Mathematical Institute Academy of Sciences, Czech Republic Žitná 25, 115 67 Praha 1

Method of lines and conservation of nonnegativity

Semidiscrete solution of the linear parabolic problem does not conserve nonnegativity

Tomáš Vejchodský

e-mail: vejchod@math.cas.cz

Colloquium 09/03/2004

University of Texas at El Paso Department of Mathematical Sciences

Method of lines and conservation of nonnegativity

Semidiscrete solution of the linear parabolic problem does not conserve nonnegativity

Tomáš Vejchodský

e-mail: vejchod@math.utep.edu

Colloquium 09/03/2004

Introduction

- Absolute temperature, density, concentration nonnegative
- Mathematical models maximum (comparison) principle
- Discrete models discrete maximum principle

Applications:

physics (heat conduction, nuclear), engineering, economy

The heat conduction problem

Classical formulation:

$$\partial_t u(x,t) - \Delta u(x,t) = 0$$
 in $\Omega \times (0,T)$, $u(x,t) = 0$ on $\partial\Omega \times [0,T]$, $u(x,0) = u_0(x)$ in Ω ,

where T > 0,

 $\Omega \subset \mathbb{R}^d$ polyhedral domain, $d \in \{1, 2, 3, \ldots\}$ arbitrary, u temperature, u_0 initial condition — sufficiently smooth.

Comparison principle:

$$u_{01} \leq u_{02} \text{ in } \Omega \implies u_1 \leq u_2 \text{ in } \Omega \times (0,T).$$

Definition:

The problem conserves nonnegativity $\stackrel{\text{def}}{\Longleftrightarrow}$ $(\forall u_0 \geq 0 \Rightarrow u \geq 0)$.

Comparison principle \iff nonnegativity conservation.

Numerical approaches

Method of lines:

```
x discretized, t continuous \Rightarrow system of ODE (Solver of ODE's \Rightarrow full discretization.)
```

• Rothe's method:

```
x continuous, t discretized \Rightarrow series of elliptic problems (Elliptic problems solver \Rightarrow full discretization.)
```

Weak formulation

Classical formulation:

$$\partial_t u(x,t) - \Delta u(x,t) = 0$$
 in $\Omega \times (0,T),$
$$u(x,t) = 0$$
 on $\partial \Omega \times [0,T],$
$$u(x,0) = u_0(x)$$
 in $\Omega.$

Weak formulation:

find $u \in H_0^1(\Omega)$ such that $\partial_t u \in L^2(\Omega)$ for a.e. $t \in (0,T)$ and

$$\int_{\Omega} \partial_t uv \, \mathrm{d}x + \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = 0 \quad \forall v \in H^1_0(\Omega), \text{ a.e. } t \in [0, T],$$
$$u(x, 0) = u_0(x) \quad \text{in } \Omega.$$

Initial condition: $u_0 \in H_0^1(\Omega)$.

$$H^{1}(\Omega) = \{ v \in L^{2}(\Omega) : \partial_{x_{i}} v \in L^{2}(\Omega) \}$$

$$H^{1}_{0}(\Omega) = \{ v \in H^{1}(\Omega) : v|_{\partial\Omega} = 0 \}$$

Finite elements

```
T_h ..... simplicial partition of \Omega.
V_{h0} \subset H_0^1(\Omega) ... finite element space
               (continuous and piecewise linear functions based on T_h).
V_{h0} = \operatorname{span}\{\varphi_1, \varphi_2, \dots, \varphi_N\}.
Acute type condition:
1D . . . empty
2D ... all angles in triangulation \leq \pi/2
3D . . . all dihedral angles between faces of all tetrahedra \leq \pi/2
(\Rightarrow off-diagonal entries of the sitffness matrix A are \leq 0
\Rightarrow A^{-1} > 0 \Rightarrow discrete maximum principle for elliptic problems.)
```

Semidiscretization

Semidiscrete Galerkin problem: find $\bar{u}_h \in C^1([0,T],V_{h0})$ such that

$$\int_{\Omega} \partial_t \bar{u}_h v_h \, \mathrm{d}x + \int_{\Omega} \nabla \bar{u}_h \cdot \nabla v_h \, \mathrm{d}x = 0 \quad \forall v_h \in V_{h0},$$
$$\bar{u}_h(x,0) = \bar{u}_{h0}(x) \quad \text{in } \Omega.$$

 \bar{u}_{h0} ... projection of u_0 into V_{h0} .

$$\bar{u}_h(x,t) = \sum_{j=1}^N y_j(t)\varphi_j(x)$$
 \updownarrow $v_h = \varphi_i$

$$M\dot{y}(t) + Ay(t) = 0$$
$$y(0) = y_0$$

Mass matrix: $M_{ij} = \int_{\Omega} \varphi_i \varphi_j \, dx$.

Stiffness matrix: $A_{ij} = \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, dx$.

Vector of coefficients: $y(t) = (y_1(t), y_2(t), \dots, y_N(t))^{\top}$.

Initial condition: $y_0 = (y_{01}, y_{02}, \dots, y_{0N})^{\top}$.

Exact solution: $y(t) = \exp(-M^{-1}At)y_0, \quad t \ge 0.$

Properties of M and A

Definition: Matrix $Q \ge 0 \stackrel{\text{def}}{\iff} \forall i, j \ Q_{ij} \ge 0$.

Definiton: $\mathcal{Z} = \left\{ K \in \mathbb{R}^{N \times N} : \forall i \neq j \ K_{ij} \leq 0, N \in \mathbb{N} \right\}$

- $M \ge 0$ (nonnegativity of FE basis functions)
- M, A Gramm matrices (nonsingular, symmetric, positive definite)
- \bullet M, A irreducible and sparse (if the mesh is sufficiently fine)
- $A \in \mathcal{Z}$ (acute type condition)
- $A^{-1} > 0$ (A irreducible M-matrix)
- $M^{-1} \notin \mathcal{Z}$ (both positive and negative off-diagonal entries in M^{-1})

Semidiscrete nonnegative conservation

Recall semidiscrete solution: $y(t) = \exp(-M^{-1}At)y_0, \quad t \ge 0.$

semidiscrete problem conserves nonnegativity

$$\downarrow \\ y_0 \ge 0 \quad \Rightarrow \quad y(t) \ge 0 \text{ for all } t \ge 0$$

$$\updownarrow$$

$$\exp(-M^{-1}At) \ge 0 \text{ for all } t \ge 0$$

Preliminaries

Theorem: $Q \in \mathbb{R}^{N \times N}$ irreducible.

$$\exp(-Qt) \ge 0$$
 for all $t \ge 0 \Leftrightarrow Q \in \mathcal{Z}$

Proof. See [Varga, 1963], page 257, Theorem 8.1.

semidiscrete problem conserves nonnegativity

 \updownarrow

 $M^{-1}A \in \mathcal{Z}$ (if $M^{-1}A$ irreducible)

Recall: $\mathcal{Z} = \left\{ K \in \mathbb{R}^{N \times N} : \forall i \neq j \ K_{ij} \leq 0, N \in \mathbb{N} \right\}$

Irreducibility of $M^{-1}A$

Theorem: $Q \in \mathbb{R}^{N \times N}$ nonsingular. Q irreducible $\Leftrightarrow Q^{-1}$ irreducible. *Proof.* Q reducible:

$$PQP^{\top} = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix},$$
$$(PQP^{\top})^{-1} = P^{-\top}Q^{-1}P^{-1} = \begin{pmatrix} A_1^{-1} & -A_1^{-1}BA_2^{-1} \\ 0 & A_2^{-1} \end{pmatrix},$$

 Q^{-1} reducible.

Irreducibility of $M^{-1}A$

Theorem: $P,Q \in \mathbb{R}^{N \times N}$, $P \ge 0$, $Q \ge 0$. P irreducible and diag $Q \ne 0$ $\Rightarrow PQ$ and QP irreducible.

Proof.

$$Q = \underbrace{D}_{\text{diag } Q} + \underbrace{O}_{\text{off-diag } Q}$$

digraph(P) = digraph(DP) = digraph(PD)

$$PQ = \underbrace{PD}_{\text{digraph}(P)} + \underbrace{PO}_{\text{addition edges}}$$

A irreducible $\stackrel{\mathsf{Th}}{\Longrightarrow} A^{-1}$ irreducible $\stackrel{\mathsf{Th}}{\Longrightarrow} A^{-1} M$ irreducible $\stackrel{\mathsf{Th}}{\Longrightarrow} M^{-1} A$ irreducible

$$M^{-1}A \not\in \mathcal{Z}$$

Definition:

The set of matrices with zeros, where $M \in \mathbb{R}^{N \times N}$ has zeros:

$$\mathcal{M}_M = \left\{ K \in \mathbb{R}^{N \times N} : \forall i, j \quad M_{ij} = 0 \Rightarrow K_{ij} = 0 \right\}.$$

Theorem: $M \in \mathbb{R}^{N \times N}$ nonnegative, nonsingular, irreducible, $\exists i \neq j \ M_{ij} = 0$, and $\forall k \ M_{kk} \neq 0$. $A \in \mathcal{M}_M$ nonsingular, irreducible, $A^{-1} \geq 0$. $\Rightarrow M^{-1}A \notin \mathcal{Z}$.

Recall:
$$\mathcal{Z} = \left\{ K \in \mathbb{R}^{N \times N} : \forall i \neq j \ K_{ij} \leq 0, N \in \mathbb{N} \right\}$$

Proof. Assume that $M^{-1}A \in \mathbb{Z}$.

$$M^{-1}A = \underbrace{D}_{\text{diagonal}} - \underbrace{Q}_{\text{with diag} \neq 0} \Leftrightarrow \underbrace{MD}_{\in \mathcal{M}_M} - \underbrace{A}_{\in \mathcal{M}_M} = \underbrace{MQ}_{\in \mathcal{M}_M}$$

Conclusion

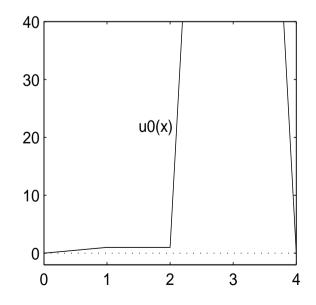
$$M^{-1}A \notin \mathcal{Z}$$
 (and $M^{-1}A$ irreducible) \downarrow

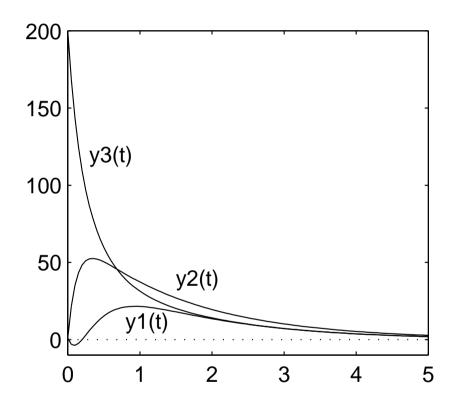
semidiscrete problem does not conserve nonnegativity

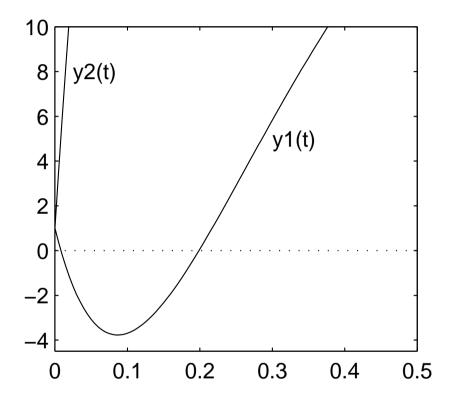
Corollary: If the simplicial partition of $\Omega \subset \mathbb{R}^d$, $d \in \mathbb{N}$, satisfies the acute type condition and if it is fine enough then the semidiscrete problem does not conserve nonnegativity, i.e., $\exists \bar{u}_{h0} \geq 0$ and $(x,t) \in \Omega \times (0,\infty)$ such that $\bar{u}_h(x,t) < 0$.

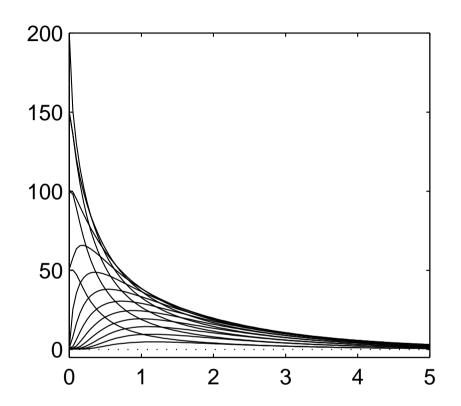
Example in 1D

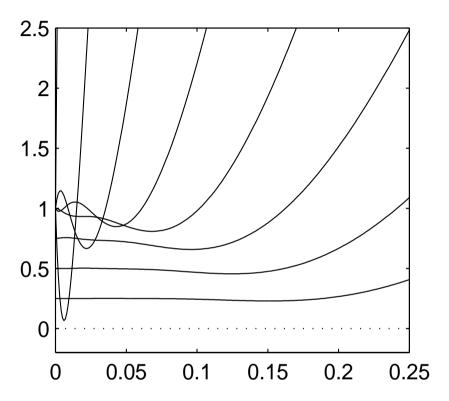
$$\dot{u}(x,t) - u'(x,t) = 0$$
 in $(0,4) \times (0,T)$,
 $u(0,t) = 0$ $u(4,t) = 0$ for $t \ge 0$,
 $u(x,0) = u_0(x)$ in $(0,4)$,
 $u_0(x) = \varphi_1(x) + \varphi_2(x) + 200\varphi_3(x)$











Nonnegativity for $t \ge t_0$

Theorem: Consider sufficiently fine mesh, acute type condition.

Then $\exists t_0 \in \mathbb{R} \ \forall t \geq t_0 \ \forall \bar{u}_{h0} \geq 0 \quad \bar{u}_h(x,t) \geq 0 \text{ in } \Omega.$

Proof.

$$\left[\exp(-M^{-1}At)\right]_{ij} = \underbrace{v_{i1}\bar{v}_{1j}}_{>0} e^{-\lambda_1 t} + \sum_{k=2}^{N} v_{ik}\bar{v}_{kj} e^{-\lambda_k t}, \quad i, j = 1, 2, \dots, N.$$

$$V=(v_{ij})$$
 ... columns – eigenvectors of $M^{-1}A$ $V^{-1}=(\bar{v}_{ij})$ $\lambda_1<\lambda_2<\cdots<\lambda_N$

Concluding remarks

• Nonnegativity occurs only close to t = 0.

• Given initial condition

 \Rightarrow sufficiently fine mesh \Rightarrow nonnegative solution.

• Mass lumping.

Thank you for your attention.