High-Energy Neutrino Astronomy (2)

Summer School UNDERSTANDING NEUTRINOS Prague, Sept 2012

Content

Lesson 1: Basics

- Lesson 2: Results
 - What can one do with neutrino telescopes?
 - Performance checks: downgoing muons, atmospheric neutrinos, shadow of the moon, ...
 - Search for high-energy extraterrestrial neutrinos
 - Nu-Telescopes as supernova monitors
 - Cosmic ray physics with nu-telescopes
 - Particle physics with nu-telescopes
 - Summary

Why can one do with Neutrino Telescopes ?

Physics with neutrino telescopes

Cosmic accelerators

- ★ Point-like sources (SNRs, binaries ...)
- Extended sources
 (SNRs, molecular clouds ...)
- ★ Transients (GRBs, AGN flares ...)

Diffuse fluxes

- All-sky fluxes (e.g. cosmogenic)
- ★ Galactic plane
- ★ Extended structures

Dark Matter & Exotic Physics

- Indirect DM search (Sun, Galactic halo)
- ★ Magnetic monopoles, Q-balls, . . .
- ★ Lorentz invariance violation
- \star v faster than light?

Cosmic rays

- ★ Anisotropy
- ★ Galactic CR: spectrum and composition

Supernova explosions

- ★ Galactic/LMC SNe
- ★ Phases
- ★ Neutrino hierarchy

Neutrino Properties & Particle Physics

- \star Neutrino oscillations
- Heavy flavors in showers
- **★** K/ π ratio in showers
- Cross sections at very high energies

Physics with neutrino telescopes

Cosmic accelerators

★ Point-like sources (SNRs, binaries ...)

★ Transients (GRBs)

Cosmic rays

★ Anisotropy

×

Supernova explosions

- ★ Galactic/LMC SNe
- \star

*

Diffuse fluxes

All-sky fluxes
 (e.g. cosmogenic)

Dark Matter & Exotic Physics

- Indirect DM search (Sun, Galactic halo)
- ★ Magnetic monopoles, Q-balls, . . .
- ★ Lorentz invariance violation
- \star v faster than light?

Neutrino Properties & Particle Physics

- ★ Neutrino oscillations
- ★ Heavy flavors in showers

Neutrino events in IceCube

Performance checks

atmospheric muons
atmospheric neutrinos
shadow of the moon

TT⁺

μ

 $\nu_e: \nu_\mu \simeq 1:10$

Energy spectrum of atm. muon neutrinos

- Frejus, Super-K, Amanda, IceCube
- IC-40: ~18,000
 ν_μ CC events
- θ= 180°-97°
- Compatible with Bartol/Honda predictions
- Close to constrain estimates for prompt neutrinos
- Glashow: tachyonic 10⁻⁹L neutrinos would lead to a depletion at high energies !

10

Downgoing and upgoing muons

- Atmospheric $V \rightarrow \mu$
- Cosmic $V \rightarrow \mu$ ~10

Search for extraterrestrial neutrinos

Point sources

Point Source Search IceCube 40 strings

Total events: 43339 (upgoing) + 64230 (downgoing)
 Livetime: 348 days (IC59) + 375 days (IC40)

Point Source Search IceCube 40 strings

Point Source Search IceCube 40 strings

Point source Search ANTARES (2007-2010)

Sky map in equatorial coordinates

Result compatible with the background hypothesis

Point sources: factor 1000 in 12 years

Search for extraterrestrial neutrinos

Gamma Ray Bursts

Energie

Energie

Energie

IceCube-40, 59: challenging the GRB fireball model

Nature Vol. 484, 351 (2012)

Search for extraterrestrial neutrinos

Multi-Messenger Programs

Optical Follow-Up with ROTSE

Similar Antares with TAROT

Optical Follow-Up with ROTSE

Similar Antares with TAROT

Neutrino Target of Opportunity with MAGIC

Search for extraterrestrial neutrinos

Diffuse Fluxes

Diffuse Fluxes: a factor 1000 w.r.t. underground detectors

Search for extremely high energy events

Search for extremely high energy events

IceCube May 31, 2010 - May 14, 2012

Meanwhile the estimate is 1-2 PeV (not 6.3 PeV which would be the Glashow resonance!)

Peering into the EeV region

Neutrino Telescopes as Supernova Monitors

Supernova in IceCube

Sun

Detection via enhanced PMT noise rates

Dark noise (1PE) in IceCube photomultipliers only ~ 320 Hz !

Magellanic Clouds

Signal for SN in GC, 10⁶ counts

20 MeV positrons

Muon Astronomy with Neutrino Telescopes?
Muon Astronomy

Fit residuals map

> Anisotropy not immediately visible (smoothing needed)

Smoothing scan results

region	right ascension	declination	optimal scale	peak significance	post-trials
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ

Abbasi et al., ApJ, 740, 16, 2011 arxiv/1105.2326

Energy dependence

North and South

Anisotropies of cosmic rays/muons seen on the Northern hemisphere (Tibet, Milagro/Super-K) are also seen via IceCube muons from the Southern hemisphere.

Possible reasons for anisotropies

Dipole:

- Discrete spatial distribution of PeV cosmic ray sources?
- Compton-Getting effect (movement of solar system against the plasma of cosmic rays)?

Smaller structures:

- Special magnetic field configurations (channeling)?
- Turbulent propagation of cosmic rays in galactic magnetic fields?
- Heliospheric effects ???? (not at >> TeV)
- Nearby sources??

Neutrino Oscillations:

a) Standard Oscillations

Oscillations of atmospheric neutrinos

ANTARES 2007-2010

2008-2010 data (863 days): No oscillation: χ^2 /NDF = 40/24 (2.1%) Best fit: χ^2 /NDF = 17.1/21 $\Delta m^2 = 3.1 \cdot 10^{-3} \text{ eV}^2$ $\sin^2 2\theta = 1.00$

Systematics:

(Absolute normalisation free)
Absorption length: ±10%
Detector efficiency: ±10%
Spectral index of v flux: ±0.03
OM angular acceptance

Assuming maximal mixing: $\Delta m^2 = (3.1 \pm 0.9) 10^{-3} eV^2$

lceCube/DeepCore (79 strings)

- PRELIMINARY
- Simple cuts and reconstruction in Deep Core to extend sample to low energies and look for consistency with standard neutrino oscillations.
- Is not optimized for DeepCore efficiency, angular resolution,...
- Ongoing Work: more "sophisticated" analysis for measurement of oscillation parameters

lceCube/DeepCore (79 strings)

More sophisticated analyses are under work. Expect determination of osc. parameters in some months

Neutrino Oscillations:

b) Oscillations due to
 Violation of Lorentz
 Invariance (VLI)

" v_{μ} disappearance" in atmospheric neutrinos

- Violation of
 Lorentz Invariance
- QuantumDecoherence

(both effects in Quantum Gravity)

Parameters: VLI: $\delta c/c$, sin 2 ξ , Phase η QD: D₃ und D₈, D₆ und D₇

Different to standard oscillations (~ 1/E), QG Oscillations go like ~ E (or even E²)

" v_{μ} disappearance" in atmospheric neutrinos

- Violation of
 Lorentz Invariance
- QuantumDecoherence

(both effects in Quantum Gravity)

Parameters: VLI: $\delta c/c$, sin 2 ξ , Phase η QD: D₃ und D₈, D₆ und D₇

Different to standard oscillations (~ 1/E), QG Oscillations go like ~ E (or even E²)

VLI ($\Delta\delta$ =10⁻²⁶, max mixing) -24 $P(v_{\mu} \rightarrow v_{\mu})$ conventional VLI -25 0.8 AMANDA SK + K2K $\log_{10} \Delta \delta$ 90%, 95%, 99% 0.6 -26 QD 0.4 (n=2, D_i = 10⁻³⁰ GeV -27 IceCube 0.2 10y, 90% -28 01 0 4 4.5 5 log₁₀ E_v / GeV 1.5 2.5 3 3.5 2 0.2 0.0 0.4 0.6 0.8 1.0 $\sin^2 2\xi$

 ν_{μ} survival probability as a function of energy for a baseline of the Earth diameter

VLI ($\Delta\delta$ =10⁻²⁶, max mixing) -24 $P(v_{\mu} \rightarrow v_{\mu})$ conventional VLI -25 0.8 AMANDA SK + K2K $\log_{10} \Delta \delta$ 90%, 95%, 99% 0.6 -26 QD 0.4 (n=2, D_i = 10⁻³⁰ GeV -27 IceCube 0.2 10y, 90% -28 01 0 4 4.5 5 log₁₀ E_v / GeV 1.5 2.5 3 3.5 2 0.2 0.0 0.4 0.6 0.8 1.0 $\sin^2 2\xi$

 ν_{μ} survival probability as a function of energy for a baseline of the Earth diameter

Neutrino Oscillations:

c) Sterile Neutrinos

Searches for sterile neutrinos with IceCube DeepCore

arXiv:1203.5406v2

Soebur Razzaque^{1, 2, *} and A. Yu. Smirnov^{3, †}

 $\nu_{\mu} \rightarrow \nu_{\tau}$ (bottom panel) for different values of Δm_{43}^2 . The solid (broken) lines correspond to the probabilities without (with) ν_s mixing. The normal mass hierarchy is assumed.

WIMPs

- Neutralinos
- Kaluza-Klein particles
- ...
- Axions
- Super-WIMPs
- Axinos
- Sterile neutrinos
- Q-balls
- WIMPzillas
- Elementary BHs

WIMPs

- Neutralinos
- Kaluza-Klein particles
- • •
- Axions
 - Super-WIMPs
 - Axinos
- Sterile neutrinos
- Q-balls
- WIMPzillas
- Elementary BHs

WIMPs

- Neutralinos
- Kaluza-Klein particles

AMANDA skymap around Sun

Search for relativistic magnetic monopoles
Relativistic Magnetic Monopoles

Relativistic Magnetic Monopoles

Status

- High-energy neutrino astronomy:
 We may be close to first discoveries. Two events which tantalizingly look like extraterrestric.
- Have started muon astronomy?
- Record limits on LVI effects, dark matter cross sections and monopole fluxes
- Neutrino telescopes demonstrate their capability to measure "standard oscillations".
- Neutrino telescopes are sensitive to certain sterileneutrino scenarios.
- Neutrino telescope may be capable to determine the neutrino mass hierarchy (see talk of D. Wark).

... and the future?

IceCube

TeV-PeV vs. PeV-EeV vs. GeV

proton decay (??).

The next 2 years will be the moment of truth.

Keep your fingers crossed!