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INTRODUCTION — a posteriori error estimates

U ... exact solution of an elliptic problem

up, ... finite element solution of the elliptic problem
e=wu—uy, ... the error
E =~ |e] ... a posteriori error estimator

Computable from wuy and input data.
Computation of £€ should be fast.

Guaranteed upper bound

el < €.

Global error estimator — solution of global problem.

lLocal error estimator — series of local problems.



INTRODUCTION — methods

e [ he equilibrated residual method
— locally computable, not guaranteed upper bound.

Origin of this method: Ladeveze and Leguillon (1983), Kelly
(1984), Bank and Weiser (1985).

e [ he method of hypercircle
— guaranteed upper bound, not locally computable.

Fundamental book: Synge (1957).

e [ he combined method
— guaranteed upper bound, locally computable.

Published by Ladeveze and Leguillon (1983), but they consider

piecewise constant data and their estimator is not completely
computable in 2D.



Linear elliptic model problem — classical formulation

V- -(AV@)=f in %,
u = ap on I—Da
(.AV’I]) -V = gN on |_|\|.

Notation:

Q C R? ... polygonal domain,

v = v(xq,x2)... unite outer normal to 9052,
D C 0%2 ... Dirichlet part of 0%,
Ny C OS2 ... Neumann part of 0%2.



Linear elliptic model problem — weak formulation

Find u € H1() such that &2 = u + gp and u € V satisfies
(AV’LL, V’U) — (fvv) — (Anga V’U) + <9N7U> Vv € Va
where

V={ve HYQ):v=0o0n Ip},
A € [L®(Q)]?*?... symmetric, uniformly positive definite matrix,

gp € Hl(Q) ... extension of values on 9l p into interior of €2,
feL?(Q) ... the right-hand side,

gN € LQ(I‘N) ... the Neumann boundary condition,

Ny C OS2 ... Neumann part of 0f2.

(AVu, Vo) = /Q (AVW) - Vodz, Yu,v eV,
(f,v) = | fvdz Vf,v € L7(Q),

(gNsv) = - NV ds Ygn,v € L2(MN).



FINITE ELEMENT METHOD

Finite element solution:
w, = up, + gp, where w;, € HY(Q) and u;, € Vj, satisfies

(Avuha V’Uh) — (f7 ’Uh) — (Ang7 V’Uh) + <gN7 Uh> \V/’Uh S Vh

T, ... triangulation of €2,
V;, C V... finite element space based on Tj consists of continuous
and piecewise polynomial functions of degree p.

Residual equation:
(AVe, Vv) = R(v) Yv eV,

where

eE=U—Up =U— U ... the error,
R(v) = (f,v) — (AVuy, Vv) + (gn,v). .. residuum, v e V.

Notation: L2-norm: HUH%Q = (v,v), energy norm: ||v||? = (AVv, V).



THE EQUILIBRATED RESIDUAL METHOD*

Split residuum R(wv) into contribution from individual elements:

Rw) = Y RE{|g) YoeV,
KETh

where

REI(0) = (f,v) i — (AVay, Vo) i + (95, Vo Vo € V(K),
and V(K) = {v € HY(K) :v =0 on I‘D}.

Notation:
(AVu, Vo) g = /K(.AVu) . Vovdz, Vu,ve HY(K),

(f?U)K:/KfUdZC \V/f,’UELQ(K),

(9K, V)oK = o IV ds Ygi,v € L2 (0K).

*According to the book Ainsworth and Oden (2000).



The equilibrated residual method — boundary fluxes gy

g € PP(v) ...polynomials of degree p on edges ~ of elements K.

Approximate the actual fluxes of the true solution on the elements
boundaries:

g =~ Vu-vg, on 0K.

If K and K* denote two adjacent elements then

g + g+ =0 on 8KH8K*,}

—  R>) = REQ().
JK = gN on OK Nol y, (U) Z K (’U)

KETh

Satisfy p-th order equilibration condition:

RE(0K) = (f,0K) k — (AViEy, VoK) i + (95, 0k ) o = O
for all polynomials 6y of degree p from V(K).

Boundary fluxes gy can be computed quickly.



The equilibrated residual method — local problem

Define the solution &, € V(K) of the local residual problem
(AVP g, Vo) g = (f,v)k — (AVuy, Vo) g + (9K, v)or Vv € V(K),

i.e.,

(AVD e, Vo) o = RER(v) Vo € V(K).

This is local elliptic problem with Neumann boundary conditions given
by gr. The existence of solution @ is guaranteed by the equilibration
condition:

(f, Dk + {9x, ok = 0.

Nonuniqueness of ® - is not important since we are interested in Vd .



The equilibrated residual method — guaranteed upper bound
Notation: HUH%( = (AVv,Vv) k.

Residual equation:

(AVe, Vo) = 3 RERWw) = Y (AV®g, Vo)g Yo e V.
KETh KETh

Two times Cauchy-Schwarz inequality:

1/2
2
[(AVe, Vo) < > I@kliglvlig < | D I®kll% o],
KeTy, KeTy,
Finally:
1/2
[(AVe, Vv)| 2
e[ = sup < | > l®xl%
0£veV ]| KETy,

Thus, the local solutions ®j provide guaranteed upper bound.

Trouble:
® - as solutions of infinitely dimensional problems are not computable.



The equilibrated residual method — summary
e Compute boundary fluxes gi — fast algorithm.

e Find approximate solutions to the local residual problems

(AVP g, Vo) = (f,v)k — (AVuy, Vu) g + (9, v)ox Vv € V(K).

e Evaluate the estimator

2 2
el < > IPxl%-
KETh

This a posteriori error estimator is locally computable, but it is not
guaranteed upper bound.



THE METHOD OF HYPERCIRCLE

. _ , 2
Notation: Hqu_l,Q = (A4 1q,q); HI(div,Q) C [LQ(Q)}
Substituting v = e = u — uy, into the weak formulation we get:

— (“417'7 Ve) - - (f> 6) — <g|\|7€> .
Let us compute for any q € H1(div,Q):

la — AVag|51 g

(A—lq—va —Via,+Vi, g—AVi —Avah+Ava>
2
A-1Q

= |a-ava [, +2@Ve -2(e) ~2(n.e) +|a-a .

— |l q— AVa +2(q—AVE, Vi - Vi, )+ |-, |

Q(f,9n) = {a € H'(div,Q) : (q,Vv) = (f,v) + {gn,v) Vo€ V}
4
la— AVaLl|51 o = la— AVa||5 1 o + @ —4l*,  Va € Q(f, gn).



The method of hypercircle — guaranteed upper bound

T hus,

lell® = 1@ — anl1* < lla - AVﬁhHi—lQ Vg € Q(f, 9n)-

This estimator is exact if g = Vu, but it is unreachable.

How to find suitable function p, € Q(f,gn), Which would produce
tight upper bound?

The crucial ingredient:
the structure of Q(f,gn), described by KFizek (1983).



The method of hypercircle — structure of Q(f,gn)

Let p € Q(f,gn) be arbitrary but fixed, then

Q(f7 gN) =p + Q(an)a

where
Q0,0) ={q e H'(div,Q): (¢, Vo) =0 Ww eV},
It is
Q(0,0) = curl W,
where

Wz{weHl(Q):w=Oon I‘N}.

Definition: curl = (8/8xo, —8/0x1) .

How to construct p € Q(f,gn)7



The method of hypercircle — construction of p € Q(f, gn)

Any p € Q(f,gn) have to satisfy: —divp = f and p-v = gN. Therefore,

p=F + curlw,

where
x1 T
F(xy,20) = (_/o f(s,z2) d8,0>
and w € HY(Q) is an arbitrary function satisfying

curlw-v=Vw-t=gn—F-v on [},

Notation: 7 = (—wv»,v1) ... a unit tangent vector to INy.

Remark:
the values of w on 0K are given by primitive function to gn — F - v.



The method of hypercircle — conclusion

lell < |l — AVﬂhHA—l,Q Vq € Q(f, 9Nn)
)

lell < [Ip+ curly — AVl 41 o Wy €W

To obtain computable estimate we replace W by a finite dimensional
subspace W;, C W.

The optimal choice y;, € W; minimizes the estimator over Wy:

(A~ curlyy, curlvy) = (Vuy, — A71p, curlvy,) Vo, € W),

|P + curly;, — AVuy|| 4-1 o ... computable guaranteed upper bound.

Trouble: evaluation of this estimator involves solution of a global
problem, i.e., this estimator is not local.



THE COMBINED METHOD

To obtain locally computable guaranteed upper bound, we combine
the equilibrated residual method with the hypercircle method.

e Compute boundary fluxes gy by the equilibrated residual method.

e Apply the method of hypercircle to the local residual problem

(AVP, Vo) = (f,v)k — (AVuy, Vo) g + (9, v)ox Vv € V(K).



The combined method — error expression

Local residual problem with v = ®

—(AVP g, VPR g = —(f, Pr)k + (AVYy,, VPR )k — (9K, PK)oKk
Let us compute for any q € H!(div, K):

||Q||J24—1’K

= lla— AVOL|P 1 +2(a—AVPL, Vi )+ [Pk

=2(q, V) —2(f,Pr)x +2(AVu,, VPR Kk —2 (9x, PK)oK
+lla— AV L[5 1 x + 1Pkl

Qi (f: 95, 1p) = {a € H'(div, K) :

(4, Vo) = (f,v)k — (AVity, Vo) + (95, v)ox Yo € V(K)}
I
lallf1 x = lla— AVl 1 g+ [ Pxl%  Va € Qi (S, gk, i)



The combined method — structure of Qr(f, g9x,up)

P € Qr(f,gx,up) is arbitrary but fixed.

Qr(f,9x,up) = b + QK (0,0,0)
— l_DK + CU.I‘]W(K)

W(K) = {v € HY(K) : v =0 on 8K \ rD}

Q5 (0,0,0) = {q c HY(div,K) : (¢, Vo) =0 Yo e V(K)}



The combined method — guaranteed upper bound

From the error expression we have

)

[Pkl < [[Pr +curlyg| 41 Vyx € W(K).

We conclude that

— 2
lell® < > lI®klz < X bk +curlygl51 ,  Vux € W(K).
KGTh KETh

Finite dimensional subspace: W,(K) C W(K).
For example: W, (K) = PPTH(K) c W(K).

The optimal yx, € Wi, (K), which minimizes the right-hand side over
W, (K), satisfies

(A_l curl yx,, curl ’U)K = — (A_lf)K,curlv)K Yo € W, (K).



The combined method — construction of py € Qr(f, 9i, up)
How to find vector pyi € Qi (f, 9x,up) efficiently?

We have
Ppr = F 4 curlwy — AVuy,

where AVuy, is known,

F(xq,x20) = (— /Oajl f(s,xo) ds,O)T

and wy € HY(K) has to satisfy

8wK

CllI‘le-I/K: :gK—F-I/K on (9K\|_D

87-K

Notation: 7 = (_VK,Qa VK’l)T.

Notice that the values of wjy on the boundary 0K are given by a
primitive function to g — F - v



The combined method — primitive function to g — F - vy

Consider triangle K with vertices A, B,C. Then

(wi(A) + [G(gx — F -vg)ds, for xz e AB,
wr () = ¢ wg(B) + [§lgx —F -vg)ds, for z € BC,
| wig(C) + [E(gx — F -vg)ds, for z e CA,
where AB, BC, and C'A denote the edges of triangle and

wi (A) € R is arbitrary,
B
wic(B) = wic(A) + [ “(9ic = F - vi) s,

C
wi(C) =wi(B) + /B (9 — F -vi) ds.

The constants wi (B) and wg (C) are chosen such that wy is contin-
uous in points B and C.
The function wy is continuous also in point A:

wi(A)] = |

0K 87'[{

6wK L

8K(9K Vi) ds o IK s + Kf T



T he combined method — extension into interior of K

The function wg is continuous on 0K and it is possible to extend it
into interior of K such that w € H1(K). We suggest this extension:

’
Sy 7 7 4

] 2 V4 -
[ A A TR R P T 1wy
eatrateadeecslicdlecleockaactleadocaladlaalaailas

A 23 B




The combined method — description of the extension

Consider triangle K with vertices A, B and C and w € CO(0K). Let
us define extension @ € CO(K) of w into the interior of K by

(X)) =0X)+z1(X)+ z2(X) + z3(X), X eK.

e Function 7 is a linear function on K such that (A) = w(A), #(B) =
w(B), and 7(C) = w(C).

e Functions 2; € C9(K), which is zero on 8K \ BC, and 2, € CO(K),
which is zero on 0K \ C A are define in analogy with the definition
of z3.



e Function 23 € CO(K) is zero on K \ AB and is defined by

Z3(X) = w(X) — (X)) for X € AB,
Z3(X) =0 for X € BCUCA,

5(X) = (w(D) ~ 1(D3)) 2

where | X E3| denotes the distance between points X and Ejs.

for X € K,

Notice that &(X) = w(X) on 0K.



The combined method — properties of the extension

Notation: PP(©®) — the space of polynomials of degree p defined on
the set ©.

Lemma 1. Consider a triangle K and w € C9(0K). Moreover, let
w|y € PP(~) for all edges ~ of triangle K and for arbitrary p € N. Then
the extension @ of function w into interior of K described above is a

polynomial of degree p in K, i.e., & € PP(K).



The idea of proof. C =[0,1]

L2

A=10,0]

- B =[1,0]

The following functions form a basis of space Pg([o, 1]) of all polyno-
mials on [0, 1] with zeroes at O and 1:

Py =2"(1-2), n=1,2,...,p—1.
Functions

90727,D(x17$2):$7f(1_$1_$2)7 n:1727"'7p_17

are the standard finite element basis functions corresponding to the
edge AB of the reference triangle.

Consider lines parallel with edge C A, i.e., lines described by equality
1 =k, k € R. All basis functions ¢2P(z1,x5) are linear on these lines:

0Pk, z0) =k"(1—k—x5), n=1,2...,p—1.



The combined method — properties of the extension

Lemma 2. Consider a triangle K with vertices A, B, and (', function
w € CO9OK) and its extension @ € CO9(K) described above. If there
exist finite tangent derivative dw /07 on all edges of triangle K then
the derivatives of function z3 at any interior point X = (zq1,20) € K

in the directions ED and X B are given by
0z3(X) _ 23(D3)
9 E3_1>)3 |D3E3|’
0Z3(X) _ 923(D3) |AB| |XE3| ~_ 073(D3) |AB| |XE3|
9 XB 9 AR |XB||D3E3] Otk |XB||D3E3|

where

L, — (Bi—21)(A1 — C1) — (Ba — 29)(Az — C)
(B1 — A1)(A1 = C1) — (B2 — A2)(A2 — C2)




Proof.

T he derivative in the directions X B is given by
. 23(X) — Z3(X) _ . 73(D3) — 23(D3) | X E3|
r—0 r|BX| r—0 r |BX| |D3E3|’
where X = X + r(B—X),

~ ~ ‘XE3| ~ - X\E?) ‘XE3| XE3

z3(X) = z3(D3) ,  z3(X) = z3(D3) ‘A —, = ‘A —.
| D3 E3] D3E3|  |D3E3| ‘D3E3

The rest of proof is an exercise in analytical geometry. L]

Remark: the derivatives of z; and z> can be evaluated analogically.



The combined method — summary

Compute boundary fluxes gx using residual equilibration method.
Construct for all triangles K in T} vector

Ppr =F 4 curlwy — AVuy,
where construction of wy employs the extension described above.

Notice that the values of curlwy are easily computable from val-
ues of wyr on K and from Owg /0t = g — F - v on 0K — see
Lemma 2.

Find solution yy, € W, (K) of the finite dimensional local problem
(A_l curl yz,, curl U)K = — (.A_lf)K,curlv)K Vo € W, (K).

Evaluate estimate

2 — 2
lell® < > lIPx + curlygll%-1 g -
KETh



The combined method — exactness of the estimator

Lemma 3. Let the finite element solution u;, € V}, be exact, i.e., u;, =
v and let the matrix A be constant. If the vector pr € Qx (f, 95, up,)
IS constructed as described above then the combined error estimator
IS exact, i.e., pxg + curlyy = 0.

Proof. From the equilibrated residual method follows that

JK :V?j-VK on 0K.
This implies that
Qx(f,9x,up) = {q € H(div,K) : (q,Vv)g =0 Vv e V(K)}
= curl W(K).

Moreover, the extension of wy is polynomial, because f is polynomial,
see Lemma 1. Therefore, pg is also polynomial and pg € curl W, (K).
Thus, the solution of the local problem

(A_l curl yy, curl ’U)K = — (A_lf)K,curl U)K Vo € Wi, (K)

satisfies curly, = —pg- []



NUMERICAL EXPERIMENTS

e Finite element method:
Vi, ... continuous and piecewise quadratic functions
with zero on I'p.
e Equilibrated residual method:

Vi (K) ... degree three polynomials with zero on INp.

e [ he method of hypercircle:
W3, ... continuous and piecewise quadratic functions
with zero on [ y.
e T he combined methods:

Wp(K) ... degree three polynomials with zero on 0K \ Ip.

Remark: If we consider interior element K, then dimV},(K) = 10 and
dimW;,(K) = 1. Thus, the combined method performs faster.



Example 1

Consider the following data:

Q:[_lal]Qa
I’DzﬁQ,

N =0,
(10
4=(01),

g1 = 0,

f(xy,20) = 2(2 — 2§ — x3),
w(zy,22) = (21 — 1) (25 — 1).



Comparison of effectivity indices

equilibrated method of | combined

Ny | residual method | hypercircle | method
2 1.43 1.11 1.06
4 1.23 1.25 1.01
8 1.34 1.20 1.00
16 1.30 1.30 1.16
32 1.39 1.23 1.29
64 1.32 1.32 1.27
128 1.41 1.25 1.52
256 1.33 1.34 1.33
512 1.41 1.25 1.64
1024 1.33 1.34 1.36

First five meshes:




Thank you for your attention.



