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Overview

The plan for this talk:

General remarks on unification and admissibility

Known results on unification and admissibility
in transitive modal logics

Unification and admissibility with parameters
in transitive modal logics

Unification and admissibility with parameters
in intuitionistic logic
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Unification and admissibility in
propositional logics
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Propositional logics

Propositional logic L:

Language: formulas FormL built freely from atoms (variables)
{xn : n ∈ ω} using a fixed set of connectives of finite arity

Consequence relation ⊢L: finitary structural Tarski-style
consequence operator
I.e.: a relation Γ ⊢L ϕ between finite sets of formulas and
formulas such that

ϕ ⊢L ϕ

Γ ⊢L ϕ implies Γ,Γ′ ⊢L ϕ

Γ ⊢L ϕ and Γ, ϕ ⊢L ψ imply Γ ⊢L ψ

Γ ⊢L ϕ implies σ(Γ) ⊢L σ(ϕ) for every substitution σ
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Algebraization

L is finitely algebraizable wrt a class K of algebras if there is
a finite set F (u, v) of formulas and a finite set E(x) of
equations such that

Γ ⊢L ϕ⇔ E(Γ) �K E(ϕ)

Θ �K t ≈ s⇔ F (Θ) ⊢L F (t, s)

x ⊣⊢L F (E(x))

u ≈ v ��K E(F (u, v))

We may assume K is a quasivariety

In our case we will always have:
E(x) = {x ≈ 1}, F (u, v) = {u↔ v}, K is a variety
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Equational unification

Let Θ be an equational theory (or a variety of algebras):

Θ-unifier of a set Γ of equations:
a substitution σ s.t. �Θ σ(t) ≈ σ(s) for all t ≈ s ∈ Γ

Γ is Θ-unifiable if it has a Θ-unifier

σ ≡Θ τ iff �Θ σ(u) ≈ τ(u) for every variable u

σ �Θ τ (τ is more general than σ) if ∃̺ σ ≡Θ ̺ ◦ τ

Complete set of unifiers of Γ: a set X of unifiers of Γ such
that every unifier of Γ is less general than some τ ∈ X

Θ has finitary unification type if every finite Γ has a finite
complete set of unifiers
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Unification in propositional logics

If L is a logic finitely algebraizable wrt a variety K, we can
express K-unification in terms of L:

An L-unifier of a formula ϕ is σ such that ⊢L σ(ϕ)

Then we have:

L-unifier of ϕ = K-unifier of E(ϕ)

K-unifier of t ≈ s = L-unifier of F (t, s)

σ ≡L τ iff ⊢L F (σ(x), τ(x)) for every x
(in our case: ⊢L σ(x) ↔ τ(x))

. . .
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Admissible rules

Single-conclusion rule: Γ / ϕ (Γ finite set of formulas)

Multiple-conclusion rule: Γ / ∆ (Γ,∆ finite sets of formulas)

Γ / ∆ is L-derivable (or valid) if Γ ⊢L δ for some δ ∈ ∆

Γ / ∆ is L-admissible (written as Γ |∼L ∆)
if every L-unifier of Γ also unifies some δ ∈ ∆

E(Γ / ∆) :=
∧

γ∈Γ

E(γ) →
∨

δ∈∆

E(δ):

Γ / ∆ is derivable iff E(Γ / ∆) holds in all K-algebras

Γ / ∆ is admissible iff E(Γ / ∆) holds in free K-algebras

Note: Γ is unifiable iff Γ |6∼L ∅
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Multiple-conclusion consequence relations

Single-conc. admissible rules form a consequence relation

Multiple-conc. admissible rules form a (finitary structural)
multiple-conclusion consequence relation:

ϕ |∼ ϕ

Γ |∼ ∆ implies Γ,Γ′ |∼ ∆,∆′

Γ |∼ ϕ,∆ and Γ, ϕ |∼ ∆ imply Γ |∼ ∆

Γ |∼ ∆ implies σ(Γ) |∼ σ(∆) for every substitution σ

A set B of rules is a basis of L-admissible rules if |∼L is the
smallest m.-c. c. r. containing ⊢L and B
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Admissibly saturated approximation

Γ is admissibly saturated if Γ |∼L ∆ implies Γ ⊢L ∆ for any ∆

Assume for simplicity that L has a well-behaved conjunction.

Admissibly saturated approximation of Γ:
a finite set of formulas ΠΓ such that

each π ∈ ΠΓ is admissibly saturated

Γ |∼L ΠΓ

π ⊢L ϕ for each π ∈ ΠΓ and ϕ ∈ Γ

Emil Je řábek|Rules with parameters in modal logic |UNIF 2012, Manchester 8:41



Application of admissible saturation

Assuming every Γ has an a.s. approximation ΠΓ:

Reduction of |∼L to ⊢L:

Γ |∼L ∆ iff ∀π ∈ ΠΓ ∃ψ ∈ ∆ π ⊢L ψ

If Γ 7→ ΠΓ is computable and ⊢L is decidable, then |∼L is
decidable

If Γ / ΠΓ is derivable in ⊢L + a set of rules B ⊆ |∼L, then
B is a basis of admissible rules

If each π ∈ ΠΓ has an mgu σπ, then {σπ : π ∈ ΠΓ} is a
complete set of unifiers for Γ

⇒ finitary unification
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Projective formulas

π is projective if it has a unifier σ such that π ⊢L x↔ σ(x)

(in general: π ⊢L F (x, σ(x))) for every variable x

Every projective formula is admissibly saturated

σ is an mgu of π: if τ is a unifier of π, then τ ≡L τ ◦ σ

Projective approximation := admissibly saturated
approximation consisting of projective formulas

If projective approximations exist:
convenient tool for analysis of unification and admissibility
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Parameters

In real life, propositional atoms model both “variables” and
“constants”

We don’t want to allow substitution for constants

⇒ Generalize the set-up to use two kinds of atoms:

variables {xn : n ∈ ω}

parameters {pn : n ∈ ω}

(aka metavariables, constants, coefficients)
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Unification with parameters

Substitutions only modify variables, we require σ(pn) = pn

Adapt accordingly the definitions of other notions:

Unifier, σ �L τ , admissible rule, m.-c. consequence
relation, basis, a.s. formula and approximation,
projective formula

Exception: “Propositional logic” is always assumed to be
closed under substitution for parameters
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Transitive modal logics
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Transitive modal logics

Normal modal logics with a single modality 2, include the
transitivity axiom 2x→ 22x (i.e., L ⊇ K4)

Common examples: various combinations of
logic axiom (on top of K4) finite rooted transitive frames

S4 2x → x reflexive

D4 3⊤ final clusters reflexive

GL 2(2x → x) → 2x irreflexive

K4Grz 2(2(x → 2x) → x) → 2x no proper clusters

K4.1 ·23x → ·32x no proper final clusters

K4.2 3 ·2x → 2 ·3x unique final cluster

K4.3 2( ·2x → y) ∨ 2(2y → x) linear (chain of clusters)

K4B x → 23x lone cluster

S5 = S4 ⊕ B lone reflexive cluster
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Some classes of transitive logics

Cofinal-subframe (csf) logics:

complete wrt a class of frames closed under the removal
of a subset of non-final points

all combinations of logics from the table are csf

Extensible logics:

If a frame F has a unique root r whose reflexivity is
compatible with L, and F r {r} � L, then F � L

K4, S4, GL, K4Grz, S4Grz, D4, K4.1, . . . (not K4.2, . . . )

Linear extensible logics:

K4.3, S4.3, GL.3, . . .
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Unification in transitive modal logics

A lot is known about admissibility without parameters:

Admissibility is decidable in a large class of logics
(Rybakov)

Extensible logics have projective approximations
(Ghilardi)

finitary unification type
complete sets of unifiers computable

Bases of admissible rules for extensible logics (J.)

Computational complexity of admissibility (J.)
Lower bounds for a quite general class of logics
Matching upper bounds for csf extensible logics

. . . and more . . .
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Projectivity in modal logics

Fix L ⊇ K4 with the finite model property (fmp)

Extension property: if F is a finite L-model with a unique
root r and x � ϕ for every x ∈ F r {r}, then we can change
valuation of variables in r to make r � ϕ

Theorem [Ghilardi]: The following are equivalent:

ϕ is projective

ϕ has the extension property

θϕ is a unifier of ϕ

where θϕ is an explicitly defined composition of substitutions
of the form σ(x) = ·2ϕ ∧ x or σ(x) = ·2ϕ→ x
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Semantics of admissible rules

If L is an extensible logic with fmp, tfae:

Γ |∼L ∆

Γ / ∆ holds in every L-frame W s.t. ∀X ⊆W finite:
If L + S4, X has an irreflexive tight predecessor t:

t↑ = X↑

If L + GL, X has a reflexive tight predecessor t:

t↑ = {t} ∪X↑

For linear extensible L, take only |X| ≤ 1

Notation: x↑ = {y : x R y}, x↑ = {x} ∪ x↑, X↑ =
⋃

x∈X x↑

Emil Je řábek|Rules with parameters in modal logic |UNIF 2012, Manchester 17:41



Bases of admissible rules

If L is an extensible logic, it has a basis of admissible rules
consisting of

2y → 2x1 ∨ · · · ∨ 2xn

·2y → x1, . . . , ·2y → xn
(n ∈ ω)

if L admits an irreflexive point, and

·2(y ↔ 2y) → 2x1 ∨ · · · ∨ 2xn

·2y → x1, . . . , ·2y → xn
(n ∈ ω)

if L admits a reflexive point

For L linear extensible, take only n = 0, 1
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Complexity of admissible rules

Lower bound:
Assume L ⊇ K4 and every depth-3 tree is a skeleton of an
L-frame with prescribed final clusters.
Then L-admissibility is coNEXP-hard.

Upper bounds: Admissibility in

csf extensible logics is coNEXP-complete

csf linearly extensible logics is coNP-complete
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Unification with parameters in modal logic
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Known results

Less is known about admissibility in transitive modal logics
in the presence of parameters:

Rybakov’s results on decidability of admissibility also
apply to admissibility with parameters

Recently, he expanded the results to effectively construct
complete sets of unifiers ⇒ finitary unification type

Terminology: From now on, admissibility and unification
always allow parameters
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New results

In this talk, we will show:

Ghilardi-style characterization of projective formulas

Existence of projective approximations for
cluster-extensible (clx) logics [defined on the next slide]

Semantic description of admissibility in clx logics

Explicit bases of admissible rules for clx logics

Computational complexity:
Lower bounds on unification in wide classes of
transitive logics
Matching upper bounds for admissibility in csf clx
logics

Translation of these results to intuitionistic logic
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Cluster-extensible logics

Let L be a transitive modal logic with fmp, n ∈ ω, and C a
finite cluster.

A finite rooted frame F is of type 〈n,C〉 if its root cluster rcl(F )

is isomorphic to C and has n immediate successor clusters.

L is 〈n,C〉-extensible if:
For every type-〈n,C〉 frame F , if F r rcl(F ) is an L-frame,
then so is F .

L is cluster-extensible (clx), if it is 〈n,C〉-extensible whenever
there exists a type-〈n,C〉 L-frame.

Examples: All combinations of K4, S4, GL, D4, K4Grz,
K4.1, K4.3, K4B, S5, ± bounded branching

Nonexamples: K4.2, S4.2, . . .
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Projective formulas: the extension property

Fix L ⊇ K4 with the fmp, and P and V finite sets of
parameters and variables, resp.

If F is a rooted model with valuation of P ∪ V , its variant
is any model F ′ which differs from F only by changing
the value of some variables x ∈ V in rcl(F )

A set M of finite rooted L-models evaluating P ∪ V has
the model extension property, if:
every L-model F whose all rooted generated proper
submodels belong to M has a variant F ′ ∈M

A formula ϕ in atoms P ∪ V has the model extension
property if ModL(ϕ) := {F : ∀x ∈ F (x � ϕ)} does
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Projective formulas: Löwenheim substitutions

Let ϕ be a formula in atoms P ∪ V

For every D = {βx : x ∈ V }, where each βx is a Boolean
function of the parameters P , define the substitution

θD(x) = ( ·2ϕ ∧ x) ∨ (¬ ·2ϕ ∧ βx)

Let θϕ be the composition of substitutions θD for all the
22|P ||V | possible D’s, in arbitrary order
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Projective formulas: a characterization

Theorem:
Let L ⊇ K4 have the fmp, and ϕ be a formula in finitely many
parameters P and variables V . Tfae:

ϕ is projective

ϕ has the model extension property

θN
ϕ is a unifier of ϕ

where N = (|B| + 1)(2|P | + 1), B = {ψ : 2ψ ⊆ ϕ}

Remark: If P = ∅, we have N ≤ 2|ϕ|.
Ghilardi’s original proof gives N nonelementary
(tower of exponentials of height md(ϕ))
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Projective approximations

Theorem:
If L is a clx logic, every formula ϕ has a projective
approximation Πϕ.

Moreover, every π ∈ Πϕ is a Boolean combination of
subformulas of ϕ.

Corollary:

{θN
π : π ∈ Πϕ} is a complete set of unifiers of ϕ

Admissibility in L is decidable (if L r.e.?)

If n = |ϕ|, then |Πϕ| ≤ 22n

, and |π| = O(n2n) ∀π ∈ Πϕ

|θN
π | is doubly exponential in |B| + |V |, and triply

exponential in |P |. This is likely improvable.
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Size of projective approximations

The bounds |Πϕ| = 22O(n)

and |π| = 2O(n) for π ∈ Πϕ are
asymptotically optimal, even if P = ∅:

If L is 〈2, •〉-extensible (e.g., K4, GL), consider

ϕn =
∧

i<n

(2xi ∨ 2¬xi) → 2y ∨ 2¬y

Πϕn
=

{

∧

i<n

( ·2xi ∨ ·2¬xi) → (y ↔ β(~x))
∣

∣

∣
β : 2

n → 2

}

Similar examples work for 〈2, ◦〉-extensible logics (S4)
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Irreflexive extension rules

Let n < ω, and P a finite set of parameters.

ExtPn,• is the set of rules

P e ∧ 2y → 2x1 ∨ · · · ∨ 2xn

·2y → x1, . . . , ·2y → xn

for each assignment e : P → 2

Notation:
ϕ1 = ϕ, ϕ0 = ¬ϕ, P e =

∧

p∈P

pe(p), 2
P = {e | e : P → 2}
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Reflexive extension rules

Let C be a finite reflexive cluster

ExtPn,C is the set of the following rules:
Pick E : C → 2

P and e0 ∈ E(C), and consider

P e0 ∧ ·2
(

y →
∨

e∈E(C)

2(P e → y)
)

∧
∧

e∈E(C)

·2
(

2(P e → 2y) → y
)

→ 2x1 ∨ · · · ∨ 2xn

·2y → x1, . . . , ·2y → xn
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Tight predecessors

P a finite set of parameters, C a finite cluster, n < ω

A P -L-frame is a (Kripke or general) L-frame W together
with a fixed valuation of parameters p ∈ P

If X = {w1, . . . , wn} ⊆W and E : C → 2
P , a tight

E-predecessor (E-tp) of X is {uc : c ∈ C} ⊆W such that

uc � PE(c), uc↑ = X↑ ∪ {ud : d ∈ c↑}

(Note: c↑ = C if C is reflexive, c↑ = ∅ if irreflexive)

W is 〈n,C〉-extensible if every {w1, . . . , wn} ⊆W has an
E-tp for every E : C → 2

P

If L is a clx logic, W is L-extensible if it is
〈n,C〉-extensible whenever L is
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Correspondence and completeness

Theorem: If P is a finite set of parameters and W is a
descriptive or Kripke P -K4-frame, tfae:

W � ExtPn,C

W is 〈n,C〉-extensible

Corollary: For a logic L ⊇ K4, tfae:

L is 〈n,C〉-extensible

ExtPn,C is L-admissible for every P

Theorem: If L has fmp and is 〈n,C〉-extensible for all
〈n,C〉 ∈ X, then L+ {ExtPn,C : 〈n,C〉 ∈ X} is complete wrt
locally finite (= all rooted subframes finite) P -L-frames,
〈n,C〉-extensible for each 〈n,C〉 ∈ X
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Semantics and bases of admissible rules

Theorem:
Let L be a clx logic, and Γ / ∆ a rule in a finite set of
parameters P . Then tfae:

Γ |∼L ∆

Γ / ∆ holds in every [locally finite] L-extensible P -L-frame

Γ / ∆ is derivable in ⊢L extended by the rules ExtPn,C such
that L is 〈n,C〉-extensible

Corollary: If L is a clx logic, it has a basis of admissible rules
consisting of ExtPn,C for all finite P and all 〈n,C〉 such that L is
〈n,C〉-extensible
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Complexity: wide logics

Theorem:
If L ⊇ K4 has width ≥ 2, then unification (and thus
inadmissiblity) in L is NEXP-hard.

Theorem:
If L is a csf clx logic of width ≥ 2 and bounded cluster size,
then inadmissibility (and thus unification) in L is
NEXP-complete.

Examples: GL, K4Grz, S4Grz, . . .
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Complexity: fat logics

Theorem:
If L ⊇ K4 has unbounded cluster size, then unification in L is
coNEXP-hard.

Theorem:
If L is a clx logic of width ≤ 1 and unbounded cluster size,
then inadmissibility in L is coNEXP-complete.

Examples: S5, K4.3, S4.3, . . .
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Complexity: wide and fat logics

L is “chubby” if for all n > 0 there is a finite rooted L-frame
containing an n-element cluster C and an element
incomparable with C

Recall: ΣEXP
2 = NEXPNP

Theorem:
If L ⊇ K4 is chubby, then unification in L is ΣEXP

2 -hard.

Theorem:
If L is a csf clx logic of width ≥ 2 and unbounded cluster
size, then inadmissibility in L is ΣEXP

2 -complete.

Examples: K4, S4, S4.1, . . .

Emil Je řábek|Rules with parameters in modal logic |UNIF 2012, Manchester 35:41



Complexity: slim logics

Theorem:
If L ⊇ K4, then unification in L is PSPACE-hard, unless L is a
tabular logic of width 1.

Theorem:
If L is a clx logic of width 1, bounded cluster size, and depth
> 1, then admissibility in L is PSPACE-complete.

Examples: GL.3, K4Grz.3, S4Grz.3, . . .

Theorem:
If L is a tabular logic of width 1 and depth d, then unification
and inadmissibility in L are ΠP

2d-complete.

Examples: S5 + Altn, K4 + 2⊥, . . .
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Complexity: summary

We get the following classification for csf clx logics:

logic param’r-free with param’s
example

cluster
size

bran-
ching

0L unif’n |6∼
L

unif’n |6∼
L

< ∞
0

NP-complete

ΠP

2
-c. S5 + Altn

1 PSPACE-c. GL.3

∞ ≤ 1 coNEXP-c. S5, S4.3

< ∞ ≥ 2

(∞)
PSPACE-c. ?

NEXP-complete GL, Grz

∞ ΣEXP

2
-c. K4, S4
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Intuitionistic logic

Results for modal logics can be transferred to intermediate
logics by means of the Blok–Esakia isomorphism

The following result by Rybakov can be generalized to
admissibility with parameters:

Theorem:
If L ⊇ IPC and σL is its largest modal companion, then

Γ |∼L ∆ ⇔ T(Γ) |∼σL T(∆),

where T is the Gödel translation

[However,
∧

p∈P

2(p→ 2p) → T(ϕ) is often more convenient.]
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Corollaries

Note: The only “clx” L ⊇ IPC are IPC itself and the bounded
branching logics Tn (incl. T1 = LC, T0 = CPC)

The translation yields:

Char. of projective formulas in L ⊇ IPC with fmp

Existence of projective approximations and semantic
description of |∼L for IPC and Tn

Complexity (lower bounds need an extra argument):
unification and inadmissibility is

NEXP-complete for IPC

PSPACE-complete for LC

ΠP
2d-complete for Gd+1

NEXP-hard for any other intermediate logic
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Intuitionistic extension rules

Bases of admissible rules require a separate construction:

A basis for IPC and Tn is given by the rules

∧

P ∧
(

n
∨

i=1

xi ∨
∨

Q→ y
)

→
n
∨

i=1

xi ∨
∨

Q

∧

P ∧ y → x1, . . . ,
∧

P ∧ y → xn

where P,Q are disjoint finite sets of parameters
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Questions

Is there a general reduction of admissibility to
nonunifiability (with parameters)?

What is the complexity of parameter-free unification for
non-linear csf clx logics?

NP-hard and NEXP-easy
If L includes D4 or GL or 2x→ x ∨ 2⊥: NP-complete
(the universal frame of rank 0 is very simple)
Otherwise?
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Thank you for attention!
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