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Introduction

e ADbsolute temperature, density, concentration — nonnegative

e Mathematical models — maximum (comparison) principle

e Discrete models — discrete maximum principle

Applications:
physics (heat conduction, nuclear), engineering, economy



The heat conduction problem

Classical formulation:

oru(x,t) — Au(x,t) =0 in Q2 x (0,7),
u(x,t) =0 on 02 x [0,T],
u(x,0) = ug(x) in Q,

where T > O,
Q C R4 polyhedral domain, d € {1,2,3,...} arbitrary,
u temperature, ug initial condition — sufficiently smooth.

Comparison principle:
uglr <ugo IN 2 —=—  wuy <wupin 2 X (O,T).
Definition:

The problem conserves nonnegativity ge (Vug >0 = u > 0).

Comparison principle <= nonnegativity conservation.



Numerical approaches

e Method of lines:
x discretized, t continuous = system of ODE

(Solver of ODE’'s = full discretization.)

e Rothe's method:
xr continuous, t discretized = series of elliptic problems

(Elliptic problems solver = full discretization.)



Weak formulation

Classical formulation:

oru(x,t) — Au(x,t) =0 in Q2 x (0,7),
u(x,t) =0 on 02 x [0,T],
u(x,0) = ug(x) in Q.
Weak formulation:
find u € H3(2) such that du € L?(2) for a.e. t € (0,T) and

/Qatuvdx + /Q Vu-Vodr=0 Yoe H(Q), ae. tel0,T],
u(x,0) =ug(x) in Q.
Initial condition: ug € HA ().

HI(Q) = {v e L3(Q) : 8,0 € L?(Q)}
Hg(2) = {v € H(Q) : v|pn = 0}



Finite elements

Ty oL simplicial partition of 2.
Vio C H3(2) ... finite element space
(continuous and piecewise linear functions based on T},).

Vo = span{¢1,¥2,..., N}

Acute type condition:

1D ...empty

2D ...all angles in triangulation < /2

3D ...all dihedral angles between faces of all tetrahedra < 7 /2

(= off-diagonal entries of the sitffness matrix A are <0
— A1 >0 = discrete maximum principle for elliptic problems.)



Semidiscretization

Semidiscrete Galerkin problem: find @, € C1([0,T], Vo) such that

/Q Orupvy dr 4 /Q Vup - Vo de =0 Vv, € Vo,

ﬂh(x, O) = ’L_LhO(ZC> in 2.

upo - - - Projection of ug into Vyq.

N
up(z,t) = Y yit)ei(x) T v, =
=1

My(t) + Ay(t) =0

y(0) = yo
Mass matrix: MZ] = fQQOZ'QOj dx.
Stiffness matrix: Aijj = oV Ve, dz.

Exact solution: y(t) = exp(—M_lAt)yo,

Vector of coefficients: y(t) = (y1(t),y>(t),...,yn())".
Initial condition: vo = (Y01,Y02, - - -, Yon) -

t > 0.




Properties of M and A

Definiton: Matrix Q >0 £ vi j Q;; > 0.

Definiton: Z = {K c RVXN . Vi #£ j K;; <O,N € N}

e M > 0 (nonnegativity of FE basis functions)

o M, A — Gramm matrices
(nonsingular, symmetric, positive definite)

e M, A — irreducible and sparse (if the mesh is sufficiently fine)
e A c Z (acute type condition)
e A1 >0 (A irreducible M-matrix)

e M1 ¢ z (both positive and negative off-diagonal entries in M —1)



Semidiscrete nonnegative conservation

Recall semidiscrete solution: y(t) = exp(—=M~1At)yy, ¢> 0.

semidiscrete problem conserves nonnegativity

)

yo>0 = y()>0forallt>0

)

exp(—M~1At) >0 forall t >0




Preliminaries

Theorem: Q € RY*YN jrreducible.

exp(—Qt) >0forallt>0 < QecZ
Proof. See [Varga, 1963], page 257, Theorem 8.1.

semidiscrete problem conserves nonnegativity

)
M—1Aez (if M—1A irreducible)

Recall: Z = {KGIR{NXN:W#j King,NEN}




Irreducibility of M—1A

Theorem: Q € RY*N nonsingular. Q irreducible < Q1 irreducible.
Proof. () reducible:

T _ (A1 B
PQP _<O A2>,

ATl —A;13A51>
—1 9

0 A

Q1 reducible. (]

(PQPT)_l —pTolp1l— (



Irreducibility of M—1A

Theorem: P,Q ¢ RVXN P >0, Q> 0. P irreducible and diagQ # 0
= P(@Q and QP irreducible.

Proof.
Q= D + O
diag@®  off—diag @

digraph(P) = digraph(DP) = digraph(PD)

PQ = PD -+ QQ
digraph(P) addition edges

A irreducible —% A~1 irreducible —% A~ irreducible

L =14 irreducible




M~ lA¢Zz
Definiton:
The set of matrices with zeros, where M & RNXN nhas zeros:

MMZ{KERNXNIVi,j MZ"ZO:>KZ'J'=O}.

Theorem: M c RVY*XN nonnegative, nonsingular, irreducible,
Ji # j M;; =0, and Yk My, # O.

A € Mj; nonsingular, irreducible, A=1 > 0.

= M lAag¢gZz.

Recall: 2 ={K e RMN :vi#j K;; <0,N € N}



Proof. Assume that M—1A c =.

M *A= D - Q & MD- A = MQ
diagonal >0 with diag #0 eMyu eMy eMy

T+ 7, MZ] = 0. M irreducible = djm,, #= 1 Mi,jm = 0.
M~1A irreducible = Q irreducible =

= 3j1,52, -5 Jm @ 7 00 Qg 7 00 v Qi1 7 0
Ny | ' =0 if M; =0 = =
(MQ)U 7,]1 lej + Z Mzk ij { — 7 and Mz = —0

£0 k7j1 >0 >0

— 70 |if #= 0 = %
(MQ)ijy = M j, Qs gy + e { Mz

=7 and M; .. =20
20 >0 1,J2 —
= Mj g1 =0
(MQ)i g1 = Mijw Qimjin—1, T - 70 = x
70 70 =0 * MQ & My



Conclusion

M—1A¢ z (and M~1A irreducible)

U

semidiscrete problem does not conserve nonnegativity

Corollary: If the simplicial partition of Q c RY9 d ¢ N, satisfies the

acute type condition and if it is fine enough
then the semidiscrete problem does not conserve nonnegativity,

i.e., Juyg > 0 and (x,t) € 2 x (0,00) such that uy,(x,t) < O.




Example in 1D

uw(x,t) —u'(z,t) =0 in (0,4) x (0,T),
u(0,t) =0 wu(4,t) =0 fort >0,
u(x,0) = ug(x) in (0,4),

uo(z) = ¢1(x) + w2(z) + 200¢p3(x)
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Nonnegativity for ¢ > i

Theorem: Consider sufficiently fine mesh, acute type condition.
Then Jtg € R Vt > tg Yupg > 0 up(x,t) > 0 in Q.

Proof.

N
[exp(—M—lAt)} =wpvpje M4 S up e i =1,2,... N.

1] —
NG k=2

V = (v;;) ...columns — eigenvectors of M~ 1A
Vol = (9;)
A1 <A << AN []



Concluding remarks

e Nonnegativity occurs only close to ¢t = 0.

e Given initial condition
= sufficiently fine mesh = nonnegative solution.

e Mass lumping.



Thank you for your attention.



