Measuring the neutrino mixing angle θ_{13} with the Double Chooz experiment

Romain Roncin

on behalf of the Double Chooz Collaboration

03/09/12

Contents

• Mixing, oscillation and θ_{13}

- ✓ From mixing to oscillation
- ✓ Measuring θ_{13} with nuclear reactors
- The Double Chooz experiment
 - $\checkmark\,$ The Double Chooz experimental site
 - $\checkmark\,$ The detection method
 - ✓ The Double Chooz detector
 - ✓ Background
- Results
 - ✓ The Double Chooz results
 - ✓ Systematics uncertainties
 - ✓ The Double Chooz new results
 - $\checkmark\,$ Observed vs expected rate

- Neutrino oscillation is a quantum mechanic phenomenon --> a neutrino created with a given leptonic flavor can be measured at a distance L in an other one
- The « flavor » eigenstates (weak interaction --> ν_e, ν_µ, ν_τ) do not correspond to the « mass » eigenstates (propagation --> ν₁, ν₂, ν₃) --> linked with the U_{PMNS} matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$ U_{PMNS} depends on 4 parameters --> θ_{23} , θ_{13} , θ_{12} and δ

- Neutrino oscillation is a quantum mechanic phenomenon --> a neutrino created with a given leptonic flavor can be measured at a distance L in an other one
- The « flavor » eigenstates (weak interaction --> ν_e, ν_µ, ν_τ) do not correspond to the « mass » eigenstates (propagation --> ν₁, ν₂, ν₃) --> linked with the U_{PMNS} matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
Solar

 $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$ U_{PMNS} depends on 4 parameters --> θ_{23} , θ_{13} , θ_{12} and δ

 $\sin^2 2\theta_{12} \approx 0.8$

- Neutrino oscillation is a quantum mechanic phenomenon --> a neutrino created with a given leptonic flavor can be measured at a distance L in an other one
- The « flavor » eigenstates (weak interaction --> ν_e, ν_µ, ν_τ) do not correspond to the « mass » eigenstates (propagation --> ν₁, ν₂, ν₃) --> linked with the U_{PMNS} matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
Atmospheric Solar

$$c_{ij} = \cos \theta_{ij}$$
 and $s_{ij} = \sin \theta_{ij}$
U_{PMNS} depends on 4 parameters --> θ_{23} , θ_{13} , θ_{12} and δ

 $\sin^2 2\theta_{23} \approx 1$

 $\sin^2 2\theta_{12} \approx 0.8$

- Neutrino oscillation is a quantum mechanic phenomenon --> a neutrino created with a given leptonic flavor can be measured at a distance L in an other one
- The « flavor » eigenstates (weak interaction --> ν_e, ν_µ, ν_τ) do not correspond to the « mass » eigenstates (propagation --> ν₁, ν₂, ν₃) --> linked with the U_{PMNS} matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
Atmospheric θ_{13} sector Solar
$$c_{ij} = \cos \theta_{ij} \text{ and } s_{ij} = \sin \theta_{ij} \\ U_{PMNS} \text{ depends on 4 parameters } --> \theta_{23}, \theta_{13}, \theta_{12} \text{ and } \delta$$

$$\sin^{2} 2\theta_{23} \approx 1 \qquad \text{Limit from the} \\ \operatorname{CHOOZ experiment} \qquad \sin^{2} 2\theta_{12} \approx 0.8$$

Measuring θ_{13} with nuclear reactors

- Understanding 03/09/12 Neutrinos @ Prague
- Due to β -decay of fission products, nuclear reactors are a free and rich anti- v_e source --> around 10²¹ anti- v_e per second are emitted in the case of the Double Chooz experiment
- Studying the disappearance of these anti- $v_e via$ the survival probability with two or more identical detectors --> to eliminate systematics from both the anti- v_e production uncertainties and the detection efficiency

$$P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}) \sim 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(1.267 \frac{\Delta m_{31}^{2} [\text{eV}^{2}] L[\text{m}]}{E_{\bar{\nu}_{e}} [\text{MeV}]} \right)$$
Near detector
--> normalization
$$P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}) \sim 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(1.267 \frac{\Delta m_{31}^{2} [\text{eV}^{2}] L[\text{m}]}{E_{\bar{\nu}_{e}} [\text{MeV}]} \right)$$
Far detector
--> normalization
$$P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}) \sim 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(1.267 \frac{\Delta m_{31}^{2} [\text{eV}^{2}] L[\text{m}]}{E_{\bar{\nu}_{e}} [\text{MeV}]} \right)$$
Far detector
--> oscillation
measurement

9

IN THE FRENCH ARDENNES

The detection method

- Detection of anti- v_e by inverse β -decay (IBD) ٠
- Prompt signal from the positron • $\checkmark 0.7 < \mathrm{E} < 12.2 \ \mathrm{MeV}$
- Delayed signal from the neutron capture on Gd ✓ 6 < E < 12 MeV
- Time coincidence \checkmark 2 < ΔT < 100 µs

Prompt-delay time difference

Understanding

 $\overline{\mathsf{v}}_e$

Neutrinos @ Prague

The Double Chooz detector

7 m

7 m

15

7 m

The Double Chooz detector 03/09/12 Understanding Neutrinos @ Prague Calibration Box Outer muon Veto Filled with 10 m³ Gd-doped liquid scintillator Target v \rightarrow place of the anti-v_e interaction y Catcher Filled with 22 m³ liquid scintillator --> to discriminate the anti-v_e interaction Buffer oil Buffer vessel & Filled with 110 m³ mineral oil 390 10" PMTs --> to limit the accidental background Inner Muon Veto Filled with 90 m³ of liquid scintillator --> to identify muons and to reduce neutrons **Steel Shielding** 7 m

7 m

• The Far detector is taking data since April 2011 while the near detector is under construction

17

7 m

Background

 Accidental coincidence --> random association between a prompt-like signal and a delayed-like signal --> 0.261 ± 0.002 event/day Understanding 03/09/12 Neutrinos @ Prague

Masaki Ishitsuka @ Kyoto 2012

μ

Background

- Accidental coincidence --> random association between a prompt-like signal and a delayed-like signal --> 0.261 ± 0.002 event/day
- Correlated --> **0.67 ± 0.20 event/day**
 - ✓ Fast neutrons --> induced by muons traversing rocks, fast neutrons lead to proton recoil followed by capture on Gd
 - Stopping muons --> going through the chimney, stopping muons deposite energy before producing Michel electrons

03/09/12

Understanding Neutrinos @ Prague

> Masaki Ishitsuka @ Kyoto 2012

μ

Background

- Accidental coincidence --> random association between a prompt-like signal and a delayed-like signal --> 0.261 ± 0.002 event/day
- Correlated --> **0.67 ± 0.20 event/day**
 - ✓ Fast neutrons --> induced by muons traversing rocks, fast neutrons lead to proton recoil followed by capture on Gd
 - Stopping muons --> going through the chimney, stopping muons deposite energy before producing Michel electrons
- ⁹Li --> produced by energetic muons, ⁹Li decays into ⁸Be with emission of an electron and a neutron --> 1.25 ± 0.54 event/day

Masaki Ishitsuka @ Kyoto 2012

The Double Chooz results

- Understanding 03/09/12 Neutrinos @ Prague
- 1st results announced in November 2011 --> PRL **108** (2012) 131801
 - ✓ $1^{st} \theta_{13}$ measurement since the CHOOZ experiment
 - ✓ Indication of non-zero θ_{13} at 94 % C.L. and hint for a large value of θ_{13}
- Since, statistics was doubled
 - ✓ 96.8 --> **227.9** days of livetime
 - ✓ 4121 --> 8249 anti- v_e candidates
- Since, Analysis was improved
 - ✓ Energy calibration was improved
 - ✓ Additionnal muon veto was implemented
 - ✓ OV veto was implemented

Systematic uncertainties

Understanding 03/09/12 Neutrinos @ Prague

Source		Uncertaincty w.r.t. signal (previous analysis)	
Statistics		1.1 % (1.6 %)	
Flux		1.7 %	
Detector	Energy response	0.3 % (1.7 %)	1.0 % (2.1 %)
	E _{delay} containment	0.7 %	
	Gd fraction	0.3 %	
	Δt cut	0.5 %	
	Spill in/out	0.3 %	
	Trigger efficiency	< 0.1 %	
	Target H	0.3 %	
Background	Accidental	< 0.1 %	1.6 % (3.0 %)
	Fast neutrons + stopping muons	0.5 % (0.9 %)	
	9Li	1.4 % (2.8 %)	

The Double Chooz new results --> arXiv:12076632v2 accepted for publication in PRD

- Measured prompt energy spectrum
- Fit using two types of information
 - ✓ Rate --> number of events
 - ✓ Shape --> spectra

Rate only

 $\sin^2 2\theta_{13} = 0.170 \pm 0.035 \text{ (stat)} \pm 0.040 \text{ (syst)}$

Rate + Shape $sin^2 2\theta_{13} = 0.109 \pm 0.030 \text{ (stat)} \pm 0.025 \text{ (syst)}$

 $\sin^2 2\theta_{13} = 0$ excluded at 99.8 % (2.9 σ)

NB : dataset is divided into two periods based on reactor power

Observed vs expected rate

- Daily number of anti- v_e as a function of the expected number of anti- v_e
- Three events observed in 0.84 day livetime with both reactors off
 - ✓ Background rate consistent with estimation --> 2.2 ± 0.6 events/day
 - ✓ Background rate obtained from the fit --> 2.9 ± 1.1 events/day

Conclusion

- Double Chooz initiated the new generation of experiments with multiple detectors to measure $\theta_{\scriptscriptstyle 13}$
- Double Chooz was the 1st experiment able to measure θ_{13} --> results confirmed then by Daya Bay and RENO

✓ $\sin^2 2\theta_{13} = 0.109 \pm 0.030 \text{ (stat)} \pm 0.025 \text{ (syst)}$ ✓ $\sin^2 2\theta_{13} = 0$ excluded at 99.8 % (2.9 σ)

- The Near detector laboratory excavation is completed
- The Near detector data taking will start by the end of 2013

Understanding 03/09/12 Neutrinos @ Prague

Thank you for your attention !! Any questions ?

Double Chooz 1st results on CBS : The Big Bang Theory S05E11