24th Indian-Summer School of Physics - Prague

Identification and Characterization of Signal and Background Events with Segmented Germanium Detectors

Sabine Irlbeck

Max-Planck-Institut für Physik

September 6th, 2012

-Outline

Outline

- Why Germanium Detectors?
- Characterisation of Signal and BG Events
- In-type coaxial Detectors
- Segmented Detectors
- Pulses and Mirror Pulses
- Experimental Scanning of the Detector
- Summary and Outlook

Why Germanium Detectors?

Why Germanium Detectors?

- **1** Detection of low levels of γ -radiation
- **2** Very good energy resolution \rightarrow allows precision spectroscopy
- Substant A state of the stat
- Detector = Source (for some physics application like: search for the $0\nu\beta\beta$ decay; dark matter search)

- Characterisation of Signal and Background Events

Characterisation of Signal and Background Events

Background reduction through event recognition in low-background experiments (e.g. Gerda).

Germanium detector properties are important for further analysis, like charge trapping or surface effects.

Configurations of Germanium Detectors

Configurations of Germanium Detectors

Planar

Point-contact

Closed-ended coaxial (bulletized)

True-coaxial

- n-type coaxial Detectors

n-type coaxial Detectors

- n-type coaxial Detectors

n-type coaxial Detectors

- electron-hole pair creation
- n-type: the electric field pulls the electrons to the core and the holes to the mantle
- resulting pulses are sampled and digitized at a given frequency
- passivation layers
- end plates →
 contamination → creates
 BG if part of energy is seen

- n-type coaxial Detectors

Segmented Germanium Detectors

- Cylindrical true coaxial high purity germanium detector
- 18 fold segmentation (3z and 6ϕ) \rightarrow segmentation for inference of
 - Event topologies
 - Event positions
- \rightarrow Signal and BG discrimination

-Pulses and Mirror Pulses

Example pulse seen by "Siegfried" - one Event

Sabine Irlbeck

Max-Planck-Institut für Physik

Pulses and Mirror Pulses

Pulses and Mirror Pulses

Drift of charge carriers in a hitted segment induces mirror pulses in neighbouring segments

Real Pulse: charge "trajectory" ends at considered segment electrode

Mirror Pulse: charge "trajectory" does not end at considered

segment electrode

Ref: Publication: "Pulse shape simulation for segmented true-coaxial HPGe detectors" by I. Abt, A. Caldwell, D. Lenz, J. Liu, B. Majorovits

-Pulses and Mirror Pulses

Characteristics of Mirror Pulses

Ref: Diploma Thesis: "Mirror pulses and position reconstruction in segmented HPGe detectors" by S.Hemmer

- The Experimental Implementation

Experimental Scanning of the Detector: Teststand "Galatea"

Sabine Irlbeck

Max-Planck-Institut für Physik

Summary and Outlook

Summary and outlook

- \bullet Segmented true-coaxial high-purity Germanium detectors \rightarrow help to disentangle event topologies
- Pulses and Mirror Pulses give Information about
 - The energy deposited
 - 2 The position of an event
 - $\bullet~$ Position in $r \rightarrow$ rise time plus polarity of mirror pulses
 - $\bullet~$ Position in $\phi \rightarrow$ relative strength of mirror pulses
- Detector scans with high precision teststand for further detector studies → identify and characterize surface events

BackUp Slides

BackUp Slides

Surface Channel Effect

Surface Channel Effect

Figure adapted from: Ph.D. thesis by D. Lenz

Surface Channel Effect

Path of electrons and holes in a detector with an n-type surface channel

Electron-hole pairs created in the surface channel region
(a) close to the n-contact
(b) close to the p-contact

Sabine Irlbeck Max-Planck-Institut für Physik