SuperNEMO and Low Radioactivity Measurements with the BiPo3 Detector

Understanding Neutrinos 2012, Prague

Guillaume EURIN

for the SuperNEMO Collaboration

LAL Orsay, UCL London

2012/09/03

Introduction to double beta decay

Experimental principle of NEMO experiments

From NEMO3 to SuperNEMO

Guillaume EURIN LAL, UCL

SuperNEMO & BiPo3

2012/09/03 2 / 18

Two Neutrinos Double Beta Decay $(2\nu 2\beta)$

• The $2\nu 2\beta$ is similar to 2 simultaneous beta decays:

- Naturally occurs in few nuclei if β -decay is impossible
- 2^{nd} order of the weak interaction with $\Delta L = 0$
- ▶ 2 e^- energy spectra continuous from 0 to $Q_{\beta\beta}$ (e.g. 3 MeV)
- Measured for many isotopes: $T_{1/2} \sim 10^{18} 10^{21}$ y

Neutrinoless Double Beta Decay $(0\nu 2\beta)$

- Violates lepton number conservation $\Delta L = 2$
- Energy spectra of the 2 electrons is a line at Q_{ββ}
- Best experimental way of studying the Majorana nature of u
- ▶ Never been observed yet: $T_{1/2} > 10^{24} 10^{25}$ y (one claim)
- ► Half-life or the process: $(\mathcal{T}_{1/2}^{0\nu})^{-1} = G_{0\nu}|\mathcal{M}_{0\nu}|^2|m_{\beta\beta}|^2$

Experimental principle

► 2 β decays half-life compensated by: $N_A = 6.022 \ 10^{23} \text{mol}^{-1}$

$$\mathcal{T}_{1/2}^{0\nu} > \frac{\ln \ 2 \ N_A \ \mathcal{E}_{0\nu}}{1.64 \ A} \sqrt{\frac{m \ t}{N_{bdf} \ r}}$$

- 2β isotopes decay through the 2 processes:
 - distinguished by the energy of the 2 electrons emitted
 - $2\nu 2\beta$: irreducible background for $0\nu 2\beta$
- NEMO experiments based on tracker-calorimeter principle:

Choice of double beta decay isotopes

The best 2β isotope for an experiment should have:

- suit with the experimental technique
- ▶ high $Q_{\beta\beta} > Q_{\beta}(^{214}Bi) = 3.2 \text{ MeV} > E_{\gamma}(^{208}Tl) = 2.6 \text{ MeV}$
- low $\mathcal{T}_{1/2}^{0
 u}$ by high $G_{0
 u}$ and high $\mathcal{M}_{0
 u}$
- high $\mathcal{T}_{1/2}^{2\nu}$ (less $2\nu 2\beta$ events)
- high mass: natural abundance enrichment and purification

$Q_{\beta\beta}$	$G_{0\nu}$	$\mathcal{T}_{1/2}^{2 u}$	NA
MeV	$10^{-25} \mathrm{y}^{-1}$	ý	%
4.272	2.44	4.3 10 ¹⁹	0.19
2.039	0.24	$1.3 \ 10^{21}$	7.61
2.995	1.08	9.2 10 ¹⁹	8.73
3.350	2.24	2.0 10 ¹⁹	2.8
3.034	1.75	7.0 10 ¹⁸	9.63
2.805	1.89	3.0 10 ¹⁹	7.49
2.529	1.70	$6.1 \ 10^{20}$	33.8
2.479	1.81	$2.1 \ 10^{21}$	8.9
3.368	8.00	7.9 10 ¹⁸	5.6
	Q _{ββ} MeV 4.272 2.039 2.995 3.350 3.034 2.805 2.529 2.479 3.368	$\begin{array}{ccc} Q_{\beta\beta} & G_{0\nu} \\ \text{MeV} & 10^{-25} \text{y}^{-1} \\ \hline \textbf{4.272} & 2.44 \\ \hline \textbf{2.039} & \textbf{0.24} \\ \hline \textbf{2.995} & 1.08 \\ \hline \textbf{3.350} & 2.24 \\ \hline \textbf{3.034} & 1.75 \\ \hline \textbf{2.805} & 1.89 \\ \hline \textbf{2.529} & 1.70 \\ \hline \textbf{2.479} & 1.81 \\ \hline \textbf{3.368} & \textbf{8.00} \\ \hline \end{array}$	$\begin{array}{c cccc} Q_{\beta\beta} & G_{0\nu} & \mathcal{T}_{1/2}^{2\nu} \\ \hline {\rm MeV} & 10^{-25} {\rm y}^{-1} & {\rm y} \\ \hline {\rm 4.272} & 2.44 & 4.3 \ 10^{19} \\ \hline {\rm 2.039} & {\rm 0.24} & 1.3 \ 10^{21} \\ 2.995 & 1.08 & 9.2 \ 10^{19} \\ \hline {\rm 3.350} & 2.24 & 2.0 \ 10^{19} \\ \hline {\rm 3.034} & 1.75 & 7.0 \ 10^{18} \\ 2.805 & 1.89 & 3.0 \ 10^{19} \\ 2.529 & 1.70 & 6.1 \ 10^{20} \\ 2.479 & 1.81 & 2.1 \ 10^{21} \\ \hline {\rm 3.368} & 8.00 & 7.9 \ 10^{18} \end{array}$

Natural radioactivity background

▶ Decay chains of very long half-life isotopes: ²³⁸U (4.5 10⁹y), ²³²Th (1.4 10¹⁰y), ²³⁵U (7.0 10⁸y) and ⁴⁰K (1.3 10⁹y)

Use of ultra-low radioactivity materials and huge shielding

SuperNEMO & BiPo3

NEMO3: the Neutrino Ettore Majorana Observatory

🚺 🖬 💥 📕 💽 🖌 🗾 🚼

- NEMO3 ran from 2003 to 2010
- Only 2β experiment with the direct reconstruction of the $2e^-$
- Modest energy resolution but a high background rejection
- Direct measurement of the various backgrounds ($1e^-$, $1e^-n\gamma...$)
- Background in the $0\nu 2\beta$ region equivalent to calorimeter exp

The NEMO3 Experiment

NEMO3 tracker-calorimeter experiment with passive sources

- 10 kg of 2β enriched isotopes in thin vertical foils (60 mg/cm²): 0ν2β: ¹⁰⁰Mo (6914 g) & ⁸²Se (932 g)
- ▶ Shielding: LSM (4800 m.w.e.), borated water or wood & pure iron

NEMO3 $0\nu 2\beta$ Results

Phase1 + Phase2, 4.5years

SuperNEMO & BiPo3

From NEMO3 to SuperNEMO

	NEMO3	SuperNEMO
Mass	7 kg	100 kg
lsotopes	^{100}Mo	⁸² Se
	8 isotopes	$^{150}Nd,^{48}Ca$
Foil density	60 mg/cm^2	40 mg/cm 2
Energy resolution (FWHN	Л)	
@ 1 MeV	15 %	7 %
@ 3 MeV	8 %	4 %
Sources contaminations		
$\mathcal{A}(^{208}TI)$	$<$ 20 μ Bq/kg	$<$ 2 $\mu{ m Bq/kg}$
$\mathcal{A}(^{214}Bi)$	$<$ 300 μ Bq/kg	$<$ 10 $\mu {\sf Bq}/{\sf kg}$
Radon		
$\mathcal{A}(^{222}Rn)$	\sim 5.0 mBq/m 3	\sim 0.1 mBq/m 3
Detector		
tracking cells	6180	20×2034
calo blocks	1940	20×712
Sensitivity		
$\mathcal{T}_{1/2}^{0 u}$	$> 1 \; 10^{24}$ yr	$> 1 \; 10^{26}$ yr
$ m_{etaeta} $	< 470 - 960 meV	< 50 - 140 meV
EURIN LAL. UCL	SuperNEMO & BiPo3	2012/09/03

11 / 18

Several major improvements realised after R&D:

- Energy Resolution:
 - Improvement of the quantum efficiency of PMTs
 - Change the scintillators material: Polyethylene (8,000 γ/MeV) \rightarrow PVT (1200 γ/MeV)
 - Change in the design of calorimeter blocks: 5" PMTs coupled to light guides \rightarrow 8" PMTs with thicker scintillators
- Sources:
 - 500 g purified and 5 kg enriched of 82 Se
 - Issue: purification below the sensitivity of HPGe detectors \Rightarrow need of a new detector: BiPo
- Reduction of the radon background:
 - Use of radon tight joints
 - Isolation of the calorimeter with tight plastic film
 - Selection of materials

The BiPo3 Detector Principle

- Measure the radiopurity of the SuperNEMO sources at the level of few μBq/kg (50 times better than HPGe γ spectroscopy)
- ▶ ²¹⁴Bi and ²⁰⁸Tl contaminations measured by BiPo processes:

β & α particles detected by thin radiopure plastic scintillators coupled to light-guides and low radioactivity PMTs:

Guillaume EURIN LAL, UCL

The BiPo3 Detector

- ▶ Total surface of 3.6 m² measures 1.4 kg of ⁸²Se (40 mg/cm²)
- Each high radiopurity module consists of 40 light lines
- ► Start the SuperNEMO sources measurements end of 2012
- ► Goal: $\mathcal{A}(^{208}\text{TI})_{sce} < 2 \ \mu\text{Bq/kg} \& \mathcal{A}(^{214}\text{Bi})_{sce} < 10 \ \mu\text{Bq/kg}$

Assembly of the BiPo3 detector

First module assembled in the Laboratorio Subterráneo de Canfranc in Spain

Another improvement: radon background reduction

- \blacktriangleright Radon: one of the most dangerous backgrounds for $0\nu2\beta$
- Principle: isolate the tracker (outside and calorimeter) and build a tracker emanating less than 0.1 mBq/m³
- Tests on detector and tracker isolation and radon diffusion here in Prague at the IEAP CTU

- Use of a high activity radon source ~30 kBq/m³
- Tests on radon tight films

SuperNEMO Timeline

- 2005-2010: Successful SuperNEMO R&D
 - Calorimeter blocks better than 7 % FWHM @ 1 MeV
 - 2 BiPo prototypes demonstrating the sources qualification
 - Tracker improvement (larger and longer cells) + wiring robot
- SuperNEMO Demonstrator commissioning in the LSM in 2014
 - NEMO3 sensitivity in 5 months
 - no background in 3 years for 7 kg (53 mg/cm²) $\Rightarrow T_{1/2}^{0\nu} > 6.5 \ 10^{24} \text{ yr } \& |m_{\beta\beta}| < 200 - 550 \text{ meV}$ (To be compared to NEMO3 results on ⁸²Se: $T_{1/2}^{0\nu} > 3.2 \ 10^{23} \text{ yr } \& |m_{\beta\beta}| < 0.85 - 2.08 \text{ eV}$)

Conclusion

- ▶ NEMO3 data taking successfully ended in 2011 after 7 years
 - No evidence of $0\nu 2\beta$ event recorded
 - Important results on several isotopes $2\nu 2\beta$ observed

 $\begin{array}{l} \mathcal{T}_{1/2}^{0\nu}(^{100}\,\mathrm{Mo})>1.0\,\,10^{24}\,\,\mathrm{yr}\\ |m_{\beta\beta}|<0.31-0.79\,\,\mathrm{eV} \end{array}$

- One more year necessary as data analysis is still ongoing
- The SuperNEMO demonstrator is under construction
 - Tracker construction is ongoing in UK
 - First calorimeter modules are assembled in CENBG, France.
- The BiPo3 detector is half constructed
 - Last prototype validated the technique
 - First module installed and running since July 2012
 - Second module will be assembled by the end of the year