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{g/ Maximum Principle

et f<0inQcRYand u € C?(Q)NCY(Q) be the solution of

d

0%
B Z 25 (%) 02,0 ; =/

1,7=1

where A(z) = {aij}g{j:l IS uniformly positive-definite in €.
Then v attains its maximum on the boundary 0<.
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{g/ Maximum Principle

et f<0inQcRYand u € C?(Q)NCY(Q) be the solution of

d

0%
B Z 25 (%) 02,0 ; =/

1,7=1

where A(z) = {aij}g{j:l IS uniformly positive-definite in €.
Then v attains its maximum on the boundary 0<.

Discrete Maximum Principle (DMP):
Does it hold also for the finite element solution?
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{g/ Maximum Principle

et f<0inQcRYand u € C?(Q)NCY(Q) be the solution of

d

0%
B Z 25 (%) 02,0 ; =/

1,7=1

where A(z) = {aij}g{j:l IS uniformly positive-definite in €.
Then v attains its maximum on the boundary 0<.

Discrete Maximum Principle (DMP):
Does it hold also for the finite element solution?

Answer: In general NO, but under suitable conditions YES.
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{&/ What is known about DM P?
A

# linear elements (p = 1)

-

Imost all results:

#® M-matrices

# W. HOhn, H. D. Mittelmann: Some Remarks on the
Discrete Maximum Principle for Finite Elements of
Higher-Order, Computing 27, pp. 145-154, 1981.
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—u"=f inQ=(a,b); wula)=ub)=0
pl p2 p3 p4 pM—l Rﬂ
a=Xp X1 X X3 X\ -2 X1 B =Xy
Kl K2 K3 |<4 M-1 M

Find Upp € Vhp :

b b
/ Wh (2)0),(2) Az = / f(x)vpp(xz)dz  forall vy, € Vj,
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gg/ Discrete Maximum Principle
B N

IS upy,(xz) > 0 forany f(x) >0? (for all z € Q)



gg/ Discrete M aximum Principle

=

IS upy,(xz) > 0 forany f(x) >0? (for all z € Q)

-

YES, ifp1=pa=...=py = 1.
U
/Vj\
_l_ - = 1 I I - =
a Xip  Kiog X Ko X b
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gg/ Discrete Maximum Principle

=

IS upy,(xz) > 0 forany f(x) >0? (for all z € Q)

-

NO, for general p1,po, ..., py > 1.
Q= (—1,1), Tnp, = {K1}, p1 =3, f(z) =200~ 10+ > ¢
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{3/ Why?
A

-

L? projection of f(z) = 20012 +1) to P3(Q) D Vj,

b b
/ frp(@)vpp(2) dz = / f(x)vp,(z) dz for all vy, € P3(Q),

2007
y 1507

100

frp(x) = —8.25 4+ 29.175x
+54.7522% — 93.625z3
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gg/ Weak DMP

Let fnp > 0, where fy,, is the L*-projection of f to

W ={veCQ);vlk, € PP(K;), 1 <i< M}.

Then (for the model problem —u” = f, u(a) = u(b) = 0),
Uhp > 0.
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{&/ Pr oof:

fIt IS enough to consider:
(a,b) = (—1,1) and 7, = {K1}, p > 2.

Vip = Vi) @ V)
( (b)

_ ()
Upp = Up, + Upy,

/b (u(v)),v’ dx—/bfv dr V EV(U)
hp hp YL = hp UL VUnyp hp

b , b
/ (ug;)) v;Lp de = /a fopp dz Yoy, € Vh(;)
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{3/ Proof: reference e ement

=

Reference element: (—1,1)

Lobatto shape functions s, 13, ..., l1o:

W(z) = — / Lo i(6)dé. 2<k,

1okl J-1

Important property: f z)l(z) dz = ;.
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\,\\( USTAV

A=

Proof: reference element
-

la(z) =

I3(x) =

lay(x) =

Is(x) =

= \/7(:13 —1)(21z* — 1422 4+ 1),

e ()

7 ()
Is ()
lo ()

l10(x)

N,
5\[29” —be,

é\/§<m2—1><5x2—1>,
3\@ 2 _1)(722 — 3)a,

(:B — 1)(33z%* — 3022 + 5)x,

— 128” (x — 1)( 42925 — 49524 4 13522 — 5),

= 3 \/ (x — 1)(7152% — 1001z* + 38522 — 35)x,
130822 4+ 7).

1 /19
= 0 (q;Q —1)(24312% — 40042° + 2002z

|

On the Discrete Maximum Principle for Higher Order Finite Elements — p.9/39



{3/ Proof: reference element
S

021

061



{g/ Proof: p =2
A

up(@) = ila(x),  lax) <0

1
g — / sl ()l (2) dz

—1

1 1
_ / (5 dz = [ () 1a(2) 0 <0
- S0 <0
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{g/ Proof: p =3
A

upp(x) = y1la(x) + yol3(x)

o |
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{g/ Proof: p =3
>

upp(x) = y1la(x) + yol3(x)

1 1
g — /_ Fapl)az) €z, = /_ Flls(2) o
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{g/ Proof: p = 3
>

upp(x) = y1la(x) + yol3(x)

1
Y1 = /fhp )2(2) dz, yzz/_lfhp(z)l:%(z)dz

upp(—1) >0 & (1) <0 =y, >0in (=1,1)

o |
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{g/ Proof: p =3
f
Unp(x) = y1la(x) + yal3(x)
1
Y1 = / fhp z)la(z)dz, y2 = /_1fhp(2)13(2) dz
upp(—1) >0 & (1) <0 =y, >0in (=1,1)

0 <l (—1) = yalb(—1)+yaly(— / Fro(Dla(—Dla(z) + (-~ Dla(2)] 0=

ga(2)= (z2 1)(5z—3)

o |
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gé\OM 4pqp
N
9a(), go

(x):

Proof: p = 3

\\\\\

I T
~N
1

~

L
l/<’1 T T T T
0,5

T T T T

Show that [ f,,(2)ga(2)dz > 0forall 0 < f;,, € P*(—1,1).

o
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1.

Proof: p = 3

fhp = ¢, where ¢ > 0 is a constant,
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Proof: p = 3

fhp = ¢, where ¢ > 0 is a constant,

1.
2. fnp Is anonconstant affine function with

(a) positive slope and root in the interval (—oco, —1],
(b) negative slope and root in the interval [1, co),

|
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Y USTy,
©
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Proof: p = 3

1. fhp = ¢, where ¢ > 0 is a constant,

2. fnp Is anonconstant affine function with

(@)
(b)

positive slope and root in the interval (—oco, —1],
negative slope and root in the interval [1, co),

3. fnp is aquadratic function with

(@)
(b)
(€)
(d)
(€)

two complex-conjugate complex roots and positive leading term,

one real root of multiplicity two and positive leading term,

two roots in (—oo, —1] and positive leading term,

two roots in [1, co) and positive leading term,

one root in (—oo, —1], one root in [1, co) and negative leading term,

|
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Y USTy,
©

o

MATEA/Q
2
2
QV

A

Proof: p =3
frp = ¢, where ¢ > 0is a constant, —‘

fnp is anonconstant affine function with

(a) positive slope and root in the interval (—oco, —1],
(b) negative slope and root in the interval [1, co),

fnp is aquadratic function with

(&) two complex-conjugate complex roots and positive leading term,

(b) one real root of multiplicity two and positive leading term,

(c) tworootsin (—oo, —1] and positive leading term,

(d) tworootsin [1, co) and positive leading term,

(e) onerootin (—oco, —1], one root in [1, co) and negative leading term,

fnp is acubic function with positive leading term and

(@) one single root in (—oo, —1] and one root of multiplicity two in ,
(b) one rootin (—oco, —1] and two real roots in [1, co),

(c) onerootin (—oo, —1] and two complex-conjugate complex roots,
(d) three different roots in (—oo, —1],

(e) one root of multiplicity three in (—oo, —1],

|
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Y USTy,
©

Uil Proof: p =3
fnp = c, where ¢ > 0 is a constant, —‘

fnp is anonconstant affine function with

MAT,
T 54,14}
A
QV
=

N

(a) positive slope and root in the interval (—oco, —1],
(b) negative slope and root in the interval [1, co),

3. fnp is aquadratic function with

(&) two complex-conjugate complex roots and positive leading term,

(b) one real root of multiplicity two and positive leading term,

(c) tworootsin (—oo, —1] and positive leading term,

(d) tworootsin [1, co) and positive leading term,

(e) onerootin (—oco, —1], one root in [1, co) and negative leading term,
4. fryp is acubic function with positive leading term and

(@) one single root in (—oo, —1] and one root of multiplicity two in ,
(b) one rootin (—oco, —1] and two real roots in [1, co),

(c) onerootin (—oo, —1] and two complex-conjugate complex roots,
(d) three different roots in (—oo, —1],

(e) one root of multiplicity three in (—oo, —1],

5. fnp Is acubic function with negative leading term and

(a)—-(e) symmetric conditions to the previous ones.

\—Eighteen cases. J
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%g/ Proof: p = 3, case 4(a)
= o

(one single root in (—oo, —1] and one root of multiplicity two in R)

Itis f,(z) = (z — ¢)*(2 + d), where ce Rand d > 1:

8 4 4 8 4
uhp /fhp )ga(2)dz = d (40 +36+5) 2

VY a

>0 for all ceR

g 4 4 8 1 8 16 8
2(462—|——c—|——)————c——62:—62—|— +—==>0

—cC
7 D 3 3 15 39

On the Discrete Maximum Principle for Higher Order Finite Elements — p.14/39



/\\O\L
N

gg/ Proof: p = 3, case 4(b)

f(one root in (—oo, —1] and two real roots in |1, c0)) T

Itis f1,(2) = (# —¢)(2 — d)(z +¢e), Wwhere c,d > 1
suchthatd =c+e¢,e>0,and e > 1:

1
4 4 4 A4 4 4 4
Up,(—1) = /_1 Trp(2)ga(2) dz = —?—gc—l—ge—kgce—gd—gcd+§d6—|—4cde

4 4_|_ A 4 et (4 4 2 | 8 8 _|_4 4>O
= -e— - e— —|c e— —|c —e——-|c+-e— =

3 3 3 3 3 3 3 7

HH [\ -y HH

A\ . 7 \ . 7

> >0 >0 >0 >0

All 18 cases hold = cubic case solved.

o |
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gg/ Proof: general p
>

p—1
upp(2) = yiliy1(x)
i—1

o |
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MATg I,
4);0
%
c
»
N
<
2
N

Proof:. general p

p—1
upp(2) = yiliy1(x)
i—1

1
Yi :/1fhp<z>li—|—1(z) dz
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Proof:. general p
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Proof:. general p



{g/ Proof: general p
>

g lz—l—l z—|—1

What can we say about <I>p(x, 2)?

o
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{g/ Proof: p =4
B -
D4 (

r, z) is nonnegative in (—1, 1) = quartic case holds!




Proof: p =5

Y USTy,
/\\Q\/\ 9L
& .

~
<
'2\/7l]

=

)2

~1,1

(

$5(x, ) is not nonnegative in




MATg I,
4);0
%
c
»
N
<
2
N

-0.51

0.5

Proof: p = 5 continued

a

-0.5

0 0.5 1

0.95-
0.9-

0.85-

O'8:I T T T T T T T T T

1
unp (&) = / Sipl2) sl 2)

|
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- Proof: p = 5 continued

=

Look for a 10th-order quadrature rule in (—1, 1) with

s

# positive weights w;,
# outside of the domains of negativity of ®s.

Then we will have

1 1
Upp(T) = /_1 frp(2)P5(z, 2) dz:/ F:f;m)(z) dz

—1

Lfor all z € (—1,1). J
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%g/ Proof: p = 5 continued
o

Point Weight Point Weight

-1 0.0534286192 || -0.811 | 0.3054087580
-0.59 | 0.0030544353 | -0.42 | 0.4473230113
-0.2 | 0.0066984041 0 0.2760767276
0.2 | 0.2939694773 0.43 | 0.0149245373
0.6 | 0.3805105712 0.9 0.1999066353
1 0.0186988234

Table 1: 10th-order quadrature rule in 2 with positive weights and points
lying outside of (—1, —0.811) — calculated by Maple.

This concludes the proof for p = 5.

o |
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{g/ Proof: p =6
B -
Dy

, z) is nonnegative in (—1,1)? = case p = 6 holds!




U Proof: p =7
f(197(% %) is not nonnegative in (—1,1)* T
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Proof: p = 7 continued

MATg I,
4);0
%
c
»
N
<
2
N

N 1
- 0.98-
0.5: ]
] 0.96-
Zz O ]
i Z0.94:
.0.51 0.92
0.9
14 4 :

-1 -0.5 0 0.5 1 -1 -0.98 -0.96 -0.94 -0.92 -0.9

X X

1
Upp(T) = /_1 frp(2)P7(2, 2) dz

o |
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‘o Proof: p = 7 continued

9, )}o
2
c
»
N
<
2
Q

Point Weight Point Weight

-1 0.0306200311 || -0.89 | 0.1806438688
-0.75 | 0.0016558668 || -0.65 | 0.2862680475
-0.45 | 0.0379885258 || -0.31 | 0.2988638595
-0.16 | 0.0833146476 0.1 | 0.3554921618
0.16 | 0.0113639321 || 0.35 | 0.0204292124
0.47 | 0.3218682171 || 0.734 | 0.1289561668
0.80 | 0.1314089188 || 0.955 | 0.1093567805

1 0.0017697634

Table 2: 14th-order quadrature rule in 2 with positive weights and points
lying outside of (—1, —0.89).

This concludes the proof for p = 7.

o |
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@ Proof: p =8
f%( -

x, z) is not nonnegative in (—1,1)*




Proof. p = 8 continued

MATg, I,
47}0
%
c
»
N
<
2
N

13 1
0.81 0.951
0.61 0.9-
y4 ] Z ]
0.4 0.85
0.2° 0.8

O:IIIIIIIIIIIIIIIIIIIIIIIIIII O'75:|||||||||||||||||IIIIIIIII

1 -08 -06 -04 -02 O 1 -095 -09 -0.85 -0.8 -0.75
X X

1
upp (&) = /_ Sipl2)s(a,2)

o |
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MATg,
9, )}o
7%
c
»
N
<
2
N

Proof: p = 8 continued

Point

Weight

Point

Weight

-1
-0.8854980347
-0.5719162652
-0.2917166274
-0.0061521460
0.3391628868

0.75
0.9230637084
1

0.0137599529
0.0892150513
0.1875234174
0.2435469772
0.1800939083
0.2286184297
0.1285378345
0.0427456544
0.0101720626

-0.9564181650
-0.7582972896
-0.4628139806
-0.0811621291
0.1655560030
0.5726348225
0.85
0.9648584341

0.0618586932
0.1646935265
0.0729252387
0.0841621866
0.1320371771
0.2184036287
0.0908051678
0.0509010934

Table 3: 16th-order quadrature rule in 2 with positive weights and points

lying outside of (0.75,0.85).

o
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=

MATg,
9, )}o
7%
c
»
N
<
2
N\a

Proof: p = 8 continued

Point

Weight

Point

Weight

-1
-0.8409569422
-0.7708636219
-0.3937499257
-0.2532942335
0.2837396038
0.5808907063
0.8927849373

1

0.0097495069
0.1018591390
0.0926211201
0.0549434125
0.2543287199
0.1910189889
0.1246581226
0.0841645246
0.0198268291

-0.9548248562
-0.7825414112
-0.5747624113
-0.3273530867
0.0382371812
0.4501581170
0.7443822112
0.9421667341

0.0857520162
0.0149475627
0.2476049720
0.0276562411
0.2892622856
0.1560300966
0.1842879621
0.0612885001

Table 4: 16th-order quadrature rule in 2 with positive weights and points
lying outside of (0.98,1).

This concludes the proof for p = 8.

|
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@ Proof: p =9
B -
Do

x, z) is not nonnegative in (—1,1)*




MATg I,
4);0
%
c
»
N
<
2
N

0.5-

0.5

Proof: p = 9 continued

1
0.99]
0.981
0.97]

20,96
0.95]
0.94]

0.93]

-0.5

-0.98 -0.96 -0.94

X

1
Upp(T) :/_1fhp(z)q)9($7z) dz

|
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RN Proof: p = 9 continued

o
|

Point Weight Point Weight

-1 0.01937406240 || -0.93 | 0.1153128270
-0.885 | 0.00157968340 || -0.772 | 0.1947443595
-0.65 | 0.00126499680 || -0.55 | 0.2341166464
-0.4 | 0.06286669339 || -0.25 | 0.2438572426
-0.08 | 0.08588496537 0.08 | 0.2395820916
0.19 | 0.04691799156 0.38 | 0.2665159766
0.6 0.00216030838 || 0.625 | 0.2029738760
0.73 | 0.04687189997 0.83 | 0.1072052560
0.89 | 0.06009091818 0.97 | 0.0648680095
1 0.00381219535

Table 5: 18th-order quadrature rule in 2 with positive weights and points
lying outside of (—1, —0.93).

LThis concludes the proof for p = 9. J
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@ Proof: p = 10
A

®19(x, 2) is not nonnegative in (—1,1)?

i
" 2

/
/%

7

i

y
)TN

T
/i
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33/ Proof: p = 10 continued
o

17 1
0.8 0.96-
0.6- ]
] 0.921
z ] y4 ]
0.41 i
] 0.881
0.2
] 0.84
0:IIIIIIIIIIIIIIIIIIIIIIIIIII _I L L L L L T
1 -08 -06 -04 -02 O 1 -096 -092 -0.88 -0.84
X X

1
Upp(T) = /1 frp(2)P10(7, 2) dz

o |
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0\,\\'( UST4,

@
a

Proof: p = 10 continued

Point

Weight

Point

Weight

-1
-0.9344466123
-0.7530104489
-0.6061244531
-0.2340018112
0.0754465671
0.2516247645
0.4366736344
0.6745457042

0.91
1

0.0127411726
0.0183508422
0.1106942630
0.1295220930
0.1916905139
0.0755419308
0.1488965177
0.1397170181
0.1639628301
0.0649445615
0.0099073255

-0.9569019461
-0.8574545411
-0.63621/8184
-0.4275824090
-0.0454114485
0.1672504233
0.3707975798
0.5306011976
0.82
0.9667274132

0.0603200758
0.1032513172
0.0412386636
0.1937516842
0.1774661870
0.0745275871
0.0207086237
0.0924918512
0.1200387168
0.0502362251

Table 6: Case p = 10; 20th-order quadrature rule in £ with positive weights
and points lying outside of (0.82,0.91).
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Proof: p = 10 continued

Point

Weight

Point

Weight

-1
-0.9366001558
-0.8222969304
-0.5515874908
-0.2391731402
-0.0404112041
0.2054285570
0.4862170553
0.6932595712
0.93562906418

1

0.0129961117
0.0472129994
0.1127110155
0.1263749495
0.1767071143
0.1755155830
0.2302298514
0.0877842194
0.1047143177
0.0774056021
0.0037266735

-0.9609467424
-0.8686571459
-0.6830858117
-0.4070028385
-0.0805321378
0.0382998004
0.4168373782
0.6284448676
0.83041757281
0.986

0.0393058650
0.0307704321
0.1442049485
0.1615584597
0.0223802647
0.0409103698
0.1495405342
0.0980645550
0.1311485592
0.0267375743

Table 7: Case p = 10; 20th-order quadrature rule in €2 with positive weights
and points lying outside of (0.986, 1).

\_This concludes the proof for p = 10.

|
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{g/ Summery
A

DMP in 1D on arbitrary ~Ap-mesh

—u" = f in(a,b); wu(a)=u(b)=0

® (strong) DMP: uy, > 0 forall f >0

» weak DMP: uy, > 0 if L?-projection of fis > 0

o |
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DMP in 1D on arbitrary ~Ap-mesh

Summery

Degree DMP  Proof
p = strong easy
p= strong trivial
p= weak  Dbrute force, tedious
p=4 strong (computer aided) interval arithmetics*
p=5 weak computer aided
p=6 strong computer aided
p=7 weak computer aided
p=8 weak computer aided
p=9 weak computer aided
p=10 weak computer aided

* Roberto Araiza, Vladik Kreinovich, UTEP.
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{&/ Outlook
=~

® Bad news: weak DMP in 2D is not valid.

# Good news: Strong DMP in 1D is valid for meshes with
two or more elements.
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Thank you for your attention.

Tomas Vejchodsky

Mathematical Institute, Academy of Sciences
Zitna 25, 11567 Prague 1
Czech Republic

vejchod@math.cas.cz
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