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PT -symmetry

Origins of PT -symmetry

Hamiltonian − d2

dx2 + ix3 has real, positive, discrete spectrum

Bender, Boettcher 1998

original hypothesis - the reality of spectrum due to

PT -symmetry

[PT , H] = 0

parity P, (P )(x) =  (−x)

complex conjugation T , (T  )(x) =  (x)

PT -symmetry is not sufficient for reality of the spectrum

some PT -symmetric operators are similar to the self-adjoint

ones

ℎ = %−1H% = ℎ∗
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Antilinear symmetry

Definition

Let A ∈ C (ℋ). We say that A possesses an antilinear symmetry if

there exists an antilinear bijective operator C and the relation

AC = CA 

holds for all  ∈ Dom(A).

� ∈ �p,c,r(A)⇐⇒ � ∈ �p,c,r(A)

example: C = PT , H = − d2

dx2 + V (x), V (−x) = V (x)

Petr Siegl Surprising spectra of PT PI



Introduction Classes of operators PT point interactions Conclusions

Pseudo-Hermiticity

Definition

Let A ∈ L (ℋ) be densely defined. A is called pseudo-Hermitian, if

there exists an operator � with properties

(i) �, �−1 ∈ B(ℋ),

(ii) � = �∗

(iii) A = �−1A∗�.

�p,c,r(A) = �p,c,r(A
∗)

example: � = P, H = − d2

dx2 + V (x), V (−x) = V (x)

A is a self-adjoint operator in a Krein space [⋅, ⋅]J = ⟨J ⋅, ⋅⟩
fundamental symmetry J = �∣�∣−1
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Relations between the operator classes

finite dimension: antilinear symmetry ⇔ pseudo-Hermiticity

essential fact: C-symmetric operators

C antilinear isometric involution,

C2 = I, ⟨Cx,Cy⟩ = ⟨y, x⟩, A = CA∗C

assumption of spectral decomposition (spectral operators of

scalar and finite type): AS ⇔ P-H

2002 Scolarici, Solombrino, 2009 Siegl

bounded operators AS is not equivalent to P-H !

2009 Siegl
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Antilinear symmetry without pseudo-Hermiticity

Example

{en}∞n=1 standard orthonormal basis of ℋ = l2(N), en(m) = �mn

Ten := en−1, n ∈ N, e0 := 0

T ∗en := en+1, n ∈ N

T =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 . . .

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
...

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎠

antilinear symmetry T

for ∣�∣ < 1, � ∈ �p(T ) but � ∈ �r(T ∗)
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Pseudo-Hermiticity without antilinear symmetry

Example

{ei}∞−∞ orthonormal basis of ℋ = l2(Z), en(m) = �mn

Tei :=

⎧⎨⎩
�0ei + ei+1, i ≥ 1,

0, i = 0,

�0e−1, i = −1,

�0ei + ei+1, i < −1,

�0 ∈ C, Im�0 >
1
2
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Pseudo-Hermiticity without antilinear symmetry

Example

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . �0 0 0 0 0

1 �0 0 0 0

0 0 0 0 0

0 0 0 �0 0

0 0 0 1 �0

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
pseudo-Hermiticity � = P, Pei = e−i

�0 ∈ �r(T ) but �0 ∈ �p(T )

∣�− �0∣ < 1 ⊂ �p(T ∗)
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Counterexamples

Counterexamples - properties

both examples - not spectral - uncountable point spectrum

AS+P-H ⇒ C-symmetric operator ⇒ �r = ∅

Related questions

? what are equivalent subclasses (AS, P-H)

? is AS+P-H related to existence of spectral decomposition?

? at least for special classes of operators?

? point interactions?
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PT -symmetric point interactions

Definitions of operators

line L2(R) or finite interval (circle) L2(a, b)

H = − d2

dx2

Dom(H) = AC1 + boundary conditions at x = 0 or

at x = a, b

0

0
l

-l
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PT -symmetric point interactions

PT -symmetric boundary conditions 2002 Albeverio, Fei, Kurasov(
 (0+)

 ′(0+)

)
= B

(
 (0−)

 ′(0−)

)

B =

( √
1 + bcei� b

c
√

1 + bce−i�

)
,
b ≥ 0, c ≥ −1/b

� ∈ (−�, �]
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System on a line - interaction at x = 0

Symmetries

PT -symmetry: PT H = HPT  , ∀ ∈ Dom(H)

P-pseudo-Hermiticity: H∗ = PHP

T -self-adjointness: H∗ = T HT

T -complex conjugation, P-parity

Spectrum

residual part is empty �r(H) = ∅ 2008 Borisov, Krejčǐŕık

continuous spectrum �c(H) = [0,∞)

b ∕= 0, c ∕= 0 point spectrum - at most two eigenvalues

real if bc sin2 � ≤ cos2 � or bc sin2 � ≥ cos2 and cos� ≥ 0

2002 Albeverio, Fei, Kurasov
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Special case b = 0, c = 0

Boundary conditions

 (0+) = ei� (0−)

 ′(0+) = e−i� ′(0−)

Special cases

� = 0 - self-adjoint operator, no interaction

 (0+) =  (0−),  ′(0+) =  ′(0−)

� ∕= ±�/2 - continuous spectrum [0,∞), no

eigenvalues, quasi-Hermitian

� = ±�/2 - ’surprising’ case

 (0+) = ±i (0−),

 ′(0+) = ∓i ′(0−)
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Special case b = 0, c = 0, � ∕= ±�/2

Quasi-Hermiticity

H� is quasi-Hermitian:

ΘH∗� = H�Θ, Θ,Θ−1 ∈ B(ℋ), Θ > 0

Θ = I − i sin�PsignP
(Psignf) (x) = signxf(x), P-parity

similarity to s-a operator

% =
√

Θ = cos �2 I −
i sin�

2 cos �2
PsignP

Metric operator Θ

spectrum - only two eigenvalues 1− sin�, 1 + sin�

Θ > 0, Θ−1 ∈ B(ℋ)

ΘH∗� = H�Θ is valid

Θ is not invertible if � = ±�/2 !
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’Surprising’ case b = 0, c = 0, � = �/2

Properties of H�/2

 (0+) = i (0−),  ′(0+) = −i ′(0−)

H�/2 is PT -symmetric, P-pseudo-Hermitian, T -self-adjoint

H∗�/2 = H−�/2, H�/2 is closed

ΘH∗�/2 = H�/2Θ

Θ = I − iPsignP, Θ ≥ 0, Θ is not invertible !

Spectrum 2005 Albeverio and Kuzhel

residual spectrum is empty

continuous spectrum [0,∞)

point spectrum C ∖ [0,∞)
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’Surprising’ case b = 0, c = 0, � = �/2

Eigenfunctions of H�/2

 k(x) =

{
ekx, x < 0,

ie−kx, x > 0,
'k(x) =

{
e−kx, x < 0,

iekx, x > 0,

�k(x) =

{
e−ikx, x < 0,

ieikx, x > 0.

 k ∈ L2(R) for Re k > 0, 'k ∈ L2(R) for Re k < 0,

�k ∈ L2(R) for Re k = 0 and Im k > 0
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Models on finite interval

Models on a finite interval (−l, l)

L2(−l, l), H = − d2

dx2

Dom(H) = AC1(−l, l)

2 interactions - at x = 0 and x = ±l - 2 BC

at x = 0 - PT -symmetric interaction b = 0, c = 0

at x = ±l - general PT -symmetric interactions
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Compact resolvent guaranteed?

Theorem (Kato)

Let T1, T2 ∈ C (ℋ) have non-empty resolvent sets. Let T1, T2 be

extensions of a common operator T0, with order of extension for T1

being finite. Then T1 has compact resolvent if and only if T2 has

compact resolvent.
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Two PT -symmetric interactions

PT -symmetric interactions

 (0+) = ei�1 (0−)

 ′(0+) = e−i�1 ′(0−)(
 (l)

 ′(l)

)
= B

(
 (−l)
 ′(−l)

)

B =

( √
1 + b2c2e

i�2 b2

c2
√

1 + b2c2e
−i�2

)
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Two PT -symmetric interactions

Spectrum

discrete (� = k2) if

�1 ∕= ±�/2, �2 ∕= ±�/2
�1 ∕= ±�/2, �2 = ±�/2 and b2 ∕= 0 or c2 ∕= 0

cos�1

((
b2k

2 − c2
)

sin 2kl + 2k
√

1 + b2c2 cos�2 cos 2kl
)

+

+2k
(√

1 + b2c2 sin�1 sin�2 − 1
)

= 0.

empty if �1 = ±�/2 and
√

1 + b2c2 sin�2 − 1 ∕= 0

entire C if �1 = ±�/2 and
√

1 + b2c2 sin�2 − 1 = 0

b2 = c2 = 0

empty if �1 = ±�/2 and �2 ∕= ±�/2
entire C if �1 = �2 = ±�/2
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Conclusions

Conclusions

Antilinear symmetry is not equivalent to pseudo-Hermiticity

Equivalent subclases are not determined

PT -symmetry, pseudo-Hermiticity, C-self-adjointness do not

guarantee non-empty spectrum, countable point spectrum,

spectral decomposition

Examples of PT -symmetric point interactions

line R - � = C, �c = [0,∞), �p = C ∖ [0,∞)

finite interval (−l, l) - � = ∅ versus � = �p = C
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