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In 1973, V. Virkkunen proved that propagating scattered context grammars which use leftmost derivations are as
powerful as context-sensitive grammars. This paper brings a significantly simplified proof of this result.

Keywords: formal languages, propagating scattered context grammars, leftmost derivations, generative power

1 Introduction
Propagating scattered context grammars, introduced in [3], represent an important type of semi-parallel
rewriting systems. Since their introduction, however, the exact relationship of the family of languages
they generate to the family of context-sensitive languages is unknown. The language family generated by
these grammars is included in the family of context-sensitive languages; on the other hand, the question
of whether this inclusion is proper represents an open problem in formal language theory. There have
been several attempts to modify the definition of propagating scattered context grammars to obtain the
family of context-sensitive languages (see [1, 2, 7, 9, 11]). The approach discussed in [11] allows the
productions to be applied only in a leftmost way and, thereby, obtain the family of context-sensitive
languages generated by these grammars. This result is of some interest as the use of context-free, context-
sensitive, and unrestricted productions in a leftmost way in the corresponding grammars of the Chomsky
hierarchy does not have any impact on their generative power.

The proof in [11] consists of two parts; first, two preliminary lemmas (Lemma 2 and Lemma 3) are
given and then the main result, stated in Theorem 2, is presented as a straightforward corollary of these
two lemmas. In Lemma 2 it is demonstrated how any sentence of some context-sensitive language can
be derived by a propagating scattered context grammar which uses leftmost derivations. Every sentence
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generated in such a way contains, however, some additional symbols. Lemma 3 shows how these symbols
can be removed. Together, the proof consists of six-page-long construction part and not even one-page-
long basic idea of the construction which makes it extremely hard to follow. A more formal proof of the
correctness of the construction is missing.

This paper aims to present the proof of this result in a much simpler and more readable way. The main
difference of our proof lies (1) in the way how the symbols to be rewritten are selected and (2) the way
how context-sensitive productions are simulated. Furthermore, the proof is based on a single construction
instead of two. All this leads to a significantly simpler and more transparent construction.

2 Preliminaries and definitions
We assume that the reader is familiar with formal language theory (see [10]). For an alphabet V , |V |
denotes the cardinality of V . V ∗ represents the free monoid generated by V . The unit of V ∗ is denoted
by ε. Set V + = V ∗ − {ε}. For w ∈ V ∗, |w| and alph(w) denote the length of w and the set of symbols
occurring in w, respectively.

A grammar is a quadruple G = (V, T, P, S), where V is the total alphabet, T ⊂ V is the set of
terminals, P is a finite set of productions of the form x → y, where x ∈ V ∗(V − T )V ∗, y ∈ V ∗, and
S ∈ V − T is the start symbol of G. If u = z1xz2, v = z1yz2, and x→ y ∈ P , where z1, z2 ∈ V ∗, then
G makes a derivation step from u to v according to x→ y, symbolically written as u⇒G v [x→ y] or,
simply, u ⇒G v. Let ⇒+

G and ⇒∗G denote the transitive closure of ⇒G and the reflexive and transitive
closure of⇒G, respectively. If S ⇒∗G w, where w ∈ T ∗, S ⇒∗G w is said to be a successful derivation of
G. The language ofG, denoted by L(G), is defined as L(G) = {w ∈ T ∗ : S⇒∗G w}. If each production
of G is of the form xAy → xuy, where x, y ∈ V ∗, A ∈ V − T , u ∈ V +, then G is a context-sensitive
grammar. The family of context-sensitive languages is denoted by L (CS). If each production of G is of
one of the following forms: AB→ CD, A→ BC, A→ a, where A,B,C,D ∈ V − T , and a ∈ T , then
G is a grammar in the Kuroda normal form.

Lemma 1 ([4]) For every context-sensitive grammar there exists an equivalent grammar in the Kuroda
normal form.

A scattered context grammar (see [1, 2, 3, 5, 6, 7, 8, 9, 11]) is a quadruple G = (V, T, P, S), where V
is the total alphabet, T ⊂ V is the set of terminals, S ∈ V − T is the start symbol of G, and P is a finite
set of productions such that each production has the form (A1, A2, . . . , An)→ (x1, x2, . . . , xn), for some
n ≥ 1, where Ai ∈ V − T , and xi ∈ V ∗, for all 1 ≤ i ≤ n. If each production (A1, A2, . . . , An) →
(x1, x2, . . . , xn) ∈ P satisfies xi ∈ V + for all 1 ≤ i ≤ n, then G is a propagating scattered con-
text grammar. If (A1, A2, . . . , An) → (x1, x2, . . . , xn) ∈ P , u = u1A1u2A2 . . . unAnun+1, and
v = u1x1u2x2 . . . unxnun+1, where ui ∈ V ∗ for all 1 ≤ i ≤ n+ 1, then G makes a derivation step from
u to v according to p = (A1, A2, . . . , An) → (x1, x2, . . . , xn), symbolically written as u ⇒G v [p] or,
simply, u⇒G v. In addition, if Ai /∈ alph(ui) for all 1 ≤ i ≤ n, then the direct derivation is leftmost, and
we write u lm⇒G v [p]; if Ai /∈ alph(ui+1) for all 1 ≤ i ≤ n, then the direct derivation is rightmost, and
we write u rm⇒G v [p]. The language of G, denoted by L(G), is defined as L(G) = {w ∈ T ∗ : S ⇒∗G
w}. A propagating scattered context grammar G = (V, T, P, S) uses leftmost or rightmost derivations if
its language is defined as L(G, lm) = {w ∈ T ∗ : S lm⇒∗G w} or L(G, rm) = {w ∈ T ∗ : S rm⇒∗G
w}, respectively. The family of languages generated by propagating scattered context grammars which
use leftmost or rightmost derivations is denoted by L (PSC, lm) or L (PSC, rm), respectively.
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3 Main Results
The following theorem and its proof, which represent the main result of this paper, demonstrate that
propagating scattered context grammars which use leftmost derivations are equivalent to context-sensitive
grammars.

Theorem 1 L (PSC, lm) = L (CS).

Proof: As propagating scattered context grammars do not contain erasing productions, their derivations
can be simulated by linear bounded automata. As a result, L (PSC, lm) ⊆ L (CS). In what follows,
we demonstrate that also L (CS) ⊆ L (PSC, lm) holds true by demonstrating that for every grammar
in the Kuroda normal form there exists an equivalent propagating scattered context grammar which uses
leftmost derivations.

Let G = (V, T, P, S) be a grammar in the Kuroda normal form. Set N1 = (V − T ) ∪ {ā : a ∈ T}
(suppose that (V − T ) ∩ {ā : a ∈ T} = ∅), N̂1 = {Â : A ∈ N1}. Let n = |N1|; then, we denote
the elements of N1 as {A1, A2, . . . , An}. Define the homomorphism α from V ∗ to N∗1 as α(A) = A for
each A ∈ V −T , and α(a) = ā for each a ∈ T . Set N ′2 = {A′ : A ∈ V −T}, N3 = {〈ab〉 : a, b ∈ V },
N ′4 = {〈Aa〉′ : A ∈ V − T, a ∈ V }, and

N5 = {〈a, 0〉, 〈ab, 0〉 : a, b ∈ V }
∪ {〈a, i, j〉 : a ∈ V − T, 1 ≤ i ≤ 3, 1 ≤ j ≤ n}
∪ {〈ab, 4〉 : a, b ∈ T}.

Without loss of generality, assume that the sets N1, N̂1, N
′
2, N3, N

′
4, N5, {S̄,X}, and T are pairwise

disjoint. Define the propagating scattered context grammar

Ḡ = (N1 ∪ N̂1 ∪N ′2 ∪N3 ∪N ′4 ∪N5 ∪ {S̄,X} ∪ T, T, P̄ , S̄),

where P̄ is constructed as follows:

1. (a) For each a ∈ L(G), where a ∈ T , add
(S̄)→ (a) to P̄ ;

(b) For each S ⇒G ab, where a, b ∈ V , add
(S̄)→ (〈ab, 0〉X) to P̄ ;

2. For each a, b, c ∈ V , add

(a) (〈a, 0〉, α(b))→ (α(a), 〈b, 0〉),

(b) (α(a), 〈b, 0〉)→ (〈a, 0〉, α(b)),

(c) (〈a, 0〉, 〈bc〉)→ (α(a), 〈bc, 0〉),

(d) (α(a), 〈bc, 0〉)→ (〈a, 0〉, 〈bc〉) to P̄ ;

3. For each A→ a ∈ P and b ∈ V , add

(a) (〈A, 0〉)→ (〈a, 0〉),

(b) (〈Ab, 0〉)→ (〈ab, 0〉),
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(c) (〈bA, 0〉)→ (〈ba, 0〉) to P̄ ;

4. For each A→ BC ∈ P and a ∈ V , add

(a) (〈A, 0〉)→ (B〈C, 0〉),

(b) (〈Aa, 0〉)→ (B〈Ca, 0〉),

(c) (〈aA, 0〉)→ (α(a)〈BC, 0〉) to P̄ ;

5. For eachAB→ CD ∈ P , a ∈ V , E ∈ N3∪N ′4, F ′ ∈ {B′, 〈Ba〉′}, 1 ≤ i ≤ n, and 1 ≤ j ≤ n−1,
add

(a) (〈AB, 0〉)→ (〈CD, 0〉),

(b) i. (〈A, 0〉, B,X)→ (〈A, 1, 1〉, B′, A1),
ii. (〈A, 0〉, 〈Ba〉, X)→ (〈A, 1, 1〉, 〈Ba〉′, A1),

(c) i. (〈A, 1, i〉, Ai)→ (〈A, 2, i〉, Âi),
ii. (〈A, 2, i〉, F ′, Âi)→ (〈A, 3, i〉, F ′, Ai),

iii. (〈A, 3, j〉, E,Aj)→ (〈A, 1, j + 1〉, E,Aj+1),

(d) i. (〈A, 3, n〉, B′, E,An)→ (〈C, 0〉, D,E,X),
ii. (〈A, 3, n〉, 〈Ba〉′, An)→ (〈C, 0〉, 〈Da〉, X) to P̄ ;

6. For each a, b, c ∈ T , add

(a) (〈ab, 0〉)→ (〈ab, 4〉),

(b) (c̄, 〈ab, 4〉)→ (c, 〈ab, 4〉),

(c) (〈ab, 4〉, X)→ (a, b) to P̄ .

In short, productions introduced in (1) initiate the derivation, productions from (2) are used to select the
nonterminal to be rewritten, productions from (3), (4), and (5) simulate G’s productions of the form A→
a, A→ BC, and AB → CD, respectively, and, finally, productions from (6) finish the derivation. In the
following paragraphs, we describe the derivation of Ḡ in greater detail.

Every derivation starts either by a production introduced in (1a) to generate sentences a ∈ L(G), where
a ∈ T , or by a production introduced in (1b) to generate sentences x ∈ L(G), where |x| ≥ 2. As S̄ does
not occur on the right-hand side of any production, productions from (1) are not used during the rest of
the derivation.

Consider G’s sentential form a1a2 . . . ak, where a1, a2, . . . , ak ∈ V , for some k ≥ 2. In Ḡ, this
sentential form corresponds to

b1b2 . . . br−1〈ar, 0〉br+1br+2 . . . bk−2〈ak−1ak〉X,

where bi = α(ai) for all i ∈ {1, 2, . . . , r − 1, r + 1, r + 2, . . . , k − 2}, for some 1 ≤ r ≤ k − 2, or to

b1b2 . . . bk−2〈ak−1ak, 0〉X,

where bi = α(ai) for all 1 ≤ i ≤ k − 2 (observe that every right-hand side of a production from (1b)
represents a sentential form of this kind). To simulate a G’s production, the leftmost nonterminal from its
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left-hand side has to be selected in the sentential form of Ḡ. This is done by appending 0 to the symbol to
be selected by productions from (2). Specifically, for a symbol a ∈ V , (2a) selects the leftmost symbol a
immediately following the currently selected symbol and (2b) selects the leftmost symbol a preceding the
currently selected symbol. Productions from (2c) and (2d) are used to select and unselect the penultimate
nonterminal in Ḡ’s sentential form which is composed of two symbols from V . Observe that in this way,
any symbol (except for the final X) in every sentential form of Ḡ can be selected. Further, observe that
during a derivation, always one symbol is selected.

After the nonterminal is selected, the use of the G’s production can be simulated. Productions of the
form A→ a are simulated by (3a) for every selected nonterminal a1, a2, . . . , ak−2 and by (3b), (3c) if the
penultimate nonterminal (which contains ak−1, ak) of the Ḡ’s sentential form is selected. Analogously,
productions of the form A→ BC are simulated by productions from (4).

Productions from (5a) are used to simulate an application of productions of the formAB→ CD within
the penultimate nonterminal of Ḡ’s sentential form. In what follows, we demonstrate how productions
from (5b), (5c), and (5d) are used if this production is simulated within a1a2 . . . ak−2. Suppose that the
sentential form in Ḡ is of the form

b1b2 . . . br−1〈ar, 0〉br+1br+2 . . . bk−2〈ak−1ak〉X

and we simulate the application of arar+1 → crcr+1 ∈ P . Recall that N1 = {A1, A2, . . . , An} denotes
the set of all symbols which may appear in br+1br+2 . . . bk−2. First, to select br+1 = α(ar+1), the
production

(〈ar, 0〉, br+1, X)→ (〈ar, 1, 1〉, b′r+1, A1)

from (5bi) is applied in a successful derivation, so

b1b2 . . . br−1〈ar, 0〉br+1br+2 . . . bk−2〈ak−1ak〉X
lm⇒Ḡ b1b2 . . . br−1〈ar, 1, 1〉b′r+1br+2br+3 . . . bk−2〈ak−1ak〉A1.

Observe that if br+1 does not immediately follow 〈ar, 0〉, the leftmost b ∈ alph(br+2br+3 . . . bk−2) satis-
fying b = br+1 is selected by the production from (5bi). The purpose of productions from (5c) is to verify
that the nonterminal immediately following 〈ar, 0〉 has been selected. First, the production

(〈ar, 1, 1〉, A1)→ (〈ar, 2, 1〉, Â1)

from (5ci) is applied to tag the first A1 following 〈ar, 1, 1〉, so

b1b2 . . . br−1〈ar, 1, 1〉b′r+1br+2br+3 . . . bk−2〈ak−1ak〉A1

lm⇒Ḡ b1b2 . . . br−1〈ar, 2, 1〉b′r+1y1〈ak−1ak〉d1,

where either
y1 = br+2br+3 . . . bm−1Â1bm+1bm+2 . . . bk−2, d1 = A1,

satisfying A1 /∈ alph(br+2br+3 . . . bm−1), for some 1 ≤ m ≤ k − 2, or

y1 = br+2br+3 . . . bk−2, d1 = Â1,

satisfying A1 /∈ alph(y1). Then, the production

(〈ar, 2, 1〉, b′r+1, Â1)→ (〈ar, 3, 1〉, b′r+1, A1)
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from (5cii) is applied to untag the first symbol Â1 following b′r+1, so

b1b2 . . . br−1〈ar, 2, 1〉b′r+1y1〈ak−1ak〉d1,

lm⇒Ḡ b1b2 . . . br−1〈ar, 3, 1〉b′r+1br+2br+3 . . . bk−2〈ak−1ak〉A1.

This means that if A1 occurs between 〈ar, 2, 1〉 and b′r+1, it is tagged by the production from (5ci) but it
cannot be untagged by any production from (5cii), so the derivation is blocked. Finally, the production

(〈ar, 3, 1〉, 〈ak−1ak〉, A1)→ (〈ar, 1, 2〉, 〈ak−1ak〉, A2)

from (5ciii) is applied, so

b1b2 . . . br−1〈ar, 3, 1〉b′r+1br+2br+3 . . . bk−2〈ak−1ak〉A1

lm⇒Ḡ b1b2 . . . br−1〈ar, 1, 2〉b′r+1br+2br+3 . . . bk−2〈ak−1ak〉A2,

and the same verification continues forA2. This verification proceeds for all symbols fromN1 so this part
of the derivation can be expressed as

u1 lm⇒Ḡ v1 [p11] lm⇒Ḡ w1 [p12]
lm⇒Ḡ u2 [p13] lm⇒Ḡ v2 [p21] lm⇒Ḡ w2 [p22]

...
lm⇒Ḡ un [p(n−1)3] lm⇒Ḡ vn [pn1] lm⇒Ḡ wn [pn2]

with
ui = b1b2 . . . br−1〈ar, 1, i〉b′r+1br+2br+3 . . . bk−2〈ak−1ak〉Ai,
vi = b1b2 . . . br−1〈ar, 2, i〉b′r+1yi〈ak−1ak〉di,
wi = b1b2 . . . br−1〈ar, 3, i〉b′r+1br+2br+3 . . . bk−2〈ak−1ak〉Ai,

where pi1, pi2, and pj3 are productions from (5ci), (5cii), and (5ciii), respectively, for all 1 ≤ i ≤ n,
1 ≤ j ≤ n− 1, and either

yi = br+2br+3 . . . bim−1Âibim+1bim+2 . . . bk−2, di = Ai,

satisfying Ai /∈ alph(br+2br+3 . . . bim−1), for some 1 ≤ im ≤ k − 2, or

yi = br+2br+3 . . . bk−2, di = Âi,

satisfying Ai /∈ alph(yi). After the verification is finished, the application of arar+1 → crcr+1 ∈ P is
simulated by

(〈ar, 3, n〉, b′r+1, 〈ak−1ak〉, An)→ (〈cr, 0〉, cr+1, 〈ak−1ak〉, X)

from (5di), so

b1b2 . . . br−1〈ar, 3, n〉b′r+1br+2br+3 . . . bk−2〈ak−1ak〉An

lm⇒Ḡ b1b2 . . . br−1〈cr, 0〉cr+1br+2br+3 . . . bk−2〈ak−1ak〉X.

Observe that in order to simulate a production of the form AB → CD within ak−2ak−1, productions
from (5bii) and (5dii) have to be used instead of productions from (5bi) and (5di) in the simulation de-
scribed above. The details are left to the reader.
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Finally, consider a G’s sentence a1a2 . . . ak ∈ T+. This corresponds to

ā1ā2 . . . ār−1〈ar, 0〉ār+1ār+2 . . . āk−2〈ak−1ak〉X,

or
ā1ā2 . . . āk−2〈ak−1ak, 0〉X

in Ḡ after finishing the simulation. To enter the final phase in Ḡ, we need the sentential form to be in
the second above described form. This can be achieved by applying a production from (2c) to the first
sentential form. The rest of the derivation can be expressed as

ā1ā2 . . . āk−2〈ak−1ak, 0〉X
lm⇒Ḡ ā1ā2 . . . āk−2〈ak−1ak, 4〉X [p6a]
lm⇒k−2

Ḡ
a1a2 . . . ak−2〈ak−1ak, 4〉X [Ξ6b]

lm⇒Ḡ a1a2 . . . ak−2ak−1ak [p6c],

where p6a and p6c are productions introduced in steps (6a) and (6c), respectively, and Ξ6b is a sequence
of k− 2 productions from (6b). As a result, x ∈ L(Ḡ, lm) if and only if x ∈ L(G). Therefore, L (CS) ⊆
L (PSC, lm).

As L (PSC, lm) ⊆ L (CS) and L (CS) ⊆ L (PSC, lm), we obtain L (PSC, lm) = L (CS), so the
theorem holds. 2

Next, we state the following corollary.

Corollary 1 L (PSC, rm) = L (CS).

Proof: This corollary can be proved by a straightforward modification of the proof of Theorem 1 and its
proof is, therefore, left to the reader. 2
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