
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 12, Number x, 2009, 123–xxx

Cooperating Distributed Grammar
Systems with

Permitting Grammars as Components
Erzsébet Csuhaj-Varjú1,2, Tomáš Masopust3, and György Vaszil1

1 Computer and Automation Research Institute, Hungarian Academy of Sciences
Kende u. 13-17, 1111 Budapest, Hungary
E-mail: {csuhaj,vaszil}@sztaki.hu

2 Department of Algorithms and Their Applications, Faculty of Informatics
Eötvös Loránd University

Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
3 Faculty of Information Technology, Brno University of Technology

Božetěchova 2, Brno 61266, Czech Republic
E-mail: masopust@fit.vutbr.cz

Abstract. This paper studies cooperating distributed grammar systems working in
the terminal derivation mode where the components are variants of permitting grammars.
It proves that although the family of permitting languages is strictly included in the fam-
ily of random context languages, the families of random context languages and languages
generated by permitting cooperating distributed grammar systems in the above mentioned
derivation mode coincide. Moreover, if the components are so-called left-permitting
grammars, then cooperating distributed grammar systems in the terminal mode charac-
terize the class of context-sensitive languages, or if erasing rules are allowed, the class of
recursively enumerable languages. Descriptional complexity results are also presented. It
is shown that the number of permitting components can be bounded, in the case of left-
permitting components with erasing rules even together with the number of nonterminals.

1. Introduction

The tools of formal language theory are often used to describe phenomena occurring in
natural languages or in living developmental systems. To study these topics, it is sometimes

124 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

desirable to construct generative mechanisms which are easy to handle but still have the
required descriptive power. Context-free grammars have several properties which make them
convenient and useful as a basis when more powerful generative mechanisms are created.

A way of increasing the power of context-free grammars is studied by the theory of reg-
ulated rewriting which, given a context-free grammar, adds some type of control mechanism
for the restriction of the use of the rules in such a way that some of the usual context-free
derivations are eliminated. Thus, the obtained words form a subset of the original context-
free language generated by the grammar without the controlling mechanism. Since these
subsets can also be non-context-free languages, these mechanisms are more powerful than
the context-free grammars. (See [3] and [5] for more details.)

Random context grammars, a class of regulated rewriting devices motivated by these
ideas, operate by controlling the use of the rules based on the presence or absence of certain
symbols in the sentential form [13]. Each rule of a random context grammar has an associated
permitting and forbidding set of nonterminals, and roughly speaking, the rule can only be
applied to sentential forms which contain all permitting symbols, but do not contain any
of the forbidding symbols. Random context grammars characterize the class of recursively
enumerable languages, but if erasing rules are not allowed, they are able to generate only a
subclass of the class of context-sensitive languages, see [3].

Another possibility of describing non-context-free languages with rewriting mechanisms
using context-free rules is provided by the theory of grammar systems, see [2, 4] for more
information. Cooperating distributed grammar systems (CD grammar systems in short) were
introduced in [1] to model the so-called blackboard type of problem solving architectures. A
CD grammar system consists of several component grammars, these are the problem solving
agents, which generate a common sentential form by taking turns in the rewriting process.
The sentential form represents the blackboard, the current state of the problem, which the
agents might modify according to a certain protocol until the solution appears, that is, until
a terminal string is generated. In this paper we consider the cooperation protocol called
terminal mode (or t-mode) of derivation which is known to increase the generative power
of the components: CD grammar systems with context-free components working in the t-
mode of derivation are more powerful than context-free grammars, they characterize the class
of ET0L languages, the languages generated by so-called extended tabled interactionless
Lindenmayer systems.

In the following we study the generative mechanisms obtained by using restricted variants
of random context grammars as components of a cooperating distributed grammar system,
and investigate how much of the power that was lost by the different type of restrictions can
be recovered by the use of several grammars and the t-mode of cooperating derivation.

For CD grammar systems with forbidding grammars as components (these are random
context grammars with no permitting symbols) the problem was investigated in [9, 10], it was
shown that forbidding CD grammar systems have the same power as random context gram-
mars (with or without erasing rules), while so-called left-forbidding grammar CD grammar
systems characterize the class of recursively enumerable or context sensitive languages de-
pending on whether erasing rules are allowed or not. (In the case of left-forbidding grammars,
the non-appearance of the forbidding symbols is checked only on the left side of the rewrit-
ten nonterminal symbol.) These latter results are especially interesting since left-forbidding
random context grammars without the cooperating distributed framework characterize only

CD Grammar Systems with Permitting Grammars as Components 125

the class of context-free languages.
Here we are interested in permitting and in left-permitting grammars, variants of random

context grammars with no forbidding symbols. If erasing rules are not allowed, permitting
random context grammars are strictly weaker than random context grammars, see [6], but
their power is regained using the cooperating distributed framework and the terminal mode
of derivation. We will show that the power of CD grammar systems with permitting gram-
mars equals the power of general random context grammars in both cases, with or without
erasing rules. Moreover, in the case of left-permitting components, the use of CD grammar
systems not only compensates for the possibility of checking the non-appearance of forbid-
ding symbols, but even more, these systems characterize the class of context sensitive or
recursively enumerable languages, depending on whether erasing rules are allowed or not,
thus, in the non-erasing case, they are more powerful than random context grammars.

Finally, we also present some descriptional complexity results. We show that the number
of components can be bounded, and moreover, if left-permitting components with erasing
rules are used, this can be done together with bounding the number of nonterminals at the
same time.

2. Preliminaries

This paper assumes that the reader is familiar with formal language theory, more infor-
mation can be found in [3, 11, 12]. An alphabet V is a finite set of symbols, V ∗ represents
the free monoid generated by V where the unit of V ∗ is denoted by λ , and V + = V ∗−{λ}.
The cardinality of a finite set A is denoted by |A|, |w| denotes the length of the word w ∈V ∗,
and alph(w) ⊆ V is the set of symbols occurring in w. Let L (CF), L (CS), and L (RE)
denote the families of context-free, context-sensitive, and recursively enumerable languages,
respectively.

A random context grammar is a quadruple G = (N,T,P,S), where N is the alphabet of
nonterminals, T is the alphabet of terminals such that N ∩T = /0, S ∈ N is the start symbol,
and P is a finite set of productions of the form (A→ x,Per,For), where A→ x is a context-
free production, i.e., A ∈ N, x ∈V ∗ with V denoting N∪T , and Per,For⊆ N. For two words
u,v ∈ V ∗ and the production (A→ x,Per,For) ∈ P, the relation uAv⇒ uxv holds, provided
that

• Per⊆ alph(uv), and

• alph(uv)∩ For = /0.

The transitive closure, and the reflexive and transitive closure of ⇒ is denoted by ⇒+ and
⇒∗, respectively. The language generated by G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w}.

A permitting grammar is a random context grammar G = (N,T,P,S), where for each
production (A→ x,Per,For) ∈ P it holds that For = /0.

A left-permitting grammar is a quadruple G = (N,T,P,S), where N, T , P, and S are the
same as in the case of a permitting grammar. For u,v ∈ V ∗ and (A→ x,Per, /0) ∈ P, the
relation uAv⇒ uxv holds, provided that

• Per⊆ alph(u),

126 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

that is, the permitting symbols must appear on the left side of the rewritten nonterminal. The
language generated by G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w}.

In case of (left-) permitting grammars, the forbidding sets are omitted; i.e., we write
(A→ x,Per) instead of (A→ x,Per, /0), and such a production is called a (left-) permitting
production.

The families of languages generated by random context grammars, permitting grammars,
and left-permitting grammars are denoted by L (RC), L (P), and L (`P), respectively, and
by L (RC−λ), L (P−λ), and L (`P−λ) if they are generated by grammars without erasing
rules.

As we have already mentioned, L (P− λ) ⊂ L (RC− λ), permitting random context
grammars are strictly weaker then random context grammars (if erasing rules are not al-
lowed). A similar relation is not known for left-permitting grammars, but clearly, L (CF)⊆
L (`P), any context-free grammar is also a left-permitting grammar. The following example
also demonstrates that L (CF) ⊂L (`P), left-permitting grammars are more powerful that
context-free grammars. The precise relation between the families L (P) and L (`P) is also
an open question.

Example 1 Let G = ({S,A,C,A′,C′},{a,b,c},P,S) be a left-permitting grammar, and let P
contain the following productions:

P = {(S→ AC, /0),(A→ aA′b, /0),(A→ ab, /0),(A′→ A, /0),
(C→ cC′,{A′}),(C→ c, /0),(C′→C,{A})}.

It is not difficult to see that L(G) = {anbncm : n ≥ m ≥ 1} which is a non-context-free lan-
guage.

Now we present the notion of a cooperating distributed grammar system, see [1, 2, 4] for
more details.

A cooperating distributed grammar system (a CD grammar system in short) is a construct
Γ = (N,T,P1,P2, . . . ,Pn,S), where N is a set of nonterminals, T is a set of terminals, N∩T =
/0, S ∈ N is the start symbol, and for 1 ≤ i ≤ n, each component Pi is a set of context-free
productions. For u,v ∈ V ∗ and 1 ≤ i ≤ n, let u⇒Pi v denote a rewriting step performed by
the application of a production from Pi. We say that u derives v by productions from Pi in the
terminal mode, written as u⇒t

Pi
v, if u = u0⇒Pi u1⇒Pi . . .⇒Pi uk = v for some k ≥ 1, and

there is no w ∈V ∗ such that v⇒Pi w. The language generated by Γ in the terminal derivation
mode (or t-mode) is defined as L(Γ) = {w ∈ T ∗ : there is an `≥ 1 such that S⇒t

Pi1
w1⇒t

Pi2
w2⇒t

Pi3
. . .⇒Pi`

w` = w, 1≤ i j ≤ n, 1≤ j ≤ `}.
The family of languages generated in the terminal mode by CD grammar systems with n

components where n ≥ 1, is denoted by L (CD,CF,n), or L (CD,CF −λ ,n) if the compo-
nents contain only non-erasing productions.

It is known that L (CD,CF,2) = L (CD,CF−λ ,2) = L (CF), but

L (CD,CF,n) = L (CD,CF−λ ,n) = L (ET 0L), for n≥ 3,

where L (ET 0L) denotes the class of languages generated by extended tabled interactionless
Lindenmayer systems (see for example [8]).

CD Grammar Systems with Permitting Grammars as Components 127

A permitting (or left-permitting) cooperating distributed grammar system is a construct
Γ = (N,T, P1,P2, . . . ,Pn,S), where the components Pi, 1 ≤ i ≤ n, are sets of permitting pro-
ductions. The language generated by Γ in the t-mode is defined in the same way as for CD
grammar systems, the productions are used as in permitting (left-permitting) grammars.

The families of languages generated by permitting (or left-permitting) CD grammar sys-
tems with n components where n ≥ 1, working in the t-mode are denoted by L (CD,P,n)
(or L (CD,`P,n)), and L (CD,P− λ ,n) (or L (CD,`P− λ ,n)) if the components are non-
erasing. If the number of components is not considered, n is omitted.

3. The power of permitting CD grammar systems

Now we show that the class of languages generated by permitting CD grammar systems
in the t-mode coincides with the class of random-context languages. First we need a lemma.

Lemma 1 For each random context grammar G, there is a random context grammar G′

with L(G) = L(G′) and productions of the form (A→ x,Per,For) satisfying the property that
A /∈ For.

Proof. Let G = (N,T,P,S) be a random context grammar. Let us construct the random
context grammar G′ = (N ∪N′,T,P′,S) as follows. Let N′ = {A′ : A ∈ N}, N ∩N′ = /0, and
P′ = {(A→ A′, /0,N′),(A′ → x,Per,For) : (A→ x,Per,For) ∈ P}. Then, G and G′ generate
the same language and G′ satisfies the required property. 2

Now we demonstrate that every (non-erasing) random context grammar can be simulated
by a (non-erasing) permitting CD grammar system working in the t-mode. As a result, coop-
erating permitting components are able to compensate the absence of forbidding sets, which
is surprising because considering the cooperating distributed framework only with context-
free components, the generated language family (the family of ET0L languages) is properly
included in the family of forbidding languages (see [3, 5]).

Theorem 2 L (RC)⊆L (CD,P) and L (RC−λ)⊆L (CD,P−λ).

Proof. Let G =(N,T,P,S) be a random context grammar satisfying the property from Lemma 1,
and let the productions of P be labeled by numbers from 1 to n = |P|. Let

Γ = (N∪N′∪N[],T,P0,P1, . . . ,Pn,S)

be a permitting CD grammar system where N′= {A′ : A∈N} and N[] = {[x] : (A→ x,Per,For)∈
P,A ∈ N}, with the set of productions

P0 = {(A′→ A, /0),([x]→ x, /0) : A′ ∈ N′, [x] ∈ N[]} ,

and for each rule i : (A→ x,Per,For) ∈ P, 1≤ i≤ n,

Pi = {(A→ [x],Per),([x]→ [x],{[x]}) }∪{(X → X , /0),(Y → Y ′, /0) : X ∈ For,Y ∈ N−For}.

We prove that L(Γ) = L(G).

128 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

To prove that L(G)⊆ L(Γ), consider uAv⇒ uxv, a derivation step of a derivation in G ac-
cording to a production i : (A→ x,Per,For) ∈ P. We show that uAv⇒t

Pi
h(u)[x]h(v)⇒t

P0
uxv,

where h is a homomorphism from (T ∪N) to (T ∪N′) defined by h(X) = X ′, X ∈ N, and
h(a) = a, a ∈ T . Clearly, by productions from Pi, the required occurrence of A may be re-
placed with [x] and all other nonterminal symbols can be primed because there are no symbols
from For in uv. After these replacements, as there is only one symbol [x] in h(u)[x]h(v), com-
ponent Pi is blocked; i.e., we have uAv⇒t

Pi
h(u)[x]h(v). Now, by productions from P0, we

obtain h(u)[x]h(v)⇒t
P0

uxv.
To prove the inclusion L(Γ) ⊆ L(G), consider a t-mode derivation step of Γ, α1⇒t

Pi
α2,

for some α1 ∈ (N ∪T)∗, and Pi, 1 ≤ i ≤ n, with the rule i : (A→ x,Per,For) ∈ P. Assume
that α1 = u0Au1Au2 . . .Aur, for some r ≥ 0 (r = 0 implies that there is no A in α1), where
u0u1 . . .ur ∈ (V − (For∪{A}))∗. This follows from the fact that the derivation is terminating:
If there appeared a symbol X ∈For in the sentential form, the derivation would keep replacing
X with X for ever. Thus, α2 = h(u0)δ1h(u1)δ2h(u2) . . .δrh(ur), where δ j ∈ {[x],A′}, 1≤ j≤
r. Notice that there is no applicable production in Pi if and only if there is no more than one
occurrence of [x] in α2; otherwise, [x] is replaced with [x] for ever.

Now, the only component able to rewrite α2 is P0, thus, in another t-mode derivation
step we get α2⇒t

P0
α3 = uxv, where for u,v, the property that uAv = α1 holds. This means

that either α1 = α3, or the results of the rewriting process using the two consecutive t-mode
derivation steps of Pi and P0 of Γ can also be achieved by the rule i : (A→ x,Per,For) of G.

2

On the other hand, the following theorem proves that cooperating distributed systems of
permitting components in the t-mode of derivation are at most as powerful as random context
grammars.

Theorem 3 L (CD,P)⊆L (RC) and L (CD,P−λ)⊆L (RC−λ).

Proof. Let Γ = (N,T,P1,P2, . . . ,Pn,S) be a permitting CD grammar system with n compo-
nents, n ≥ 1. Construct the random context grammar G = (N′,T ∪{c},P′,S′), where c is a
new symbol, c 6∈ T . The set of nonterminals is N′ = N∪{X ′ : X ∈ N}∪N′′ where

N′′ = { [Qi],〈p,Qi〉, [i] : Qi ⊆ {r,r′ : r ∈ Pi}, p ∈ Qi, where |Qi|= |Pi|
and p j, p′k ∈ Qi implies p j 6= pk,1≤ j,k ≤ |Pi|, 1≤ i≤ n}.

P′ is constructed as follows.

1. For each (A→ x,Per) ∈ Pi, add

(a) (A→ x,Per∪{[i]}, /0)

to P′.

2. For 1≤ i, `≤ n, add

(a) (S′→ S[i], /0, /0),

(b) ([i]→ [{p1, p2, . . . , p|Pi|}], /0, /0) where Pi = {p1, p2, . . . , p|Pi|},

CD Grammar Systems with Permitting Grammars as Components 129

(c) ([{p′1, p′2, . . . , p′|Pi|}]→ [`], /0, /0) where Pi = {p1, p2, . . . , p|Pi|}, and

(d) ([i]→ c, /0, /0),

to P′.

3. For all Qi defined as above and for all p j = (A j → x j,Per j) ∈ (Qi ∩Pi), 1 ≤ i ≤ n,
1≤ j ≤ |Pi|, add also to P′ the rules

(a) ([Qi]→ [(Qi−{p j})∪{p′j}], /0,{A j}),
(b) ([Qi]→ 〈p j,Qi〉,{A j}, /0),

(c) (A j→ A′j,{〈p j,Qi〉},{A′j}),
(d) (〈p j,Qi〉 → [p j,Qi],{A′j},{X}), where X ∈ Per j,

(e) (A′j→ A j, /0, /0),

(f) ([p j,Qi]→ [(Qi−{p j})∪{p′j}], /0,{A′j}).

Informally, productions constructed in (1a) simulate the applications of the corresponding
productions of the ith component of Γ. By (2b) and (2d), the grammar stops the simulation
of Γ’s productions and either it starts to verify that there is no applicable production of the ith
component of Γ (see productions constructed in (3a) to (3f)), or it finishes the derivation by
replacing [i] with c. In (3a) to (3f), for each production p j : (A j→ x j,Per j) of the component
Pi, the grammar verifies that p j is not applicable as follows.

(3a): If there is no A j in the sentential form, then p j is not applicable.

(3b)–(3f): If there is A j, i.e., the sentential form is uA jv, for some u, v, but at least one of the
permitting symbols is not occurring in uv, i.e., there is no X for some X ∈ Per j in uv,
then p is not applicable. Finally,

(2c): if there is no applicable production, the random context grammar can change the simu-
lated component.

Formally, we shall prove that L(Γ) · c = L(G). To prove that L(Γ) · c ⊆ L(G), consider a
successful derivation of Γ. Such a derivation is of the form S⇒t α1 ⇒t α2 ⇒t . . .⇒t αk
where αk ∈ T ∗ for some k≥ 1. Consider a sub-derivation of the form αm⇒t

Pi
αm+1, for some

1≤ i≤ n, 1≤m < k, according to a sequence s of productions from Pi. Consider a sentential
form αm[i]. Then, by the sequence of the corresponding productions to the productions of s
(see (1a) of the construction), by a production constructed in (2b), by productions constructed
in (3a) to (3f), and by (2c), we have

αm[i]⇒∗ αm+1[i]⇒ αm+1[Pi]⇒|Pi| αm+1[P′i]⇒ αm+1[`]

in G, where P′i = {p′1, p′2, . . . , p′|Pi|} for Pi = {p1, p2, . . . , p|Pi|}, and where P̀ is a component
which continues the derivation of Γ from αm+1 to αm+2. The proof now proceeds by induc-
tion.

If m+1 = k, then instead of (2b), a production constructed under (2d) is applied; i.e., we
have

αm[i]⇒∗ αm+1[i]⇒ αm+1c .

130 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

As αm+1 ∈ T ∗, we have αm+1c ∈ L(G).
To prove that L(G)⊆ L(Γ) · c, consider a successful derivation of G. Such a derivation is

of the form S′⇒ S[i]⇒∗ w[j]⇒ wc for some 1 ≤ i, j ≤ n, w ∈ T ∗. Consider one derivation
step of this derivation, say α ⇒ β . Then, there are the following possibilities:

1. The derivation step is according to a production (A→ x,W ∪{[i]}), i.e., α = uAv[i] for
some u, v, and W ⊆ alph(uv). Clearly, (A→ x,W) ∈ Pi is applicable to uAv in Γ; i.e.,
uAv⇒ uxv in Γ.

2. If α = u[i] for some u, i, and ([i] → c, /0, /0) is applied, then no other production is
applicable, i.e., β = uc ∈ T ∗ · c.

3. If α = u[i] for some u, i, and ([i]→ [Pi], /0, /0) is applied, then by the construction of G,
if a terminal word can be derived from u[Pi], then no production of Pi is applicable to u.
First, only productions constructed in (3a), (3b), and (2c) are applicable. If a production
constructed in (3a) is applied, replacing a nonterminal with p by a nonterminal with p′,
p : (A→ x,W) ∈ Pi, then there is no A in u; i.e., p is not applicable in Γ. If a sequence
of productions constructed in (3b)–(3f) is applied, replacing a nonterminal with p by a
nonterminal with p′, then A∈ alph(u), i.e., u = u′Av′, for some u′, v′, but there is X ∈W
such that X /∈ alph(u′v′); i.e., W 6⊆ alph(u′v′). Again, p is not applicable in Γ. Finally,
a production of the form [{p′1, p′2, . . . , p′ki

}]→ [`], /0, /0) is applied; i.e., all symbols of Pi
are primed, which means that there is no applicable production in Pi.

Thus, the derivation of G is of the form u[i]⇒ u[Pi]⇒∗ u[`] and there is no rule of Pi
applicable to u.

The proof now proceeds by induction.
The above considerations show that L(G) = L(Γ) · c. This is sufficient to prove our

statement since (non-erasing) random context grammars are closed under restricted homo-
morphisms (see [3, Lemma 1.3.3]), that is, there is a random context grammar H such that
L(Γ) = L(H). 2

The following result is an immediate consequence of the previous two theorems.

Corollary 4 L (CD,P) = L (RC) and L (CD,P−λ) = L (RC−λ).

4. The power of left-permitting CD grammar systems

Now we show that if we have left-permitting components, we can characterize the class
of recursively enumerable languages (or L (CS) if erasing rules are not allowed).

Theorem 5 L (CD, `P−λ) = L (CS) and L (CD, `P) = L (RE).

Proof. It is obvious that L (CD, `P−λ)⊆L (CS) and L (CD, `P)⊆L (RE) holds, thus we
only need to show the opposite inclusions.

We start with L (CS) ⊆ L (CD, `P− λ). Let L ⊆ T ∗ be a context-sensitive language.
Then L =

⋃
a∈T (La · a) where La = L/{a}, the right quotient of L with the language {a}.

CD Grammar Systems with Permitting Grammars as Components 131

Since L (CS) is closed under right quotient, and since L (CD, `P−λ) is obviously closed
under union, it is sufficient to show that (L · a) ∈L (CD, `P−λ) for any context-sensitive
L⊆ T ∗ and a ∈ T .

Let G = (N,T,P,S) be a context-sensitive grammar. In the following we show that L(G) ·
a ∈L (CD, `P−λ). Without the loss of generality we may assume that S does not occur on
the right side of the productions of P, and that all productions are of one of the following
forms: AB→ CD, A→ BC, A→ a, with A,B,C,D ∈ N, a ∈ T . Let P = P1 ∪P2 where P1
denotes the set of context-free productions, P2 denotes the set of non-context-free productions
of P.

We construct a left-permitting CD grammar system Γ such that L(Γ) = L(G) · a where
a ∈ T . For the sake of conciseness, we use the notation (Pr,1,Pr,2,Pr,3)r∈P2 to denote the
3 · |P2| components containing a three-tuple of production sets for each rule in P2.

Let Γ = (N′,T,Pini,PCF ,P′CF ,(Pr,1,Pr,2,Pr,3)r∈P2 ,P4,Pf in,S′) with

N′ = N∪
⋃
r∈P

(Nr ∪N′r ∪N′′r ∪N′′′r ∪Niv
r ∪Nv

r ∪Nvi
r)∪{$,$r,$′r,$

′′
r : r ∈ P}

where for any r∈P, Nr = {Xr : X ∈N} and for any α ∈{′,′′ ,′′′ ,iv ,v ,vi }, Nα
r = {Xα

r : X ∈N}.
Γ consists of the following components.

Pini = {S′→ S$}, PCF = {A→ A′,A→ α
′ : A→ α ∈ P}, P′CF = {A′→ A : A ∈ N}

where for a string α ∈ (N∪T)+, α ′ denotes h(α) for h : N∪T →N′∪T with h(X) = X ′, X ∈
N and h(x) = x, x ∈ T .

For each rule r ∈ P2 of the form AB→CD, Γ also has the components

Pr,1 = {B→ Br,$→ $r,$′r→ $′r,$
′′
r → $′′r }∪{(X ′r → X ′′r ,{Br}) : X ∈ N}∪

{$s→ $s,$′s→ $′s,$
′′
s → $′′s : s 6= r}∪{(Br→ B′′r ,{Br})}∪

{X → X ′r ,X
′′′
r → X ′′′r ,Xv

r → Xv
r : X ∈ N},

Pr,2 = {A′r→ Ar,$′r→ $′r,$
′′
r → $′′r }∪{X ′′r → X ′′′r ,X ′r → Xv

r : X ∈ N}∪
{(X ′′′r → X iv

r ,{Ar}),(Xv
r → Xvi

r ,{Ar})}∪
{$s→ $s,$′s→ $′s,$

′′
s → $′′s : s 6= r},

Pr,3 = {X iv
r → X ,X ′′′r → X ′′′r ,Xv

r → X ,Xvi
r → Xvi

r : X ∈ N}∪
{($r→ $′r,{Ar}),($′r→ $′′r ,{Br})}∪
{Ar→C,Br→ D,$r→ $r},

which work together with

P4 = {$′′r → $,$r→ $r,$′r→ $′r : r ∈ P},

and then finally, one more component

Pf in = {$→ a}∪{X → X : X ∈ N′}.

The sentential forms w generated by G correspond to w$ generated by Γ, S$ is produced by
the component Pini from the start symbol S′. The context-free rules of G, the rules in P1, are
simulated by the components PCF and P′CF .

132 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

The context-sensitive rules are simulated by the three components Pr,i, 1≤ i≤ 3, associ-
ated to each rule r of the form AB→CD. If we start with a sentential form w$ where rule r is
applicable to w ∈ (N∪T)∗, we can use the component Pr,1 to produce a string of the form (1)
u′rBrv′′r $r or (2) u′r$r where u′r ∈ (N′r)

∗, v′′r ∈ (N′′r)∗, and w is the unprimed, unindexed version
of u′rBrv′′r or u′r. Because of the rules of the form $r → $r, the components other than Pr,2 do
not allow finishing the derivation.

If we have u′r$r and Pr,2 is used, then we get (2.1) uv
rArvvi

r $r or (2.2) uv
r$r with uv

r ∈
(Nv

r)∗, vvi
r ∈ (Nvi

r)∗.
In the second case, the derivation either cannot be finished because of the rules of the

form Xv
r → Xv

r and $r→ $r, or the sentential form can be changed to its unprimed form, w$r,
by Pr,3 and then Pr,1 becomes applicable again.

In the first case, the symbol $r is changed to $′r by Pr,3 (there is no other component which
can be used to continue the derivation) and then the derivation cannot be continued because
of the presence of the rules $′r→ $′r.

If we have u′rBrv′′r $r and Pr,2 is used, then we get strings of the form (1.1) uv
rBrv′′′r $r or

(1.2) uv
r,1Aruvi

r,2Brviv
r $r with uv

r ,u
v
r,1 ∈ (Nv

r)∗, uvi
r,2 ∈ (Nvi

r)∗, v′′′r ∈ (N′′′r)∗, viv
r ∈ (Niv

r)∗.
In the first case, because of the presence of the rules of the form X ′′′r → X ′′′r and $r→ $r,

the derivation cannot be continued. In the second case, because of the presence of the rules of
the form Xv

r →Xv
r and $r→ $r, the derivation can only continue by the rules of Pr,3 which only

enable a successful derivation if uvi
r,2 = λ . In this case, the primed and indexed nonterminals

are changed back to their original form, ArBr is rewritten to CD, and $r is changed to $′′r .
The symbol $′′r can be rewritten to $ by component P4, and then the simulation of another

rule can begin.
If a string z$ with z ∈ T ∗ is obtained, then Pf in can be used to finish the derivation pro-

ducing za. From the considerations above we can see that za ∈ L(Γ) if and only if z ∈ L(G),
thus, we have shown that L (CS)⊆L (CD, `P−λ).

To show that L (RE) ⊆ L (CD, `P), we use the same construction but we start with a
grammar in which we also allow rules of the form A→ λ . This way the constructed left-
permitting CD grammar system also contains erasing rules, so we obtain that each recursively
enumerable language is in L (CD, `P). 2

5. On the size of permitting and left permitting CD grammar systems

Now we show that the number of components of permitting and left-permitting CD gram-
mar systems can be reduced to two. This result is especially interesting since CD grammar
systems with two context-free components generate only context-free languages, that is, the
cooperating distributed framework itself can only increase the power of context-free compo-
nents if at least three of them are present in the system.

Theorem 6 L (CD,X ,n) = L (CD,X ,2) for all n≥ 3 and X ∈ {P, P−λ , `P, `P−λ}.

Proof. Let n ≥ 3 and let Γ = (N,T,P1,P2, . . . ,Pn,S) be a (left-)permitting CD grammar sys-
tem, and let V = N∪T . Construct the permitting CD grammar system Γ′ = (N′,T,P′1,P

′
2,S
′),

with
N′ = N∪{[z, i],〈z, i〉 : z ∈V ∪{λ},1≤ i≤ n},

CD Grammar Systems with Permitting Grammars as Components 133

and P′1 containing the rules

1. (〈z, i〉 → [z, i], /0), for z ∈V ∪{λ}, 1≤ i≤ n, and

2. for each (A→ x,W) ∈ Pi, where x = x1x2 . . .xk, k≥ 1, x j ∈V , 1≤ j ≤ k, or x = x1 = λ

(a) ([A, i]→ [x1, i]x2 . . .xk,W),

(b) (A→ x,W ∪{[z, i]}), for z ∈V ∪{λ},
(c) (A→ x,(W −{Y})∪{[Y, i]}), for Y ∈W .

The other component is

P′2 = {(S′→ 〈S, i〉, /0),([z, i]→ 〈z, j〉, /0) : z ∈V ∪{λ}, 1≤ i, j ≤ n}∪
{([z, i]→ z, /0) : z ∈ T ∪{λ}, 1≤ i≤ n}.

The system works as follows. P′2 chooses a component of Γ to be simulated, say Pi, remem-
bering this in the first nonterminal symbol of the sentential form, say [z, i]. Then, P′1 simulates
a terminating derivation of Pi and it is not difficult to see that (A→ x,W) ∈ Pi is applicable in
Γ if and only if (at least) one of the following productions is applicable in Γ:

• production (A→ x,W ∪{[z, i]}) ∈ P′1 if z 6= A and z 6∈W , or

• in case of z = A, production ([A, i]→ [x1, i]x2 . . .xk,W) ∈ P′1, or

• in case of z ∈W , production (A→ x,(W −{z})∪{[z, i]}) ∈ P′1.

Thus, if [z, i] is present in the sentential form, then P′1 keeps rewriting, simulating the rules of
Pi, as long as possible. Then P′2 chooses the new component to be simulated by changing [z, i]
to 〈z, j〉, after which the process is repeated.

Since the special nonterminals [z, i] or 〈z, i〉 always occupy the leftmost position in the
string, the simulation works not only in the case of permitting, but also in the case of left-
permitting components. 2

Now we show that not only the number of components, but also the number of nontermi-
nals can be bounded, moreover, both of them simultaneously, in the case of left-permitting
systems with erasing rules.

The proof of the statement is based on simulation of Geffert normal form grammars for
recursively enumerable languages. By [7] it is known that for every recursively enumerable
language L over an alphabet T there exist a grammar G = (N,T,P∪{AB→ λ ,CD→ λ},S)
with L = L(G), such that N = {S,S′,A,B,C,D} and P contains only context-free productions
of the form S→ zSx where z ∈ {A,C}∗, x ∈ T , S→ S′, S′ → uS′v where u ∈ {A,C}∗, v ∈
{B,D}∗, and S′→ λ .

Thus, a word w ∈ T ∗ belongs to L if and only if at some step of the derivation in G the
obtained sentential form is of the form αβw, where α ∈ {A,C}∗, β ∈ {B,D}∗ and α = h(β R)
where β R denotes the reverse of β , and h : {B,D}→ {A,C} is a homomorphism with h(B) =
A, h(D) = C.

Theorem 7 Any language L ∈L (RE) can be generated by a left-permitting CD grammar
system with 6 components and 19 nonterminals.

134 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

Proof. Let L be an arbitrary recursively enumerable language and let G = (N,T,P∪{AB→
λ ,CD→ λ},S) be a grammar in Geffert normal form, above, which generates L. To prove the
statement, we construct a CD grammar system Γ with left-permitting grammars as compo-
nents that generates L in the t-mode derivation. The fact, that any language in L (CD, `P,6)
is recursively enumerable can be obtained by standard simulations.

Let Γ = (N,T,P1,P2, . . . ,P6, S̄), where

N = {S, S̄,S′,Z,Z′,Z′′,Z′′′}∪{X , X̄ , X̃ : X ∈ {A,B,C,D}},

and let P′ = {(X → α, /0) : X → α ∈ P}. Now let

P1 = P′∪{(S̄→ SZ, /0),(Z′→ Z′, /0),(Z′′→ Z′′, /0),(Z′′′→ Z′′′, /0) },
P2 = {(X → X̄ ,{C}),(X → X̄ ,{A}) : X ∈ {A,B,C,D}}∪

{(X → X̃ , /0) : X ∈ {B,D} }∪
{(X → X ,{B̃}),(X → X ,{D̃}) : X ∈ {B̄, D̄, B̃, D̃} }∪
{(Z→ Z′,{A}),(Z→ Z′,{C}),(Z′→ Z′′,{B̃}),(Z′→ Z′′,{D̃}) }∪
{(Z→ Z, /0),(Z′→ Z′, /0)},

P3 = {(A→ λ , /0),(B̃→ λ , /0),(D̃→ D̃, /0),(C→C, /0),(Z′′→ Z′′′, /0),
(Z→ Z, /0),(Z′→ Z′, /0)},

P4 = {(C→ λ , /0),(D̃→ λ , /0),(B̃→ B̃, /0),(A→ A, /0),(Z′′→ Z′′′, /0),
(Z→ Z, /0),(Z′→ Z′, /0) },

P5 = {(X̄ → X , /0) : X ∈ {A,B,C,D}∪{(Z′′→ Z′′, /0),(Z′′′→ Z, /0) },
P6 = {(Z′′′→ λ , /0),(Z→ Z, /0),(Z′→ Z′, /0),(Z′′→ Z′′, /0) }∪

{(X → X , /0) : X ∈ {Y,Ȳ ,Ỹ : Y ∈ {A,B,C,D}} }.

In the following, let us refer to Z as the end-marker. The derivation starts with component
P1 that derives a word of the form αβwZ, where α ∈ {A,C}∗, β ∈ {B,D}∗ and α = h(β)R.
Then, the only component which can successfully continue the derivation is P2. (The other
components, because of the rules Z→ Z, would not be able to leave the sentential form.)

In the case of successful generation, P2 first checks whether the sentential form αβwZ
contains at least one letter from the set {A,C}. If this property holds, then the end-marker Z
is changed to Z′, in any other case the component is not able to stop with the derivation due
to the existence of productions Z → Z. Then P2 rewrites letters in αβ as follows: it leaves
the first letter unchanged (there is no A or C preceding the first symbol), replaces all letters
except the last letter preceding wZ′ by its barred version and the symbol preceding wZ′ by its
version with tilde. Notice that if a letter which is not the symbol preceding wZ′ is replaced by
its version with tilde, then the component will not be able to leave the sentential form, just as
in the case when no letter is replaced by its version with the tilde. Otherwise, Z′ is changed
to Z′′ and the derivation continues either by component P3 or by P4. (Notice that P1,P5, and
P6 would also be able to continue the derivation, but due to production Z′′→ Z′′, they would
not be able to stop.)

Component P2 finishes the derivation with a sentential form Y ¯α1β1X̃Z′′, where Y ∈{A,C},
X ∈ {B,D}, and Y α1β1X = αβ . Suppose that Y X = AB. Then, component P3 removes let-
ters A and B̃ and rewrites Z′′ to Z′′′. If Y X 6= AB, then P3 will never be able to stop with

CD Grammar Systems with Permitting Grammars as Components 135

the derivation. Analogously, P4 is able to cancel letters C and D̃ from the left-hand side and
the right-hand side of Cα1β1D̃, respectively, and to rewrite Z′′ to Z′′′; in any other case the
component enters a never ending derivation.

In the next step component P5 rewrites the barred letters to their non-barred versions -
if they exist - and replaces Z′′′ with Z. If symbols from {A,B,C,D} still exists and Z′′′ is
changed for Z, then the derivation continues with the interplay of components P2, P3, P5 and
P2, P4, P5, respectively. If no symbol from {A,B,C,D} exists, then component P6 finishes the
derivation. Notice that P6 can stop with the derivation only if the sentential form consists of
zero or more terminal letters and Z′′′.

Due to the construction of the production sets, every word of L and only words of L can
be generated by Γ. 2

6. Conclusions

In the previous sections, we have investigated the power and descriptional complexity pa-
rameters of permitting and left-permitting CD grammar systems. The definition of a deriva-
tion step in random context grammars by a rule r : (A→ α,Per) was given in such a way
that r is applicable to uAv if Per ⊆ alph(uv), that is, if A ∈ Per, then we have required that
A appears in the sentential form in at least two copies. An equivalent definition of the direct
derivation step for random context (permitting) grammars is also used in the literature, which
considers also the rewritten nonterminal; i.e., uAv⇒ uαv provided that there is a production
r : (A→ α,Per), Per ⊆ alph(uAv), that is, if A ∈ Per, then r may be applicable even in the
case when A 6∈ alph(uv). Contrary to “single” random context grammars where these two
definitions are equivalent, we do not know whether they are also equivalent in case of CD
grammar systems with (permitting) random context grammars as components.

Acknowledgment. T. Masopust was supported by the Czech Ministry of Education under
the Research Plan No. MSM 0021630528.

References
[1] CSUHAJ-VARJÚ, E., DASSOW, J., On cooperating/distributed grammar systems, Journal of In-

formation Processing and Cybernetics (EIK), 26, 1990, pp. 49–63.

[2] CSUHAJ-VARJÚ, E., DASSOW, J., KELEMEN, J., PĂUN, G., Grammar Systems: A Grammati-
cal Approach to Distribution and Cooperation, Gordon and Breach Science Publishers, Topics in
Computer Mathematics 5, Yverdon, 1994.

[3] DASSOW, J., PĂUN, G.: Regulated Rewriting in Formal Language Theory, Springer-Verlag,
Berlin, 1989.

[4] DASSOW, J., PĂUN, GH., ROZENBERG, G., Grammar systems, in [11], Vol. II, pp. 155–213.

[5] DASSOW, J., PĂUN, GH., SALOMAA, A., Grammars with controlled derivations, in [11], Vol.
II, pp. 101–154.

[6] EWERT, S., VAN DER WALT, A., A pumping lemma for permitting random context languages,
Theoretical Computer Science, 270, 2002, pp. 959–967.

136 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

[7] GEFFERT, V., Context-free-like forms for phrase structure grammars, in M. P. Chytil, L. Janiga, V.
Koubek (eds.), Proc. Mathematical Foundations of Computer Science 1988, 13th Symp. Carlsbad,
Czechoslovakia, August 29-September 2, 1988. Volume 324 of Lecture Notes in Computer Science,
Springer, Berlin, 1988, pp. 309-317.

[8] KARI, L., ROZENBERG, G., SALOMAA, A., L systems, in [11], Vol I., pp. 253–328.

[9] MASOPUST, T., On the terminating derivation mode in cooperating distributed grammar systems
with forbidding components, International Journal of Foundations of Computer Science, to appear.

[10] GOLDEFUS, F., MASOPUST, T., MEDUNA, A., Left-forbidding cooperating distributed gram-
mar systems, submitted.

[11] ROZENBERG, G., SALOMAA, A., eds, Handbook of Formal Languages, volumes I–III,
Springer-Verlag, Berlin, 1997.

[12] SALOMAA, A., Formal languages, Academic Press, New York, 1973.

[13] VAN DER WALT, A.P.J., Random context grammars, in: Proceedings of the Symposium on
Formal Languages, 1970.

