
1 Notation

We will work on L2(a, b), where −∞ < a < b < ∞. The symbol AC(a, b) de-
notes all functions from L2(a, b) that are absolutely continuous on every compact
subset of (a, b). Similarly AC2(a, b) means all functions from L2(a, b) that are
differentiable and theirs derivative is absolutely continuous on every compact
subset of (a, b).

2 First derivative

Because C∞
0 (a, b) is dense, the perpendicular subspace C∞

0 (a, b)⊥ is zero. Thus
for f ∈ L2(a, b)

(f, u) = 0, ∀u ∈ C∞
0 (a, b) ⇒ f = 0 (1)

Now suppose that for some f ∈ L2(a, b) and ∀u ∈ C∞
0 (a, b)

(f, u′) =

∫ b

a

f(x)u′(x)dx = 0 (2)

We will show that this implies f = C almost everywhere on (a, b) for some
C ∈ C. This implication can be interpreted in terms of distributions1. To show
it directly let us define the following function (cap shaped function)

ωǫ(x) =

{

Cǫ exp(−
ǫ2

ǫ2−|x|2
), |x| ≤ ǫ

0 |x| ≥ ǫ
(3)

where Cǫ is chosen in order to
∫∞

−∞ ωǫ(x)dx = 1. It can be shown that ωǫ ∈
C∞

0 (R). If we now use the shifted version ω̃ǫ(x) = ωǫ(x− (a+ b)/2) for 0 < ǫ <

(b− a)/2 then
∫ b

a
ω̃ǫ(x)dx = 1 and ω̃ǫ ∈ C∞

0 (a, b).
For any ϕ ∈ C∞

0 (a, b) the function

ψ(x) =

∫ x

a

[

ϕ(y)− ω̃ǫ(y)

∫ b

a

ϕ(t)dt

]

dy ∈ C∞
0 (a, b). (4)

This means

0 = (f, ψ′) = (f, ϕ− ω̃ǫ

∫ b

a

ϕ(t)dt) = (f, ϕ) − (f, ω̃ǫ)

∫ b

a

ϕ(t)dt. (5)

Consequently, writing (f, ω̃ǫ) = C, we obtain

(f, ϕ) = C

∫ b

a

ϕ(t)dt = (C,ϕ). (6)

1Because f is also in L1(a, b) (Minkowski inequality) it represents a regular generalised
function f ∈ D ′ in the sense of generalized functions (see 2.5 in [1]). The equation (2) thus
means that (f ′, u) = −(f, u′) = 0 for all u ∈ D ≡ C∞

0
(a, b). This implies that f = const. in

D ′ (see 6.3 (e)). Since f is locally integrable it together with the Du Bois Reymonds Lemma
gives that there exists C ∈ C such that f(x) = C a.e. on (a, b).
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This holds for every ϕ ∈ C∞
0 (a, b) and thus f = C almost everywhere on (a, b).

This can help us to determine the adjoint operator to the operator defined
as

D(P0) = C∞
0 (a, b), P0f = −if ′. (7)

P0 is densely defined and symmetric. Let now determine its adjoint P ∗
0 . The

domain of P ∗
0 is given by those g ∈ L2(a, b) for which exists f ∈ L2(a, b) such

that for all u ∈ D(P0)
(f, u) = (g, P0u). (8)

Since f is also in L1(a, b), we can define

w(x) =

∫ x

a

f(y)dy. (9)

Relation (27) can be rewritten as

0 = (g,−iu′)− (f, u) =

∫ b

a

−ig(x)u′(x) − f(x)u(x)dx = (10)

=

∫ b

a

−ig(x)u′(x) + w(x)u′(x)dx − [w(x)u(x)]ba = (11)

=

∫ b

a

(−ig(x) + w(x))u′(x)dx. (12)

This in the sense of previous discussion implies g(x) = iw(x)+C for some C ∈ C
almost everywhere (a, b). It means that g is differentiable almost everywhere
and is an integral of its derivative. Therefore g is absolutely continuous: g ∈
AC(a, b). For such functions, per partes can be performed

(g,−iu′) = −[ig(x)u(x)]ba + i(g′, u) = (−ig′, u) (13)

We can summarize obtained result

D(P ∗
0 ) = {g ∈ AC(a, b)|g′ ∈ L2(a, b)}, P ∗

0 g = −ig′. (14)

3 Second derivative

To do the similar analysis for the free Laplacian operator we will use more
complicated approach. Let start with an integral operator K with the kernel

k(x, y) = |x− y| η(x − y), (15)

where η(x) is a C∞(R) function such that

η(x) =

{

1, |x| ≤ ǫ/2
0, |x| ≥ ǫ

(16)

Such function can be obtained as a convolution of an interval indicator 1(−3/4ǫ,3/4ǫ)(x)
and the cap function ωǫ/4(x) (given by (3)). The operator K is Hilbert-Schmidt
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on L2(a, b) if −∞ < a < b < ∞. The kernel k(x, y) is infinitely differentiable
except for x = y and k(x, y) = 0 for |x− y| ≥ ǫ. Adjoint operator K∗ to K is
given by the kernel k∗(x, y) = k(y, x).

Let w ∈ C∞
0 (a+2ǫ, b− 2ǫ) and let u = Kw. Obviously u(x) = 0 outside the

interval (a+ ǫ, b− ǫ). To determine the derivative of u we rewrite the definition
relation:

u(x) =

∫ b

a

k(x, y)w(y)dy =

∫ x

a

(x−y)η(x−y)w(y)dy−

∫ b

x

(x−y)η(x−y)w(y)dy.

(17)
Both integrals have continuous and infinitely differentiable inner parts. We can
apply the usual formula for differentiation and obtain

u′(x) = |x− x| η(x− x)w(x) +

∫ x

a

[η(x− y) + (x− y)η′(x − y)]w(y)dy + (18)

+ |x− x| η(x− x)w(x) −

∫ b

x

[η(x− y) + (x − y)η′(x− y)]w(y)dy = (19)

=

∫ b

a

sign(x − y)[η(x− y) + (x − y)η′(x− y)]w(y)dy = (20)

=

∫ b

a

sign(x− y)k′(x, y)w(y)dy, (21)

where the symbol k′(x, y) stands for the continuous part of the derivative of
k(x, y). k′(x, y) is infinitely differentiable, k′(x, y) = 0 for |x− y| ≥ ǫ and
k′(x, y) = 1 for |x− y| ≤ ǫ/2. The integral operator with the kernel k′(x, y) we
denote by K ′.

To determine the second derivative of u we use the same trick,

u′′(x) = k′(x, x)w(x) +

∫ x

a

∂xk
′(x, y)w(y)dy + (22)

+k′(x, x)w(x) −

∫ b

x

∂xk
′(x, y)w(y)dy = (23)

= 2w(x) +

∫ b

a

k′′(x, y)w(y)dy. (24)

By k′′(x, y) we mean the function

k′′(x, y) =







∂xk
′(x, y), y < x

0, y = x
−∂xk

′(x, y), y > x,
(25)

where ∂xk
′(x, y) stands for the partial derivative of k′(x, y) with respect to x.

Since ∂xk
′(x, y) = 0 for |x− y| ≤ ǫ/2, k′′(x, y) is continuous and infinitely

differentiable. Because k′′(x, y) = 0 for |x− y| ≥ ǫ, u′′(x) = 0 outside the
interval (a + ǫ, b − ǫ). Integral operator with the kernel k′′(x, y) we denote by
K ′′. Adjoint operator K ′′∗ to K ′′ is given by the kernel k′′∗(x, y) = k′′(y, x).
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If we summarize the above construction we obtained for every w ∈ C∞
0 (a+

2ǫ, b− 2ǫ) the function u = Kw that is C∞
0 (a+ ǫ, b− ǫ) The two first derivatives

of u are given by u′ = K ′w resp. u′′ = 2w + K ′′w. The higher derivatives
of u are easily given by the derivatives of w and K ′′w where the latter can be
performed on the integral kernel under the integral sign.

Now we can proceed to evaluation of the adjoint operator to the free laplacian
defined as

D(T0) = C∞
0 (a, b), T0f = −f ′′. (26)

The domain of T ∗
0 is given by those g ∈ L2(a, b) for which exists f ∈ L2(a, b)

such that for all u ∈ D(T0)

(f, u) = (g, T0u). (27)

Let us now look only on u given by u = Kw with the above defined integral
operator K and w ∈ C∞

0 (a+ 2ǫ, b− 2ǫ). The definition relation leads to

(f,Kw) = (K∗f, w) = −(g, 2w +K ′′w) = −(2g +K ′′∗g, w). (28)

This holds for all w ∈ C∞
0 (a + 2ǫ, b − 2ǫ), so K∗f = −2g − K ′′∗g almost

everywhere on (a+ 2ǫ, b− 2ǫ). It means that

g = −
1

2
(K∗f +K ′′∗g) (29)

Note that previous analysis implies that K∗f has at least 2 derivatives with
the second be (K∗f)′′ = 2f +K ′′∗f . We can therefore claim that g is almost
everywhere on (a+2ǫ, b− 2ǫ) equal to function that is twice differentiable with
all derivatives in L2(a, b). Since this is true for all ǫ > 0, g ∈ AC2(a, b). Now
we can perform per partes integration and obtain

(f,−u′′) = −[f(x)u′(x)]ba + (f ′, u′) = [f ′(x)u(x)]ba − (f ′′, u). (30)

The result can be summarized as

D(T ∗
0 ) = {g ∈ AC2(a, b)|g′′ ∈ L2(a, b)}, T ∗

0 g = −g′′. (31)
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