/60 0.52e-4 2.1571 0.476e-3 1.6208

1/80 0.50e-4 2.0244 0.471e-3 1.5168

1/100 0.42e-4 1.9642 0.368e-3 1.4968

Table 1: Order of convergence in the L2-norm.

In Table 3 we display the approximate a posteriori error bound in the L2-norm
with γ = 0.01 and the effectivity index (see (4.8)),

σ =
ηtol(uh)

‖uγ − uh‖
, ηtol(uh) = η(2)(uh) + η

(2)
b (uh) + η

(2)
N (uh).

As expected, we see that the error estimator ηtol(uh) is effective, that is, σ ∼ 1.
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mesh size γ = 0.01 γ = 0.001

h error order error order

1 3.8343e-1 - 3.8851e-1 -

1/20 0.180e-3 2.5582 0.167e-2 1.8178

1/40 0.172e-3 2.0899 0.168e-2 1.4758

1/60 0.172e-3 1.8829 0.168e-2 1.3295

1/80 0.172e-3 1.7593 0.168e-2 1.2422

1/100 0.172e-3 1.6741 0.168e-2 1.1820

Table 2: Order of convergence in the L∞-norm.

mesh size h 1 1/20 1/40 1/60 1/80 1/100

ηtol(uh) 1.9407 0.503e-3 0.280e-3 0.172e-3 0.157e-3 0.120e-3

σ 5.4487 5.2950 4.7481 3.3101 3.1397 2.8477

Table 3: A posteriori error estimators and the effectivity index.
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