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From mixing to oscillation 
 

•  Neutrino oscillation is a quantum mechanic phenomenon --> a neutrino created 
with a given leptonic flavor can be measured at a distance L in an other one 

•  The « flavor » eigenstates (weak interaction --> νe, νµ, ντ) do not correspond to 
the « mass » eigenstates (propagation --> ν1, ν2, ν3) --> linked with the UPMNS 
matrix 

 
 
 
 
 
 
 

cij = cos θij and sij = sin θij 
UPMNS depends on 4 parameters --> θ23, θ13, θ12 and δ 
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               Solar 
 

cij = cos θij and sij = sin θij 
UPMNS depends on 4 parameters --> θ23, θ13, θ12 and δ 

 
              sin2 2θ12 ≈ 0.8 
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   Atmospheric          Solar 
 

cij = cos θij and sij = sin θij 
UPMNS depends on 4 parameters --> θ23, θ13, θ12 and δ 

 
   sin2 2θ23 ≈ 1          sin2 2θ12 ≈ 0.8 
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From mixing to oscillation 
 

•  Neutrino oscillation is a quantum mechanic phenomenon --> a neutrino created 
with a given leptonic flavor can be measured at a distance L in an other one 

•  The « flavor » eigenstates (weak interaction --> νe, νµ, ντ) do not correspond to 
the « mass » eigenstates (propagation --> ν1, ν2, ν3) --> linked with the UPMNS 
matrix 

 
 
 
 
 

   Atmospheric    θ13 sector     Solar 
 

cij = cos θij and sij = sin θij 
UPMNS depends on 4 parameters --> θ23, θ13, θ12 and δ 

 
   sin2 2θ23 ≈ 1    Limit from the    sin2 2θ12 ≈ 0.8 

CHOOZ experiment 
 

sin2 2θ13 < 0.15 at 90 % C.L. 
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Measuring θ13 with nuclear reactors 
 

•  Due to β-decay of fission products, nuclear reactors are a free and rich anti-νe 
source --> around 1021 anti-νe per second are emitted in the case of the Double 
Chooz experiment 

•  Studying the disappearance of these anti-νe via the survival probability with two 
or more identical detectors --> to eliminate systematics from both the anti-νe 
production uncertainties and the detection efficiency 

 
 
 
 
 
 
 
 

 Near detector             Far detector 
 --> normalization            --> oscillation 
               measurement 
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The detection method 
 

•  Detection of anti-νe by inverse β-decay (IBD) 

•  Prompt signal from the positron 
ü  0.7 < E < 12.2 MeV 

•  Delayed signal from the neutron capture on Gd 
ü  6 < E < 12 MeV 

•  Time coincidence 
ü  2 < ΔT < 100 µs 

 
  Edelayed vs Eprompt        Prompt-delay time difference 

⌫̄e + p ! e+ + n



The Double Chooz detector 
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The Double Chooz detector 
 

  
 
 

 Filled with 10 m3 Gd-doped liquid scintillator 
 --> place of the anti-νe interaction 
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The Double Chooz detector 
 

  
 
 

 Filled with 10 m3 Gd-doped liquid scintillator 
 --> place of the anti-νe interaction 

 
 Filled with 22 m3 liquid scintillator 
 --> to discriminate the anti-νe interaction 
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 Filled with 10 m3 Gd-doped liquid scintillator 
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 Filled with 110 m3 mineral oil 
 --> to limit the accidental background 
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The Double Chooz detector 
 

 82 m2 of 400 mm thick plastic 
 scintillator strips 

 
 Filled with 10 m3 Gd-doped liquid scintillator 
 --> place of the anti-νe interaction 

 
 Filled with 22 m3 liquid scintillator 
 --> to discriminate the anti-νe interaction 

 
 Filled with 110 m3 mineral oil 
 --> to limit the accidental background 

 
 Filled with 90 m3 of liquid scintillator 
 --> to identify muons and to reduce neutrons 
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The Double Chooz detector 
 

 82 m2 of 400 mm thick plastic 
 scintillator strips 

 
 Filled with 10 m3 Gd-doped liquid scintillator 
 --> place of the anti-νe interaction 

 
 Filled with 22 m3 liquid scintillator 
 --> to discriminate the anti-νe interaction 

 
 Filled with 110 m3 mineral oil 
 --> to limit the accidental background 

 
 Filled with 90 m3 of liquid scintillator 
 --> to identify muons and to reduce neutrons 

 
 

•  The Far detector is taking data since 
April 2011 while the near detector is 
under construction 
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Background 
 

•  Accidental coincidence --> random 
association between a prompt-like signal 
and a delayed-like signal --> 0.261 ± 
0.002 event/day 
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Background 
 

•  Accidental coincidence --> random 
association between a prompt-like signal 
and a delayed-like signal --> 0.261 ± 
0.002 event/day 

•  Correlated --> 0.67 ± 0.20 event/day 
ü  Fast neutrons --> induced by 

muons traversing rocks, fast 
neutrons lead to proton recoil 
followed by capture on Gd 

ü  Stopping muons --> going through 
the chimney, stopping muons 
deposite energy before producing 
Michel electrons 
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Background 
 

•  Accidental coincidence --> random 
association between a prompt-like signal 
and a delayed-like signal --> 0.261 ± 
0.002 event/day 

•  Correlated --> 0.67 ± 0.20 event/day 
ü  Fast neutrons --> induced by 

muons traversing rocks, fast 
neutrons lead to proton recoil 
followed by capture on Gd 

ü  Stopping muons --> going through 
the chimney, stopping muons 
deposite energy before producing 
Michel electrons 

•  9Li --> produced by energetic muons, 9Li 
decays into 8Be with emission of an 
electron and a neutron --> 1.25 ± 0.54 
event/day 
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The Double Chooz results 
 

•  1st results announced in November 2011 --> PRL 108 (2012) 131801 
ü  1st θ13 measurement since the CHOOZ experiment 
ü  Indication of non-zero θ13 at 94 % C.L. and hint for a large value of θ13 

 
•  Since, statistics was doubled 

ü  96.8 --> 227.9 days of livetime 
ü  4121 --> 8249 anti-νe candidates 
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•  Since, Analysis was 
improved 
ü  Energy calibration 

was improved 
ü  Additionnal muon 

veto was 
implemented 

ü  OV veto was 
implemented 
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Both reactors on  

One reactor < 20 % power    Reactors off-off 



Systematic uncertainties 
 
 

Source Uncertaincty w.r.t. signal 
(previous analysis) 

Statistics 1.1 % (1.6 %) 

Flux 1.7 % 

Detector 

Energy response 0.3 % (1.7 %) 

1.0 % 
(2.1 %) 

Edelay containment 0.7 % 

Gd fraction 0.3 % 

Δt cut 0.5 % 

Spill in/out 0.3 % 

Trigger efficiency < 0.1 % 

Target H 0.3 % 

Background 

Accidental < 0.1 % 
1.6 % 

(3.0 %) Fast neutrons + stopping muons 0.5 % (0.9 %) 
9Li 1.4 % (2.8 %) 
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•  Measured prompt energy spectrum 

•  Fit using two types of information 
ü  Rate --> number of events 
ü  Shape --> spectra 

 
Rate only 
sin2 2θ13 = 0.170 ± 0.035 (stat) ± 0.040 
(syst) 
 
Rate + Shape 
sin2 2θ13 = 0.109 ± 0.030 (stat) ± 
0.025 (syst) 
 
 
sin2 2θ13 = 0 excluded at 99.8 % (2.9 σ) 
 
 
NB : dataset is divided into two periods 
based on reactor power 

The Double Chooz new results --> arXiv:1207.6632v2 accepted 
           for publication in PRD 
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Observed vs expected rate 
 

•  Daily number of anti-νe as a function of the expected number of anti-νe 

•  Three events observed in 0.84 day livetime with both reactors off 
ü  Background rate consistent with estimation --> 2.2 ± 0.6 events/day 
ü  Background rate obtained from the fit --> 2.9 ± 1.1 events/day 
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Conclusion 
 
 

•  Double Chooz initiated the new generation of experiments with multiple 
detectors to measure θ13 

•  Double Chooz was the 1st experiment able to measure θ13 --> results confirmed 
then by Daya Bay and RENO 

ü  sin2 2θ13 = 0.109 ± 0.030 (stat) ± 0.025 (syst) 
ü  sin2 2θ13 = 0 excluded at 99.8 % (2.9 σ) 

 
•  The Near detector laboratory excavation is completed 

•  The Near detector data taking will start by the end of 2013 
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Thank you for your attention !! 
Any questions ? 
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Double Chooz 1st 
results on CBS : 
The Big Bang 
Theory S05E11 


