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Summary 

Baroreflex sensitivity (BRS) is abnormal in the prediabetic state. This study was conducted to 

determine effects of chronic rosiglitazone (RSG), an insulin sensitizer, on BRS in prediabetic 

hyperglycemic (PDH) rats induced by nicotinamide and streptozotocin. The fasting and 

postprandial blood glucose levels were 5.6–6.9 and 7.8–11.0 mmol/l, respectively. Rats were 

treated with RSG or saline for 12 weeks. BRS response to phenylephrine (PE-BRS) or 

sodium nitroprusside (NP-BRS) was determined by linear regression method. Cardiac 

sympathetic and parasympathetic influences were determined by autonomic blockades. In the 

saline-treated PDH rats, PE-BRS was enhanced early at week 4 and became greater at week 

12. Abnormalities in NP-BRS and cardiac autonomic influences were found only after week 

12. Four weeks of RSG treatment normalized blood glucose levels but not PE-BRS. All 

altered cardiovascular variables were completely restored by 12 weeks of RSG treatment. 

The correlation between BRS and blood glucose levels in saline-treated PDH rats was 

significant at week 12, but no correlation was found in RSG-treated rats. In conclusion, 

hyperglycemia, even in the prediabetic state, may play a role in BRS abnormalities. RSG 

treatment early in the prediabetic state may normalize BRS via cardiac autonomic modulation, 

besides its anti-hyperglycemic action. 
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Introduction 

    Autonomic dysfunction may occur early in the progression of diabetes and is an 

important risk factor in predicting cardiac morbidity and mortality in diabetic patients (Vinik 

et al. 2003). Arterial baroreflex sensitivity (BRS), an index for evaluating cardiac autonomic 

function, is known to be impaired in prediabetes (Iellamo et al. 2006) and diabetes 

(Dalla-Pozza et al. 2007, Maeda et al. 1995). Hyperglycemia has been implicated as a 

pathogenic factor for diabetic autonomic dysfunction (Stein et al. 2007, Wu et al. 2007). BRS 

has also been shown to be significantly reduced in response to acute hyperglycemia (Marfella 

et al. 2001) and an inversed relationship has been found to exist between BRS and blood 

glucose levels (Lefrandt et al. 2000) in healthy subjects. 

    It has been reported that intensive glycemic control could retard the development of 

cardiovascular autonomic dysfunction in diabetic patients (The Diabetes Control and 

Complications Trial Research Group 1998). In addition, insulin intervention immediately 

following induction of diabetes has been shown to normalize the abnormal BRS in 

experimental diabetic models with insulin deficiency (Chang and Lund 1986, Parra et al. 

2005). Thus, early interventions which improve glycemic control may have beneficial effects 

on diabetic autonomic dysfunction. 

    Rosiglitazone (RSG), an insulin sensitizer, is widely used clinically as an 

anti-hyperglycemic agent in type 2 diabetes because of its effects on glucose and lipid 

metabolism (Yki-Jarvinen 2004). Besides its insulin-sensitizing property, RSG also has 

benefits on cardiovascular functions, including improvement in endothelial function and 

lowering of blood pressure (Kelly and Bank 2007). Interestingly, these cardiovascular actions 

of RSG have also been found in type 1 diabetic animals (Wang et al. 2007). It is not known 

whether RSG treatment, especially early in the prediabetic state, might favor the glycemic 

control and baroreflex function. 
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    Therefore, the present study was undertaken to investigate the effects of chronic RSG 

treatment on BRS abnormality in rats with prediabetic hyperglycemia which was induced by 

nicotinamide plus streptozotocin. This model has been reported to be able to induce stable 

moderate hyperglycemia without markedly affecting the metabolic function of -cells 

(Masiello et al. 1998, Novelli et al. 2001). 
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Materials and Methods 

Animal preparation 

    Male Sprague-Dawley rats weighing 200250 g were purchased from the National 

Laboratory Animal Center (Taipei, Taiwan). The rats were allowed free access to the regular 

chow diet and housed in individual cages with a 12:12-h dark-light cycle. All surgical 

procedures and experimental protocols were conducted according to the recommendations 

and approval of the Institutional Animal Care and Use Committee of Taichung Veterans 

General Hospital, Taichung, Taiwan. 

    Rats were fasted overnight and administered nicotinamide intraperitoneally (230 mg/kg, 

dissolved in 0.9% saline; Sigma, St. Louis, MO, USA) before an intravenous administration 

of streptozotocin (65 mg/kg, dissolved in 0.1 mol/l citric acid, pH 4.5; Sigma) (Masiello et al. 

1998). With combined injection of nicotinamide plus streptozotocin, nicotinamide is able to 

partially prevent the destruction of pancreatic -cells (40% reduction) by the streptozotocin 

and the residual -cells appear to remain well differentiated and maintain most of metabolic 

function (Novelli et al. 2001). Thus, rats treated with nicotinamide plus streptozotocin could 

exhibit a stable moderate hyperglycemia, glucose intolerance, altered glucose-stimulated 

insulin secretion, and responsiveness to tolbutamide that was reported to be similar to human 

non-insulin-dependent diabetes mellitus (Masiello et al. 1998). According to the criteria of 

hyperglycemia for diabetic diagonsis (Genuth et al. 2003), one week after the injections, rats 

with fasting and postprandial blood glucose levels of 5.6 – 6.9 and 7.8 – 11.0 mmol/l, 

respectively, were used as the prediabetic hyperglycemic group (PDH; n = 72). After the 

development of prediabetic hyperglycemia was confirmed, PDH rats were randomly assigned 

to two groups treated with saline or RSG (rosiglitazone maleate, 8 mg/kg per day, p.o.; 

Avandia, GlaxoSmithKline SB Pharmaco Inc., Cidra, Puerto Rico) for 1, 4, or 12 weeks, 

respectively (Hsieh and Hong 2008). A group of age-matched euglycemic rats without RSG 
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or saline treatment was used as the control group (n = 36). Another group of rats, which were 

treated with intravenous injection of streptozotocin (65 mg/kg) only and had fasting and 

postprandial blood glucose levels of ≥ 7.0 mmol/l and ≥ 13.8 mmol/l, respectively, were used 

as the diabetic hyperglycemic rats (DH; n= 12). 

    Overnight fasting and postprandial (2 h after feeding) blood samples were collected 

from the tail vein between 9:00 and 11:00 A.M. With the exception of immediate blood 

glucose assays, plasma samples were separated into several aliquots and stored at -80°C for 

later analysis. Blood glucose and plasma insulin levels were measured before (week 0) and 

after 1, 4, 8, and 12 weeks of saline or RSG treatments. 

    At the end of 1, 4 and 12 weeks of saline or RSG treatments, rats were anesthetized by 

chloral hydrate (400 mg/kg, intraperitoneally; Sigma) prior to implanting vascular catheters 

(Micro-Renathane tube, MRE 040, 1.02 mm outer diameter  0.64 mm inner diameter) in the 

right femoral artery for later blood pressure measurements and blood sampling, and in the left 

femoral vein (MRE 033, 0.84 mm outer diameter  0.36 mm inner diameter) for drug 

administration. The catheters were filled with heparinized saline (20 U/ml), exteriorized 

through the dorsal midscapular region of the animal, and covered with a stainless-steel 

extension spring. Rats were allowed to recover for a minimum of 5 days. During the recovery 

period, rats were monitored for signs of infection, body weight gain, behavior, and food and 

water intakes. Only apparently healthy animals with no signs of pain and infection that were 

freely and actively moving and gaining weight normally were used for the experiments. 

 

Arterial blood pressure and heart rate recording 

    In experiments, the arterial catheter was connected to a pressure transducer (Gould 

Statham P23Db, Gould Inc., Oxnard, California, USA) fed to a polygraph system (Pressure 

Processor and TA4000 thermal array recorder, Gould Inc.). The signals were also stored on a 
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tape recorder (Neuro-Corder DR-890, Neuron Data, New York, USA) for later analysis. The 

rats were left in the experimental cage at least 1 h before the experiment. Rats were conscious 

and unrestrained during the experiment. The experimental environment was kept as quiet as 

possible to avoid any interference in blood pressure or heart rate (HR). The baseline 

measurements for arterial blood pressure, mean arterial blood pressure (MAP), and HR were 

recorded for at least 10 min before drug administration in conscious rats. 

 

Cardiac sympathetic and parasympathetic influences 

    Cardiac sympathetic and parasympathetic influences and the intrinsic heart rate (IHR) 

were evaluated at the end of 1, 4 and 12 weeks of saline or RSG treatments based on the 

chronotropic effects of methylatropine bromide (muscarinic receptor blocker, 4 mg/kg, i.v.; 

Sigma) and propranolol (-adrenergic receptor blocker, 5 mg/kg, i.v.; Sigma) as previously 

described (Hsieh and Hong 2008). The cardiac parasympathetic influence was calculated by 

the difference between the baseline HR and the methylatropine-induced HR. The sympathetic 

influence was calculated by the difference between the baseline HR and the 

propranolol-induced HR. For comparison, the cardiac parasympathetic and sympathetic 

influences were expressed as absolute values in the present study. The IHR was defined by 

the HR after adrenergic and cholinergic receptor blockades with both methylatropine and 

propranolol. The efficacy of propranolol or methylatropine was determined by elimination of 

the tachycardic responses to isoproterenol (0.1 and 1 g/kg, i.v.; Sigma) or the bradycardiac 

responses to acetylcholine (0.1 and 10 g/kg, i.v.; Sigma) by more than 95%. 

 

BRS 

    Baroreflex function was determined using linear regression by plotting the reflex HR 

changes against the moderate changes in blood pressure elicited by bolus injections of 
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various doses of phenylephrine (PE; 0.2–10 g/kg, i.v.; Sigma) or sodium nitroprusside (NP; 

0.2–10 g/kg, i.v.; Sigma) in each rat at the end of 1, 4 and 12 weeks of saline or RSG 

treatments (Hsieh and Hong 2008). Slope of the regression line was used as the index of BRS 

for each PE or NP test. Values of PE- and NP-BRS were calculated separately from each rat 

in each BRS evaluation. The contributions of sympathetic and parasympathetic components 

in BRS were further determined by propranolol and methylatropine, respectively. 

 

Biochemical analysis 

    The whole-blood glucose levels were measured by the glucose oxidase method with the 

YSI glucose analyzer (YSI 2300 Plus; Yellow Springs Instruments, Yellow Springs, Ohio, 

USA). Plasma insulin levels were measured by solid-phase two-site enzyme immunoassay 

techniques using a commercial rat insulin enzyme-linked immunosorbent assay kit (Mercodia 

AB, Uppsala, Sweden). 

 

Data analysis 

    The experimental results were evaluated by two-way repeated measures analysis of 

variance (ANOVA). Bonferroni’s test was applied for post hoc analysis when ANOVA 

detected a statistical significance for one of the factors. Correlation of PE-BRS and NP-BRS 

with fasting and postprandial blood glucose levels were analyzed by Pearson’s correlation 

analysis. P < 0.05 was considered statistically significant. Values are expressed as means  

S.E.M.
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Results 

Blood glucose levels, plasma insulin levels, and body weights 

    At week 0, the fasting and postprandial blood glucose levels were 5.8  0.1 and 9.2  

0.2 mmol/l in the PDH rats, 4.8  0.1 and 6.2  0.2 mmol/l in the control rats, and 9.6  0.3 

and 16.2  0.4 mmol/l in the DH rats (Fig. 1A and B), respectively. The blood glucose levels 

of the PDH rats were in the range of prediabetic state (Genuth et al. 2003). The plasma 

insulin levels in the PDH and DH rats at week 0 were about 80% and 30% of the control, 

respectively (Fig. 1C). The body weights of PDH rats were not different from those of control 

rats, while the body weights of DH rats were significantly lower (P < 0.05) (Fig. 1D). The 

blood glucose and plasma insulin levels in the PDH rats remained unchanged throughout the 

12-week experimental period without RSG treatment. 

    With one week of RSG treatment, both the fasting and postprandial blood glucose levels 

in the PDH rats were gradually but incompletely normalized (Fig. 1A and B). However, by 

the end of week 4, the blood glucose levels were completely restored to the control level and 

were maintained to the end of week 12. Plasma insulin levels and body weights of the PDH 

rats were not altered by RSG treatment (Fig. 1C and D). 

 

MAP, HR, IHR, and cardiac sympathetic and parasympathetic influences 

    At the end of 1, 4, and 12 weeks, the baseline MAP and HR in the PDH rats with or 

without RSG treatments were not different from those of the time-matched control rats (Table 

1). 

    The IHR obtained after methylatropine plus propranolol treatments in the PDH rats with 

or without RSG treatment was not different from that of the time-matched control rats at 

week 1 (Fig. 2A). The IHR of saline-treated PDH rats was lower at week 4 (Fig. 2B) and 

showed an even greater reduction at week 12 (Fig. 2C). RSG treatment for 4 weeks was 
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unable to prevent the decreases in IHR. However, 12 weeks of RSG treatment significantly 

improved the lowered IHR in the PDH rats, although it was not completely restored. 

    The cardiac sympathetic and parasympathetic influences in the PDH rats with or without 

RSG treatment were not different from those of the time-matched control rats at weeks 1 and 

4 (Fig. 2D). As prediabetic hyperglycemia advanced into week 12, the cardiac 

parasympathetic influences were attenuated, and cardiac sympathetic influences were 

enhanced in the saline-treated PDH rats. With 12 weeks of RSG treatment, these cardiac 

autonomic functional changes in the PDH rats were able to be completely reversed. 

 

BRS 

    Figures 3A-C show the representative plots of HR changes versus the MAP changes in 

response to various doses of PE and NP at the baseline in the saline- or RSG-treated PDH and 

control rats at weeks 1, 4 and 12. At the end of week 1, the PE- and NP-BRS were not 

different between the saline-treated PDH and the time-matched control rats (Fig. 3A). At 

week 4, the PE-BRS began to increase (more negative, -3.89  0.05 as compared to -3.36  

0.06 bpm/mmHg in the control rats, P < 0.05), while the NP-BRS remained unchanged in the 

saline-treated PDH rats (Fig. 3B). As the prediabetic hyperglycemia advanced into week 12, 

the enhancement in PE-BRS was more significant and the NP-BRS became attenuated in the 

saline-treated PDH rats (Fig. 3C and D). The enhanced PE-BRS was markedly eliminated by 

methylatropine treatment, but remained enhanced after propranolol treatment (Fig. 3D, 

PE-BRS). On the other hand, attenuation of NP-BRS was still observed after methylatropine 

treatment, but it was completely abolished by propranolol treatment (Fig. 3D, NP-BRS). 

    Four weeks of RSG treatment did not improve the enhanced PE-BRS in the PDH rats 

(Fig. 3B). However, 12 weeks of RSG treatment completely restored the enhanced PE-BRS 

and attenuated NP-BRS back to control levels (Fig. 3D). 
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Correlations of PE-BRS and NP-BRS with fasting and postprandial blood glucose levels 

    As shown in Figure 4, in the saline-treated PDH rats, the PE-BRS was negatively 

correlated with the fasting and postprandial blood glucose levels starting after week 4 and 

was sustained up to week 12. The NP-BRS became positively correlated with the fasting and 

postprandial blood glucose level only after week 12. Interestingly, no correlations were found 

after RSG treatment. 
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Discussion 

    The present study demonstrated that elevations in blood glucose levels in the early stage 

(4 weeks) of prediabetes could lead to a significant change in PE-BRS in rats, even when the 

baseline MAP, HR, NP-BRS were unchanged. As prediabetic hyperglycemia progressed for a 

longer period (12 weeks), both PE-BRS and NP-BRS were abnormal. Four weeks of RSG 

treatment in rats with prediabetic hyperglycemia normalized blood glucose levels but did not 

improve PE-BRS. Twelve weeks of RSG treatment could completely restore both the 

PE-BRS and NP-BRS. The correlation analysis revealed that the abnormalities in BRS 

seemed to be closely associated with the duration and severity of prediabetic hyperglycemia. 

The correlations, however, disappeared after chronic RSG treatment. Taken together, these 

results suggest a crucial role of elevated blood glucose in the development of BRS 

abnormalities, even moderate hyperglycemia as in the prediabetic state. Also, chronic RSG 

treatment in the prediabetic state might have favorable effects on BRS, in addition to its 

anti-hyperglycemic action. 

    The BRS, an important factor for detecting early abnormal cardiac autonomic function, 

is well-known to be impaired in prediabetes (Iellamo et al. 2006) and diabetes (Dalla-Pozza 

et al. 2007, Weston et al. 1998). Blood glucose level by itself appeared to be a prominent 

factor in the development of diabetic autonomic dysfunction. It was demonstrated that 

impaired cardiac autonomic function was associated with impaired glucose tolerance (Wu et 

al. 2007) and with abnormal fasting glucose in non-diabetic human subjects (Stein et al. 

2007). Moreover, in healthy subjects, it was shown that BRS was significantly reduced in 

response to acute hyperglycemia (Marfella et al. 2001), and BRS was inversely correlated 

with blood glucose levels independent of other factors (Lefrandt et al. 2000). These studies 

indicated that impaired glycemic control might account for the alteration of cardiac 

autonomic function. The present study showed that BRS abnormality developed after 4 
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weeks of prediabetic hyperglycemia in rats, and it was greater at week 12 (Fig. 3). As 

indicated in the correlation analysis (Fig. 4), the duration of prediabetic hyperglycemia might 

account for the severity of BRS abnormality in the PDH rats. Our results were consistent with 

those of previous studies and clearly demonstrated that elevated blood glucose levels, even in 

the prediabetic state, could be a contributing factor in the abnormal BRS. 

    The data from studies with pharmacological autonomic blockade in the 12-week PDH 

rats further revealed that the enhanced PE-BRS might have primarily involved abnormal 

parasympathetic responses in reflex, whereas the depressed NP-BRS was likely due to a 

faulty sympathetic function (Fig. 3D). In addition, the resting cardiac parasympathetic and 

sympathetic influences were found to be significantly attenuated and enhanced, respectively, 

in the 12-week PDH rats (Fig. 2D). Thus, the existing lower resting parasympathetic activity, 

which would allow easier further activation in response to hypertensive stimulation (PE), 

might have accounted for the enhancement of PE-BRS. In contrast, the higher existing resting 

sympathetic activity would make activation in response to the NP-induced hypotension more 

difficult, which might result in an attenuated NP-BRS (Levy 1990). Nonetheless, the 

impaired BRS was associated with the abnormal parasympathetic component of baroreflex 

pathway (Weston et al. 1998) or diabetic duration (Dalla-Pozza et al. 2007) in type 1 diabetic 

patients. In the diabetic animals, baroreflex-mediated tachycardia (as in NP-BRS) was found 

to be attenuated (Maeda et al. 1995), but baroreflex-mediated bradycardia (as in PE-BRS) 

was either reduced (do Carmo et al. 2008) or augmented (Liu et al. 2008). The discrepancies 

in these observations, as well as with our data, could be related to the severity of 

hyperglycemia, differences in diabetic duration, or the methods of BRS analysis. 

    In the PDH rats, the baseline HR remained normal throughout the experiment, regardless 

of the existing enhanced cardiac sympathetic and attenuated parasympathetic influences and 

lower IHR at week 12 (Fig. 2C and D). The lower IHR might reflect the changes in 
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electrophysiological properties of the sino-atrial node resulting from the imbalance of cardiac 

autonomic function (Machado and Brody 1989). Therefore, the progression of sympathetic 

stimulation and parasympathetic withdrawal on the heart could lead to a further decrease in 

IHR which would subsequently normalize the HR, as also seen in the 12-week PDH rats. In 

the PDH rats at weeks 1 and 4, the cardiac autonomic influences were normal. The IHR was 

normal at week 1 and was significantly lower at week 4. However, the depression of IHR at 

week 4 was less than that of the 12-week PDH rats (Fig. 2B and C). These results suggest that 

prediabetic hyperglycemia, unlike severe diabetic hyperglycemia (Maeda et al. 1995), might 

require a sufficient period of time (12 weeks) to effectively alter cardiac autonomic functions. 

Moreover, since the blood pressure was also unchanged in the PDH rats throughout 

experiments, the results of the present study further indicate that in the prediabetic state, 

subtle cardiac autonomic function changes (i.e., BRS) might occur prior to the changes in HR 

and blood pressure. 

    RSG treatment for 4 weeks could normalize blood glucose levels but did not effectively 

improve the altered BRS in the PDH rats (Fig. 3B). However, RSG treatment for 12 weeks 

could completely restore the BRS and cardiac autonomic functions to the control levels (Fig. 

3D). Similarly, our previous study in normal rats has shown that 4 weeks of RSG treatment 

did not change BRS, however, the enhanced PE-BRS and attenuated NP-BRS was found 

after 12 weeks of RSG treatment (Hsieh and Hong 2008). Although the effect of RSG on 

BRS in normal and diabetic rats remains controversial, these results suggest that a longer 

period of time (> 4 weeks) was required to allow RSG to exert its effect on cardiac autonomic 

control of HR (i.e., the BRS). In addition, the close correlations between blood glucose and 

BRS disappeared after RSG treatment (Fig. 4). These results imply that in addition to the 

anti-hyperglycemic effect, chronic RSG treatment may have further beneficial effects on 

baroreflex function. 
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    The mechanisms by which RSG improves BRS under hyperglycemia are not fully 

understood. Reduction in circulatory NO bioavailability complicated by the enhanced 

oxidative stress has been suggested to be the contributing factor in cardiovascular (Giugliano 

et al. 1997) and baroreflex (Marfella et al. 1995) dysfunction with hyperglycemia. In addition 

to the well-known insulin sensitizing property that reduces blood glucose (Yki-Jarvinen 

2004), RSG also has been shown to offer beneficial effects on antioxidant effects (Manning 

et al. 2008, Wiggin et al. 2008) and NO bioavailability (Bagi et al. 2004, Wang et al. 2007). 

Our previous study also demonstrated that 12 weeks of RSG treatment could increase 

endogenous NO production which was thought to contribute to the alteration of BRS in 

normal rats (Hsieh and Hong 2008). Thus, the ability of RSG to increase NO availability or to 

reduce oxidative stress may be related to the improvement of BRS in the PDH rats with 

chronic RSG treatment. 

    Recently, clinical trials and meta-analyses of clinical studies suggested that cautions 

need to be taken before RSG treatment of diabetic patients who have already had multiple 

cardiovascular autonomic neuropathies (Kaul et al. 2010). Despite the limitations in the 

present study, our data demonstrated that RSG might be of benefit in preserving the 

baroreflex function in prediabetic hyperglycemic rats. 

    In conclusion, the present study demonstrates that BRS was abnormal early during 

prediabetic hyperglycemia. In addition to its anti-hyperglycemic effects, chronic RSG 

treatment in prediabetic state could improve BRS and cardiac autonomic influences. The 

results of the present study may be of pharmacological importance for RSG in modifying 

cardiac autonomic function, in addition to its well-known effects on lipid and glucose 

metabolism. 
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Table 1 The baseline MAP and HR in the saline- or RSG-treated PDH and control rats at the end of 1, 4 and 12 weeks 

Week 1 Week 4 Week 12 

PDH PDH PDH  
Control 
(n = 12) Saline 

(n = 12) 
RSG 

(n = 12) 

Control 
(n = 12) Saline 

(n = 12) 
RSG 

(n = 12) 

Control 
(n = 12) Saline 

(n = 12) 
RSG 

(n = 12) 

MAP (mmHg) 115  5 115  4 114  3 116  4 115  3 115  3 114  4 113  3 115  3 

HR (bpm) 345  3 344  2 345  4 345  4 345  5 346  4 352  3 353  2 351  2 

MAP, mean arterial blood pressure; HR, heart rate; bpm, beats/min; Saline, rats were treated with saline for 1, 4 and 12 weeks; RSG, 

rats were treated with rosiglitazone for 1, 4 and 12 weeks. Values are expressed as means  SEM. 
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Figure legends 

Fig. 1. Blood glucose levels, plasma insulin levels, and body weights in the control, DH, and 

PDH rats during the 12-week period. 

(A, B) Fasting and postprandial blood glucose levels, (C) plasma insulin levels, and (D) body 

weights. The PDH rats were subjected to saline or RSG treatments for 12 weeks. n = 12 per 

group. * P < 0.05 vs. the corresponding values of control rats; † P < 0.05 vs. the 

corresponding values of DH rats. Values are expressed as mean  SEM. 

 

Fig. 2. HR and cardiac autonomic responses in the saline- or RSG-treated PDH and control 

rats. 

(A, B, C) The baseline HR, HR responses after AT (the upper part of the diamond loop) or 

PR (the lower part of the diamond loop) treatment, and IHR at the end of 1, 4 and 12 weeks. 

(D) Cardiac parasympathetic and sympathetic influences at the end of 1, 4 and 12 weeks. n = 

12 per each group. * P < 0.05 vs. the corresponding values of control rats; † P < 0.05 vs. the 

corresponding values of the saline-treated PDH rats. Values are expressed as mean  SEM. 

 

Fig. 3. PE-BRS and NP-BRS in the saline- or RSG-treated PDH and control rats. 

(A, B, C) The overall view of the MAP-HR relationship in response to various doses of PE 

and NP at baseline in the saline- or RSG-treated PDH and control rats at the end of 1, 4, or 12 

weeks. (D) The PE- and NP-BRS at baseline and after AT or PR treatment in the saline- or 

RSG-treated PDH and control rats at the end of week 12. n = 12 per group. * P < 0.05 vs. the 

corresponding values of control rats. Values are expressed as mean  SEM. 

 

Fig. 4. Correlations of PE-BRS and NP-BRS with fasting and postprandial blood glucose 

levels in PDH rats 
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(A, B, C) The data include PDH rats treated with RSG or saline for 1 (upper panel), 4 (middle 

panel), and 12 (lower panel) weeks. n = 12 per group. **, correlation is significant at the 0.01 

level (2-tailed) 



Fig. 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


