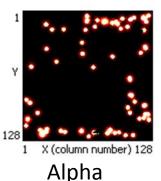
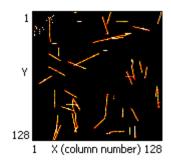
Pixel Detectors in Double Beta Decay

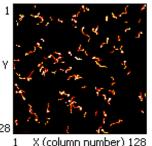
Joshy M. Jose

joshy.mjose@utef.cvut.cz Institute of Experimental and Applied Physics Czech Technical University in Prague

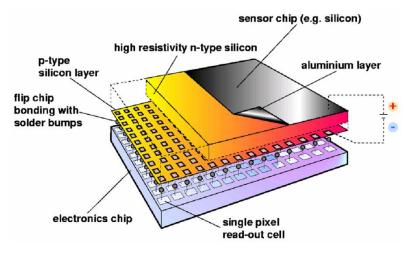

Overview


- Pixel Detectors
- Experiments Involved
- Pixel Telescope
- Background Measurements
- Conclusion

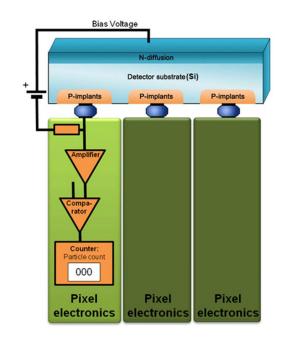
Hybrid Pixel Detector Timepix


- Hybrid pixel detectors have sensor and readout in separate modules
- Bump-bonding of sensor on to the readout ASIC
- Possibility to have different sensors
- Timepix (derived from medipix2 chip) from Medipix collaboration
- 256x256 pixels, 55 μm pitch.
- Operation modes

Single photon counting (Medipix) Time of arrival (Timepix) Energy measurements (TOT)



Muon



X (column number) 12

Electron

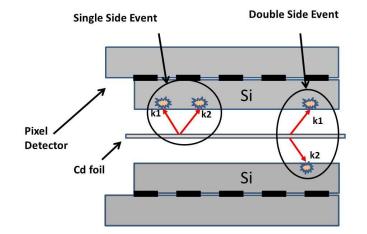
Timepix detector

Experiment Silicon Pixel Telescope (SPT)

- TGV III experiment (Location: LSM Modane)
- Measurement of 2nEC/EC (g.s. to g.s) in ¹⁰⁶Cd

 $2e + {}^{106}_{48}Cd \rightarrow {}^{106}_{46}Pd + 2v_e + (\gamma, X - rays)$

 $Q_{EC/EC} = 2778 \, keV$, ROI: $19 \, keV \le E_X \le 23 \, keV$

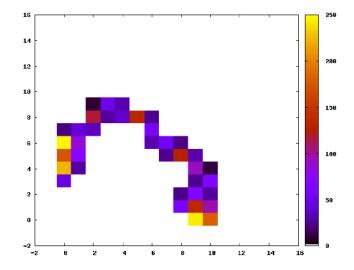

TGV II detector idea

HPGe

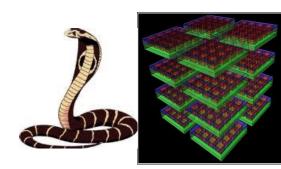
HPGe

Cd

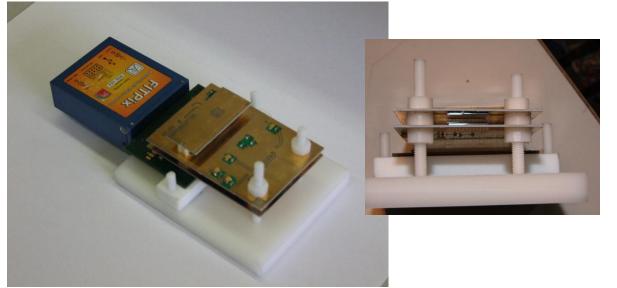
- Signature of the process:- 2 X-rays (21 keV) in coincidence
- Majority of above signature events will form Single Side Events (SSE) and Double Side Events (DSE)
- SSE occurs when both event deposit on same side
- DSE occurs when events deposit on opposite side


SPT idea 4

Experiment COBRA

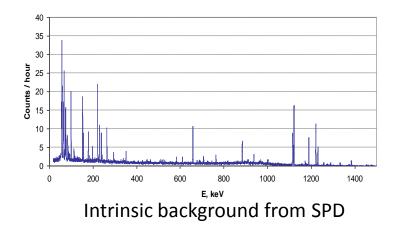

- Measurement of Neutrinoless Double Beta Decay
- Large array of CZT semiconductor detectors planned
- Out of 35 double beta isotopes, nine in CZT
- Operation in room temperature
- Source = Detector concept
- Main focus on ¹¹⁶Cd, Q(β⁻β⁻) = 2813.5 ± 0.13 KeV
- Signature of the process:- Peak at Q(β-β-) in double beta spectrum
- Location: LNGS, Italy

Isotope	nat. ab. (%)	Q (keV)	Decay Mode
⁷⁰ Zn	0.62	1001	$\beta - \beta -$
^{114}Cd	28.7	534	$\beta - \beta -$
¹¹⁶ Cd	7.5	2813	$\beta - \beta -$
¹²⁸ Te	31.7	868	$\beta - \beta -$
$^{130}\mathrm{Te}$	33.8	2529	$\beta - \beta -$
⁶⁴ Zn	48.6	1096	$\beta + /EC$
^{106}Cd	1.21	2771	$\beta + \beta +$
^{108}Cd	0.9	231	EC/EC
$^{120}\mathrm{Te}$	0.1	1722	$\beta + /EC$


 $\beta\beta$ isotopes in CZT

Simulated $0\nu\beta\beta$ electron track in 110 μ m pitch pixel detector

Pixel Telescope



Measurement setup with 5 cm lead shielding

- SPT setup on CuFlon PCB
- First Prototype of SPT in low intrinsic PCB (CuFlon) ready
- The prototype (two detectors face to face) taking underground measurements in LSM.
- CdTe Pixel Telescope expected to install in LNGS soon.

Intrinsic Background Measurements

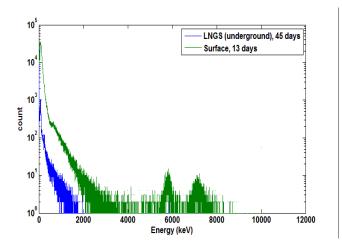
- Measured by low-background setup in LSM Modane lab, France
- HPGe planar detector, 150cm³, range 20keV 1.5MeV

Single Pixel Detector (SPD)

Contributions per unit (comparison of samples and Si module) [mBq/unit]:

	Bunb-Bonding (In+Sn)	Readout chip	Empty PCB	Si module
²²⁸ Th	< 10 ⁻⁸	< 0.2	263 ± 8	187 ± 11
²³⁴ Th	< 10 ⁻⁶	< 0.9	168 ± 11	123 ± 10
⁴⁰ K	< 10 ⁻⁷	< 6.2	< 25	117 ± 28

Intrinsic background for different PCB materials

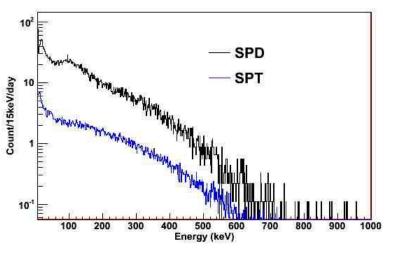

Intrinsic background measurement results for different PCB materials. All numbers are in mBq/kg. FR4 is the general PCB substrate. The adhesive mentioned here is for the fabrication of flexible PCB, and coverlay is the solder mask used for flexible PCB. CuFlon is a 100% Teflon based PCB substrate.

PCB material	^{226}Ra	²¹⁰ <i>Pb</i>	^{228}Ra	^{228}Th	^{40}K
FR4	14259 ± 486	10692 ± 160	17658 ± 972	21303 ± 648	<2025
Cu foil	< 126	< 4500	< 293	<146	595 ± 315
Flexible PCB	207 ± 76	< 3200	< 215	170 ± 76	< 1760
Adhesive	< 556	< 16000	< 1400	< 1400	< 9000
Coverlay	< 1500	< 40000	< 3500	< 3500	< 28000
CuFlon	< 16	< 134	< 39	< 16	< 280

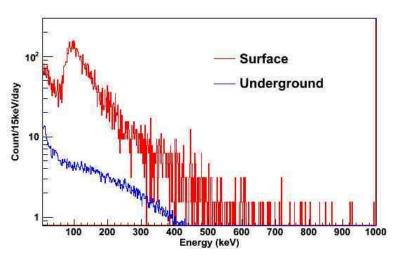
Background Measurements with CdTe detector (110 μ m pitch, 1 mm thickness) Surface (IEAP Prague) and Underground (LNGS Italy)

Results of background measurements, surface vs. LNGS. All numbers are normalized to one day of measurement, with 90% confidence level. Number of electrons in the region of interest (ROI) is negligible in underground data. The region of interest is taken in the range (2.5-3) MeV.

Data set	Alphas		Electrons	
	Total	ROI	Total	ROI
Underground (LNGS), with N2 flushing	3.9±0.5	< 0.05	20.0 ± 1.1	$0.02^{+0.08}_{-0.02}$
Underground (LNGS), without N2 flushing	43.5 ± 3.3	< 0.22	22.1±2.3	$0.09^{+0.31}_{-0.08}$
Surface (IEAP, Prague), without N2 flushing	406.0±9.2	$0.15^{+0.30}_{-0.12}$	2740.0 ± 23.9	37.00 ± 2.78


CdTe SPD background measurements

Spectra after cluster classifications


Background Measurements with Si detectors (55 μm pitch, 300 μm thickness) Surface (IEAP Prague) and Underground (LSM, Modane, France)

Dataset	Cluster/h	SSE/h	DSE/h
SPT surface, shielded	428.3 (7.4)	1.10 (0.20)	8.8 (0.06)
SPD, underground, shielded (single det.)	152.9 (4.6)	2.2 (0.23)	NA
SPT, underground, shielded (two detectors)	45.8 (1.0)	0.19 (0.0036)	0.54 (0.0062)

Statistics from background measurements. Events in the region of interest (19-23 keV) are given in brackets

Comparision of full spectra, SPT vs. SPD

SPT measurements, surface Vs Underground

Conclusions

- Pixel detectors seems to be a good option for ββ experiments.
- More studies are necessary
- Optimization of pixel pitch and sensor thickness
- Intrinsic background reduction.
- Possibility of large setup

THANK YOU

• References

X. Llopart et al., *Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements, Nucl. Inst. Meth.* A581 (2007) pp. 485-494.

N.I. Rukhadze et al., Search for double beta decay of ¹⁰⁶Cd in the TGV-2 experiment, Journal of Physics: Conference Series, 203 012072 (2010).

V. B. Brudanin et al., Summary of the TGV experiments and future plans, AIP. conf. Proc. 1417, pp. 110-114.

P. Cermak et al., Use of silicon pixel detectors in double electron capture experiments, 2011 JINST 6 C01057.

http://www.polyflon.com/microw.htm

J. M. Jose et al., *Timepix background studies for double beta decay experiments*, 2011 JINST 6 C11030.

J. Jakubek, Semiconductor Pixel detectors and their applications in life sciences, 2009 JINST 4 P03013.

D. Turecek, T. Holy, J. Jakubek, S. Pospisil and Z. Vykydal, *Pixelman: a multi-platform data acquisition and processing software package for Medipix2, Timepix and Medipix3 detectors*, 2011 *JINST* 6 C01046.

V. Kraus, M. Holik, J. Jakubek, M. Kroupa, P. Soukup and Z. Vykydal, *FITPix–fast interface for Timepix pixel detectors*, 2011 *JINST* 6 C01079.

K. Zuber, COBRA-double beta decay searches using CdTe detectors, Physics Letters B, 519 1 (2001) [nucl-ex/0105018].