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Abstract: The hp-version of the finite element method (hp-FEM) is extremely efficient numerical method for solving partial differential equations. In comparison with low-order methods it is capable to achieve exponential rate of convergence even though the solution has singularities and/or boundary/internal layers. To achieve the exponential convergence it is necessary to adapt both the geometry of the mesh and the polynomial degrees. However, the optimal hp‑adaptive strategy is still unknown. This paper gives brief introduction into the problematic of hp-FEM and hp-adaptivity and emphasizes those parts that are not optimally solved yet.
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INTRODUCTION
This paper is intended for non-specialists and its goal is to give an introduction into the problematic of the numerical solution of partial differential equations by the finite element method (FEM) and especially by its hp‑version (hp‑FEM). A special emphasis will be devoted to adaptive approaches, namely to the h-, p-, and hp- methods and their comparison. The paper should be understandable for a broad audience of mathematicians. Any special knowledge of partial differential equations and numerical methods is not assumed.
There exist huge amount of literature devoted to the FEM. As a classical book we mention [2]. 
The Finite Element Method
The finite element method (FEM) is a very popular method for the approximate solution of partial differential equations. Its popularity comes from good performance of the method, its applicability to wide range of problems, and especially from very well established theory of error estimates and convergence. This theory is rigorous, elegant and easy to use. The conditions that guarantee convergence of the FEM are well known as well as the speed of this convergence. There even exist the so called a posteriori error estimators that can provide a guaranteed and computable upper bound on the solution error. Using these a posteriori error estimators together with suitable adaptive approaches, we are able to compute an approximate solution whose error is guaranteed to be under a prescribed tolerance. These techniques are efficient and very reliable. 

Let us explain the FEM on a simple model problem. We consider the well known Poisson problem. The strong formulation of this problem reads: find smooth enough function 
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The dimension 
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 is typically 1, 2, or 3. The symbol 
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 and the Laplace operator is defined by the sum of second derivatives
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The FEM is based on the so called weak formulation. Formally, the weak formulation is inferred from the strong formulation by 

· multiplication by a smooth test function 
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 that vanishes on 
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· integration over 
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· application of the Green’s theorem (integration by parts in 1D).

Hence, in mathematical symbols
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where the gradient of 
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 is given by
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. Thus, if we set 
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, we can define the weak solution as a function 
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Here, 
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 denotes the Sobolev space of square integrable functions whose generalized derivatives are square integrable as well. This Sobolev space is infinitely dimensional and the exact weak solution cannot be found in general. Therefore, we replace 
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This approximate problem can always be solved with the aid of a basis 
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 is the vector of unknown coefficients. Thus, having the basis functions 
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 is the number of linear algebraic equations to be solved. This number is often referred as the number of degrees of freedom.
The approach described above is known as the Galerkin method. The finite element method is nothing else than the Galerkin method, where the basis functions 
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 are chosen in such a special way that the stiffness matrix is sparse, i.e. that it has most of its entries equal to zero. The linear algebraic systems with sparse matrices coming from the FEM can be solved in a very efficient way thanks to the variety of preconditioned iterative methods.
In the finite element method, the finite dimensional space 
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 is usually chosen as a space of piecewise polynomial functions based on a partition of the domain 
[image: image55.wmf]W

. The partition of 
[image: image56.wmf]W

 – the mesh – usually comprises triangles and quadrilaterals in 2D and tetrahedrons, prisms, and hexahedrons in 3D. Often, the polynomial degrees on elements are fixed and all of them are equal. The case of piecewise linear approximations is most frequent. In this case, a better approximation is obtained by a refinement of the mesh. This approach is called h-version of the FEM (h-FEM). Another possibility how to get a better approximation is to increase polynomial degrees while the mesh is fixed. This is the p-version (p-FEM). Combining these two possibilities, i.e. refining the mesh and increasing polynomials degrees is known as hp-version of FEM (hp-FEM).

The Finite Element Space and its Basis 
Let us explain the construction of the finite element basis functions in the 1D case. In one dimension, the domain 
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 is just an open interval
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. See the left part of Figure 1 for illustration. First, let us consider the lowest order approximation, i.e. the finite dimensional space 
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where the symbol 
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Figure 1: Left: Partition of the domain 
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 into four elements and corresponding piecewise linear basis functions. Right: Basis functions in the hp-FEM case. The polynomial degree of elements is 1,2,3, and 4, respectively. For example, 
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 is the quadratic and 
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Clearly, the more elements are in the mesh the bigger linear system has to be solved and the more accurate solution is obtained. Another way how to increase accuracy is the p-version. In p- FEM we need bases for the spaces of piecewise quadratic functions, piecewise cubic functions etc. Besides the piecewise linear basis functions described above, these bases comprises the so called bubble functions. These bubble functions are supported in a single element only and vanish outside this element. Finally, hp-FEM allows for various polynomial degrees on different elements. For example, the right part of Figure 1 shows basis functions in the case of four elements, where the first element is linear, second is quadratic, third is cubic, and the forth is of the degree four. 
Convergence of the FEM
A classical convergence result for the FEM states that if the exact solution 
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 is the error of the finite element solution 
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 is the energy norm of the error, 
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 is a constant independent from the discretization parameter 
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, which is defined as the longest diameter of all elements in the mesh. Finally, 
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 is the polynomial degree that is assumed to be the same for all elements.

First, let us discus the h-version. Hence, we imagine a sequence of meshes with decreasing sizes of elements, i.e. with decreasing discretization parameter 
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. This sequence of meshes corresponds to a sequence of approximate solutions. The energy norms of errors of these approximate solutions decrease as 
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 is fixed. We say that the rate of convergence is algebraic.
In the p-version, the mesh is fixed. Hence, the discretization parameter 
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 is fixed as well and the convergence result implies that the energy norm of the error decreases exponentially as 
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 increases. This exponential rate of convergence is, however, achieved for smooth exact solutions only. If the exact solution has singularities then even the p-version converges algebraically. The exponential rate of convergence can be achieved by hp-version, which connected solely with adaptive methods.
Adaptive Mesh Refinement
In general, adaptive methods are used in order to increase the accuracy of the approximation and to decrease the needed number of degrees of freedom. The idea is to adapt the mesh according to the solution. In some regions the solution can be almost constant and a very rough mesh will produce quite precise approximation. In other regions the solution can exhibit very nontrivial behavior with variety of details. The mesh must be very fine in these regions to capture all the details. The obvious difficulty is that the solution is a priori unknown. Therefore, any adaptive method must evolve the mesh during computations according to the computed approximations.
There is variety of adaptive methods and approaches but almost all of them fit into the following general algorithm.
General Adaptive Algorithm:

1. Solve the problem on the given mesh.

2. Estimate the error on each element.

3. If the error tolerance is achieved then stop.

4. Mark elements with great error indicated.

5. Adapt (refine) marked elements and produce new mesh.

6. Go to 1.

Step 1. of this algorithm – the solver – was described above in this paper. Step 2. requires the so called a posteriori error estimators that compute an estimate of the error from the knowledge of the actual approximate solution. There is variety of a posteriori error estimators and their description is beyond the scope of this paper, we refer to [1] and references therein. Anyway, certain a posteriori error estimators are guaranteed, i.e. the computed estimate is guaranteed to be the upper bound to the error. These estimates are desirable for the stop​ping criterion in Step 3. Obviously, if the computed upper bound is below the prescribed tolerance then the algorithm gives an approximate solution that is guaranteed to satisfy this tolerance. In Step 4, we usually mark those elements whose indicated error is greater than a half of the maximal error. Of course, one can imagine variety of marking criteria. An experience from computations shows that all reasonable marking criteria work very well. 
From our point of view, the crucial step is number 5. Depending how we adapt the marked element, we distinguish h-, p-, and hp- adaptive approach. In the h- version we just split the element into several smaller ones. In the p- version we just increase its polynomial degree. In the hp- version, however, we suddenly have a variety of options. We can either increase the polynomial degree or we can refine the element into several smaller ones, but then we have to distribute polynomial degrees on the sub-elements in a suitable way. The refinement of an element by h-, p-, and hp- version is illustrated in Figure 4.
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Figure 2: Element refinement for h-, p-, and hp-FEM.
Example
We will illustrate the h-, p-, and hp- versions of the FEM. We consider one dimensional Poisson equation 
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 is chosen in such a way that the exact solution is given by 
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. The first row of the graphs in Figure 4 shows an h-adaptive step. The first two elements were not marked for refinement and all the other were halved. The second row illustrates p-FEM. We see that the polynomial degrees were increased by one in five elements. The last row indicates an hp-adaptive step. Observe, for instance, that the largest element on the left with polynomial degree one was halved into two with new polynomials degrees two and one.
Exponential Convergence
A great advantage of the hp-adaptive FEM is its exponential speed of convergence even for problems with singularities. Figure 3 compares convergence curves for h-, p-, and hp- versions. The left-hand graph shows results for problem discussed in Example. The right-hand graph concerns a problem, where the exact solution 
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  has a singularity. Both p- and hp- versions exhibit exponential convergence in the case of the smooth solution. However, in the presence of singularity, only hp- version converges exponentially fast. This behavior of h-, p-, and hp- methods is typical and is theoretically proven.
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Figure 3: Convergence curves for a smooth exact solution (left) and for a solution with a singularity (right). The dotted curve is for h-version, the dashed for p-version, and the solid for hp-version. The energy norm of error defined by 
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Conclusions

This paper explained and compared the h-, p-, and hp- versions of the FEM. The superior performance of the hp-FEM was demonstrated. However, the practical implementation of hp-FEM is technically quite demanding. It requires a special approach to a posteriori error estimators because not only the magnitude but also the shape of the error on each triangle is needed for the proper distribution of polynomial degrees in sub-elements, cf. Figure 2. The optimal error estimator as well as the optimal strategy how to choose the correct distribution of polynomial degrees in sub-elements is still unknown and it is a subject of ongoing research.
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Figure 4: Examples of an adaptive step by h-, p-, and hp- FEM. For p- and hp- version the polynomial degrees of elements are listed above the graphs. The dashed line indicates the exact solution and the solid line shows the approximate solution.
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