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Abstract

We formalize the construction of Paterson’s variant of the Ajtai–Komlós–Szemerédi
sorting network of logarithmic depth in the bounded arithmetical theory VNC 1

∗ (an ex-
tension of VNC 1), under the assumption of existence of suitable expander graphs. We
derive a conditional p-simulation of the propositional sequent calculus in the monotone
sequent calculus MLK .

1 Introduction

Sorting is one of the most fundamental algorithmic operations, thus it is not surprising that
much effort in theoretical computer science was invested in investigation of its computational
complexity in various contexts. In particular, its exact parallel complexity was open for a
long time. It has been known since the 1960s that it is fairly easy to construct parallel
sorting algorithms using O(log2 n) steps (Batcher [6]), but it proved quite difficult to further
improve on this upper bound. It was only in 1983 when Ajtai, Komlós, and Szemerédi [1, 2]
devised an ingenious algorithm achieving O(log n) parallel operations. The algorithm and
its analysis were subsequently simplified by Paterson [11]. An important feature of the AKS
algorithm is that the pattern of comparisons and swaps is fixed in advance independent of the
data, hence the construction in fact gives a sorting network of depth O(log n). (This result
is asymptotically optimal, as there is an obvious Ω(log n) depth lower bound.) A sorting
network is a structure consisting of comparators connected by wires, where a comparator is
a device which takes two inputs and outputs them in sorted order.

In the present paper we are going to formalize the core of the AKS sorting network (or
rather its version by Paterson) in the theory VNC 1

∗ of bounded arithmetic. More precisely,
the basic building blocks of the AKS network, the so-called ε-halvers, are constructed using
a certain kind of expander graphs. Construction of the expanders is a separate issue rather
tangential to analysis of the main part of the network, we thus leave it out completely: we
simply assume that VNC 1

∗ proves the existence of appropriate expanders, and all our results
∗Supported by grant IAA1019401 of GA AV ČR, grant 1M0545 of MŠMT ČR, and a grant from the John

Templeton Foundation.
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are conditional on this assumption. We note that some research towards formalization of
expanders in bounded arithmetic is in progress [9].

There are several reasons why such a formalization is desirable. It is a basic problem in the
development of bounded arithmetic to find what results in mathematics or computer science
are provable in a given theory. In the other direction, the program of reverse mathematics
seeks to find the minimal theory capable of proving a given statement. In particular, it is
a natural foundational problem whether various properties of a given complexity class are
provable using only concepts from the same class. Since the AKS network is a kind of a
circuit of logarithmic depth, the natural class it fits into is (nonuniform) NC 1; it is thus
reassuring to have a proof of its correctness in an NC 1-theory such asVNC 1

∗.
The formalization has applications in propositional proof complexity. The monotone se-

quent calculus MLK is the fragment of the usual propositional sequent calculus LK using
only sequents consisting of monotone formulas. Atserias et al. [5] have shown that MLK
quasipolynomially simulates LK (with respect to monotone sequents), but it is an open prob-
lem whether one can give a polynomial simulation. It was also shown in [5] that it is sufficient
for an affirmative answer to construct monotone formulas for threshold functions such that
their basic properties have polynomial-size proofs in LK . Such monotone formulas can be
obtained by evaluation of the AKS network on 0-1 inputs. Since VNC 1

∗ proves soundness
of the network, and translates into polynomial LK -proofs, the properties of these formulas
required by [5] indeed have polynomial LK -proofs. We thus obtain a p-simulation of LK by
MLK under our basic assumption on formalizability of expanders inVNC 1

∗.
There are other potential applications of the AKS network in bounded arithmetic. As

shown in [7], the closure of the class NL under complement is provable in the bounded
arithmetic for NL. However, it is not known whether we can formalize the closure of the
related class SL under complement in an SL-theory. Formalization of the AKS network is the
first step, as the network is involved in the proof of SL = coSL from [10].

Our formalization is carried out in a not quite standard theoryVNC 1
∗ introduced for this

very purpose in [8]. This theory was chosen to satisfy two conflicting goals. On the one hand,
the application to monotone sequent calculus described above requires that propositional
translations of ΠB

1 -formulas provable in the theory have polynomial-size proofs in LK , or
equivalently, in Frege systems, hence we need some kind of an NC 1-theory. On the other
hand, successful formalization of the AKS network requires at the very least that the theory
proves that the network can be evaluated. We thus need the ability to evaluate (sufficiently
uniformly described) circuits of logarithmic depth. The standard NC 1-theory VNC 1 is too
weak for this purpose, as evaluation of log-depth circuits is not known to be possible in
uniform NC 1 (i.e., ALOGTIME ). VNC 1 can only evaluate log-depth circuits described by
their extended connection language (ecl, see Ruzzo [13]), which is however not available for
the AKS network (see also Section 6). The network is defined as a sequence of steps, each of
which is described locally: the n elements are organized in a tree-like structure (varying in
each step), and constant-depth subnetworks are applied to parts of this structure. A longer
sequence of steps can move an element quite far in the structure in a hard to predict way
(this is, after all, one of the reasons why the network can sort), and there does not seem to be
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any way of globally describing the ecl of the network other than to follow the path through
the circuit step by step. (Note that this is unrelated to the complexity of description of
expanders used in the construction: in fact, the expander-based gadgets have constant depth,
hence their ecl is no harder than their direct connection language.)

The paper is organized as follows. Section 2 gives definitions of VNC 1
∗ and basic notions

like comparator networks, as well as their elementary properties. In Section 3 we formally
describe the AKS network, and in Section 4 we carry out the analysis of the network inVNC 1

∗.
In Section 5 we give a p-simulation of LK by MLK as an application, and Section 6 mentions
some open problems.

2 Preliminaries

We refer the reader to [8, Sec. 3] for definitions of the theories VNC 1
∗ and VNC 1

∗ which
we will work in. As shown in [8], VNC 1

∗ is an open conservative extension of VNC 1
∗, and

LVNC 1
∗
-functions have ΣB

1 -definitions in VNC 1
∗. For this reason, we will not distinguish the

two theories, and we will work freely with LVNC 1
∗
-functions in VNC 1

∗. Every ΣB
0 (LVNC 1

∗
)-

formula (or indeed, ∆B
1 (VNC 1

∗)-formula) is equivalent to an open LVNC 1
∗
-formula in VNC 1

∗.
We will denote these formulas simply as NC 1

∗-formulas, and likewise, we will refer to functions
given by LVNC 1

∗
-terms as NC 1

∗-functions. VNC 1
∗ proves NC 1

∗-COMP and NC 1
∗-IND . VNC 1

∗
containsVNC 1, and is contained in VL. The provably total computable functions ofVNC 1

∗ are
those definable by NC 1

∗-functions in the standard model of arithmetic; this class fits between
uniform NC 1 and L-uniform NC 1.

AsVNC 1
∗ ⊇VNC 1 ⊇ VTC 0, there is a well-behaved NC 1

∗-function computing cardinality
of sets. We will denote it cardX in order to distinguish it from the basic symbol |X| of L0.

The main property of VNC 1
∗ we will use is that it can evaluate sufficiently uniform log-

depth circuits. We can describe circuits using the following data:

• Numbers k, m, and s, where k is the number of inputs, m is the number of layers, and
s is the size of each layer (we assume all layers have been padded with unused gates to
have the same size).

• A function T : m × s → {p∨q, p∧q, p¬q} ∪ {pxiq | i < k} indicating the type of each
node, where we put e.g. p∨q = 0, p∧q = 1, p¬q = 2, and pxiq = i+ 3, and we represent
T by its graph (a set T ≤ ms(k+ 3)): i.e., T (d, x, p) iff xth node on layer d has type p.

• A formula ϕ(d, x, d′, x′) (possibly with other parameters) which states that node x′ on
layer d′ is an input of gate x on layer d.

In order for a circuit to be well-formed, we demand that any gate uses only nodes on lower
layers as inputs (but not necessarily from the adjacent layer), and all nodes have the correct
number of inputs: 1 for negation nodes, 0 for input nodes, and at most 2 for conjunction and
disjunction gates.
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Lemma 2.1 ([8]) (in VNC 1
∗) A circuit described as above with ϕ an NC 1

∗-formula without
set parameters, and m bounded by some |a|, can be evaluated on any input string. Moreover,
the evaluation is computable by an NC 1

∗-function. �

Definition 2.2 A comparator network on n inputs is a directed acyclic graph without dupli-
cate edges with three types of vertices: input nodes with fan-in 0 and fan-out 1, comparators
with fan-in 2 and fan-out 2, and output nodes with fan-in 1 and fan-out 0. Input and output
nodes are labelled by numbers k < n, and there exists exactly one input node and one output
node labelled k for every k. The edges of the graph are called wires. For each comparator,
one of its outgoing wires is labelled h (higher) and the other one is labelled l (lower). The
size of a network is the number of its comparators. We represent a comparator network N

by a sequence N = {wi | i < s}, where wi describes the ith node of N : its type, adjacent
nodes, and labels. We require the sequence to start with the input nodes and end with the
output nodes, both ordered according to their labels. If there is a wire going from node i to
node j, we further require i < j. The network has depth at most d, if we can partition the
comparators of N into at most d blocks (called layers), such that each layer is contiguous in
the sequence ordering, and there are no wires going between two nodes of the same layer.

Let ~X = {Xk | k < n} be a sequence of sets, and ≤ a total ordering whose domain includes
every Xk. An evaluation of a network N with respect to ≤ on input ~X is a sequence of sets
Ee indexed by wires e of N such that Ee = Xk if e is the outgoing wire of an input node with
label k, and if l and h are the lower and higher outgoing wires of a comparator with incoming
wires e, f , then El = min≤{Ee, Ef}, and Eh = max≤{Ee, Ef}. The result of an evaluation
E is the sequence of sets ~Y = {Yk | k < n} such that Yk = Ee, where e is the incoming wire
of the output node with label k. We write ~Y = eval(N,≤, ~X) (the context should suffice to
disambiguate between this notation and the eval-formula from the definition ofVNC 1

∗).

Since comparators have the same number of incoming and outgoing wires, there are exactly
n wires at any section of a network with n inputs. That is, if N = {wi | i < s} is a network
with n inputs, and i < s is a comparator node, then we can show by straightforward induction
on i that there are n wires going from nodes j ≤ i to nodes j > i. Consequently, each layer
has size at most n/2, and a network of depth d has size at most nd/2.

A comparator network of logarithmic depth resembles an NC 1-circuit. Indeed, if we want
to evaluate a uniformly described network on a 0-1 input, we can replace each comparator
by a pair of ∧ and ∨ gates (i.e., min and max in the Boolean domain), turning it into a
logarithmic depth bounded fan-in circuit, which can be evaluated in VNC 1

∗. This argument
does not work for nonconstant domains, as we then cannot compute the required comparisons
by bounded depth bounded fan-in circuits. Nevertheless, we will show that we can evaluate
a log-depth network on arbitrary inputs in VNC 1

∗ using a simple trick based on a variant of
the 0-1 principle.

Lemma 2.3 (in VNC 1
∗) Let N be a comparator network on n inputs of depth d ≤ logm for

some m defined by an NC 1
∗-formula without set parameters, ≤ a total ordering defined by an

NC 1
∗-formula, and {Xk | k < n} a sequence of sets in the domain of ≤. Then there exists a

unique evaluation of N on input ~X with respect to ≤.
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Proof: Uniqueness: if E and E′ are two evaluations of N = {wi | i < s}, we prove by
straightforward induction on i < s that Ee = E′

e for all wires e incident with a node j ≤ i.
Existence: the basic idea is to represent the input value Xi by the set Bi ⊆ n such that

j ∈ Bi iff Xi ≥ Xj . Then Xi ≤ Xj iff Bi ⊆ Bj , hence max≤{Xi, Xj}, min≤{Xi, Xj} are
represented by Bi ∪ Bj , Bi ∩ Bj , respectively. In other words, we can compute min or max
by n parallel binary conjunctions or disjunctions in this representation, as in the 0-1 case. In
more detail, we construct a circuit C as follows. For each wire e in N , we put in C nodes
ei for all i < n. If w is a comparator in N with incoming wires e, f and outgoing wires l, h,
we include in C the gates li = ei ∧ fi, hi = ei ∨ fi. If ek is the outgoing wire of the kth
input node, we make eki an input node of the circuit and initialize it to 1 iff Xi ≤ Xk using
NC 1

∗-comprehension. Since C is a circuit of logarithmic depth defined by an NC 1
∗-formula

without set parameters, we can evaluate it by Lemma 2.1. Let V be its valuation, let ϕ(e)
denote the NC 1

∗-formula ∃k < n ∀i < nV (ei) = V (eki ), and for each wire e, define the set

Ee = {j | ∃k < n (∀i < nV (ei) = V (eki ) ∧ j ∈ Xk)}

by NC 1
∗-comprehension. If w is a comparator with incoming wires e, f and outgoing wires l, h,

and if we assume ϕ(e)∧ϕ(f), then it is easy to see that ϕ(l)∧ϕ(h), and El = min≤{Ee, Ef},
Eh = max≤{Ee, Ef}. We can thus prove by induction ϕ(e) for all e, which implies that E is
a correct evaluation of N . �

Lemma 2.4 (in VNC 1
∗) Let N , ~X, and ≤ be as in Lemma 2.3. Let � be an NC 1

∗-defined
total order, and F an NC 1

∗-function such that X ≤ X ′ implies F (X) � F (X ′). Then
eval(N,�, F ( ~X)) = F (eval(N,≤, ~X)).

Proof: Let E be the evaluation of N on ~X wrt ≤, and put E′
e = F (Ee). Then E′ is an

evaluation of N on F ( ~X) wrt �. �

Lemma 2.5 (inVNC 1
∗) Let N , ~X, and ≤ be as in Lemma 2.3, and ~Y = eval(N,≤, ~X). Then

there exists a permutation π of n such that Yi = Xπ(i) for all i < n.

Proof: The proof of Lemma 2.3 shows that

(∗) ∀i < n∃j < nYi = Xj .

On the other hand, if j < n, N = 〈wk | k < s〉, and ~E is the evaluation of N on ~X wrt ≤, we
can show by induction on k the following property: if wk is a comparator node, there exists
a wire e going from a node ≤ k to a node > k such that Ee = Xj . Therefore,

(∗∗) ∀j < n ∃i < nXj = Yi.

Assume first that the Xi’s are pairwise distinct. Then for each i there is a unique j such
that Yi = Xj by (∗). We put π(i) = j. Then (∗∗) implies that π is surjective, hence it is a
bijection by PHP (provable in VTC 0 ⊆VNC 1

∗), and Yi = Xπ(i) by the definition.
In the general case, we define

i � j iff Xi ≤ Xj ∧ (Xj = Xi → i ≤ j).
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It is easy to see that � is a total order on n, hence by the previous part of the proof, there
exists a permutation π such that eval(N,�, 〈0, . . . , n − 1〉)i = π(i). Using Lemma 2.4 for
F (i) = Xi, we obtain

Yi = eval(N,≤, 〈F (0), . . . , F (n− 1)〉)i = F (eval(N,�, 〈0, . . . , n− 1〉)i) = Xπ(i). �

Lemma 2.6 (inVNC 1
∗) If ≤ is a total ordering defined by an NC 1

∗-formula, and 〈Xi | i < n〉
a sequence of sets in the domain of ≤, then there exists a permutation π of n such that
Xπ(i) ≤ Xπ(j) for each i ≤ j < n.

Proof: Define
i � j iff Xi < Xj ∨ (Xi = Xj ∧ i ≤ j).

It is easy to see that � is a total order on n. Put

σ(i) := card{k < n | k ≺ i}.

Clearly i ≺ j implies σ(i) < σ(j). In particular, σ is injective, hence it is a permutation
by PHP . We can thus define π = σ−1, and then i ≤ j implies π(i) � π(j), which gives
Xπ(i) ≤ Xπ(j). �

3 Ajtai–Komlós–Szemerédi–Paterson network

In this section we will define in detail Paterson’s variant of the Ajtai–Komlós–Szemerédi
network. We generally follow Paterson’s construction, but we had to disentangle the gradual
way in which he describes it: first, we learn the basic tree-like structure with idealized rational
sizes; then it is modified so that the bottom and top parts work out correctly; then it turns
out that one tree is not enough, and it is going to be split in many trees after some point;
and finally, changes throughout the whole construction are proposed to make all sizes integer
rather than rational. In contrast, we have to formalize (and therefore explicitly describe) the
final network. We made some inessential changes to facilitate the formalization.1

Before describing the sorting network proper, let us start with a few auxiliary structures.

Definition 3.1 Let D and 0 < ε < 1 be constants. An 〈ε,D〉-expander on m+m vertices is
a bipartite graph G ⊆ m×m such that every vertex (in either partition) has degree at most
D, and for every k ≤ m, every subset of one partition with more than εk vertices has at least
(1− ε)k neighbours in the other partition.

1For example, the last step (making sizes integer) of Paterson’s construction is actually incompatible with

his choice of the parameters of the network. He solves it by modification of what we denote Case 3 below so

that the splitting is applied not only to the root bag and cold storage, but to more levels on top of the tree.

Since this introduces an undesirable extra complication to the overall structure, we chose to solve it in another

way, namely by picking a different set of parameters. In general, we made no effort to optimize parameters

and the resulting constant in the size bound for the network, since we need the network for strictly theoretical

purposes where the values of these constants are irrelevant.
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From now on, we fix the first parameter ε0 of our sorting network, say ε0 = 1/600.

Assumption 3.2 There exists a constant D and a (parameter-free) NC 1
∗-function G(m)

such that VNC 1
∗ proves: for all numbers m, G(m) is an 〈ε0, D〉-expander on m+m vertices.

We fix D from Assumption 3.2 as our next parameter.

Definition 3.3 An ε0-halver on m elements, where m is even, is a comparator network with
m inputs whose output is partitioned into two blocks (left and right) of size m/2 with the
following property: for each k ≤ m/2, if a 0-1 input contains k zeros, then at most ε0k zeros
get in the right output block, and if the input contains k ones, then at most ε0k ones get in
the left output block.

Lemma 3.4 There is an NC 1
∗-function which, provably in VNC 1

∗, computes for any even m

an ε0-halver on m inputs of depth D2.

Proof: Let G be an 〈ε0, D〉-expander on m/2 +m/2 vertices given by Assumption 3.2. For
each partition and each its vertex, we enumerate its outgoing edges by numbers i < D. In
this way, every edge is labelled by a pair of numbers 〈i, j〉 ∈ D ×D. As different edges with
the same label are disjoint, the labelling defines a partition of the edges of G into D2 partial
matchings, which we denote by {Gk | k < D2}. We construct a comparator network on m

inputs as follows. We split the wires between any two adjacent layers into a left and right
block as in Definition 3.3, and we identify each block with the vertices of one partition of G.
For each k < D2, we include a layer of comparators corresponding to the edges in Gk (with
the higher output of the comparator landing in the right block).

Consider an evaluation of the network on a 0-1 input, and a wire a from the left block.
In each layer of the network, the value of a is either unchanged, or it is replaced with the
minimum of the value of a and of a value of some wire in the right block, hence the value
of a never increases during the computation. Symmetrically, the value of a wire in the right
block never decreases. Let 〈a, b〉 ∈ G. We have 〈a, b〉 ∈ Gk for some k. After the kth layer,
the value of wire a is less that or equal to the value of wire b, and then the former can only
decrease, and the latter only increase, hence the relation is preserved. It follows that the
output of the network is compatible with G in the following sense: the output value of a wire
a in the left block is less that or equal to the value of a wire b in the right block whenever
they are joined by an edge in G.

Let there be k ≤ m/2 zeros and m−k ones in the input (or in the output, for that matter),
and assume for contradiction that the right output block contains strictly more than ε0k zeros.
As G is an expander, the positions of these zeros are connected by an edge to at least (1−ε0)k
positions in the left block. By the compatibility property, the value of each of them is also
zero, hence the total number of zeros in the output is more than ε0k + (1 − ε0)k = k, a
contradiction. The case of k ones in the input is symmetric. �

Definition 3.5 Let N be a comparator network with m + k inputs. A network N ′ on m

inputs is constructed from N by chopping from left as follows. We pick k input wires (say, the
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wires with the smallest index), and mark them for deletion. If both inputs of a comparator are
marked, we mark both outputs as well. If only one input of a comparator is marked, we mark
its lower output. When we finish the marking, we delete all marked wires and comparators
with both inputs marked, and we replace each comparator with one marked input with a wire
connecting its unmarked input and output. (This is equivalent to the following operation:
we expand the m inputs with k virtual elements, we apply N while considering the virtual
elements to order below the real elements, and then we delete the virtual elements from
output.) Chopping from right is defined symmetrically.

Definition 3.6 Let ε ∈ [ε0, 1) be a rational constant, and m ≥ l > 0 be even integers. An
〈l, ε, ε0〉-separator on m elements is a comparator network N whose m outputs are partitioned
into four blocks, FL, CL, CR, FR (here L, R, C, and F stand for left, right, centre, and far,
respectively), of sizes cardFL = cardFR = l/2, cardCL = cardCR = (m− l)/2, such that N
is an ε0-halver with respect to the blocks L = FL ∪ CL and R = FR ∪ CR, and satisfies the
following additional property: for any k ≤ l/2, if a 0-1 input contains k zeros, then at most
εk zeros are output outside FL, and if the input contains k ones, then at most εk ones are
output outside FR.

Lemma 3.7 Let p ≥ 0 be an integer constant. There exists an NC 1
∗-function which, provably

in VNC 1
∗, computes an 〈l, (p+ 1)ε0, ε0〉-separator on m elements of depth (p+ 1)D2 for any

given even m and even l ≤ m such that l ≥ m2−p.

Proof: We proceed by induction on p. (Notice that the induction is external, as p is standard.)
If p = 0, it suffices to take an ε0-halver on m elements from Lemma 3.4. Let p > 0, and
assume that the statement is true for p− 1. We are given even m, l such that 2−pm ≤ l ≤ m.
If 21−pm ≤ l, we may simply use the induction hypothesis, hence we assume l ≤ 21−pm. We
distinguish two cases.

First, assume that p > 1, so that 2l ≤ m. By the induction hypothesis, we obtain a
〈2l, pε0, ε0〉-separator on m inputs. We denote its output blocks by FL′, CL′, CR′, FR′. We
take an ε0-halver H on l elements. We apply H to FL′, denoting its output blocks as FL (the
left one) and CL′′ (the right one), and symmetrically we apply a copy of H in parallel to FR′

obtaining CR′′ and FR. We put CL = CL′∪CL′′ and CR = CR′∪CR′′. Clearly the resulting
network is an ε0-halver. Consider an input with k zeros, where k ≤ l/2. Then k ≤ 2l/2,
hence at most pε0k zeros land outside FL′ by the induction hypothesis. There remain at
most k ≤ l/2 zeros in FL′, and H is a halver, thus at most ε0k zeros end up in CL′′. In total,
at most (p+ 1)ε0k zeros end up outside FL. The case of an input with k ones is symmetric.

Finally, let p = 1, thus m/2 ≤ l ≤ m. We construct our network as follows. First, we
apply an ε0-halver on m elements, obtaining the blocks L and R. We fix an ε0-halver H on
l elements. We chop H from right to m/2 inputs, and apply it to L, denoting its left output
block with l/2 elements as FL, and its chopped right block as CL. Symmetrically, we chop
a copy of H from left to m/2 inputs, and apply it in parallel to R, obtaining FR and CR.
Again, it is clear that the network is an ε0-halver. Consider an input with k zeros, where
k ≤ l/2. At most kε0 zeros end up in R. We can simulate the effect of chopped H on L as
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follows: we extend the partial result in L with ones to l elements, apply H, and discard the
excessive ones from the right block CL. The number of zeros in the extended input is thus
still at most k ≤ l/2, hence at most ε0k zeros land in CL. In total, at most 2ε0k zeros end
up outside FL, as required. The case of an input with k ones is symmetric. �

We now proceed to the description of the sorting network. Let n be the number of inputs.
We fix the parameters p = 4, λ0 = 2−p = 1/16, ε = (p + 1)ε0 = 1/120, λ = 1/8, A = 3,
C = 150, ν = 2λA + (1 − λ)/2A = 43/48, cm = d− log 2A/ log νe = 17. Without loss of
generality, we assume

n ≥ C/ν.

The sorting network consists of O(log n) stages, where the transition from one stage to the
next one is computed by a constant depth comparator network. In each stage, the n elements
are divided into a number of bags. Each bag is capable of accommodating a certain number
of elements, called its capacity, but some of the bags may actually hold fewer elements than
its capacity. The bags are organized in a subset of an ambient binary tree. All bags on the
same level of the tree have the same capacity. In stage t, bags with nonempty capacity only
appear at levels d such that d ≡ t (mod 2) and d0(t) ≤ d ≤ d1(t). (Note that we number
stages and levels of the tree starting from 0.) We will write just d0, d1 if t is understood from
the context. We label bags on level d by numbers i < 2d in the natural order from left to right
(i.e., the children of the ith bag on level d are the 2ith and (2i+ 1)th bags on level d+ 1).

The level d1 is called the bottom level, and it is the only one which may contain bags not
filled up to their full capacity. The level d0 is the root level. The condition d ≥ d0 effectively
means that the structure consists of 2d0 disjoint trees with roots at the root level. Each of
these 2d0 trees also has a cold storage attached to it, which is a special bag sitting outside the
ambient tree structure. Note that the roots of the trees may be empty, if d0(t) 6≡ t (mod 2).
We label the trees by numbers i < 2d0 in the left-to-right order, the same as their roots.

The parameters and sizes of various parts of the structure are as follows. For any t ≤
cmdlog ne and d ≤ 2dlog ne, put

s′(t, d) =
n

2d

(
1− (2A)d−2νt

)
.

(Notice that here and below, the exponentiation has a fixed base, and the exponent is bounded
by O(log n), hence the expression is definable by a well-behaved bounded formula in I∆0 ⊆
V 0.) We define

d′1(t) = max{d | (2A)d−2 < ν−t} = max{d | s′(t, d) > 0},
d1(t) = d′1(t)− ((d′1(t)− t) mod 2),

d′0(t) = min{d | nAdνt ≥ C},

d0(t) =

{
d′0(t)− 1 if t > 0, d′0(t) > d′0(t− 1), d′0(t− 1) ≡ t (mod 2),

d′0(t) otherwise.

As A > 1 > ν, dα(t) are well-defined by a bounded formula, and dα(t) = O(t).
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There are n mod 2d0 trees of size (i.e., the number of elements it holds) dn2−d0e, and
2d0− (n mod 2d0) trees of size bn2−d0c. These sizes are distributed so that the leftmost i trees
have total size bin2−d0c, thus the tree with label i has size

T (t, i) = b(i+ 1)n2−d0c − bin2−d0c =

{
dn2−d0e if (in mod 2d0) > ((i+ 1)n mod 2d0),

bn2−d0c otherwise.

If d ≥ d0 and d ≡ t (mod 2), each subtree rooted at level d has nominal capacity

s(t, d) = 2ds′(t, d)/2e,

and actually holds max{0, s(t, d)} elements. This means that the capacity of any bag at level
d is

b(t, d) =

{
s(t, d)− 4s(t, d+ 2) if d0 ≤ d ≤ d1, d ≡ t (mod 2),

0 otherwise,

and the number of elements it holds is

h(t, d) =

{
s(t, d) if d = d1,

b(t, d) otherwise.

Note that the capacity and actual content of each bag is even. The capacity (and content) of
cold storage is accordingly

c(t, i) =

{
T (t, i)− s(t, d0) if d0 ≡ t (mod 2),

T (t, i)− 2s(t, d0 + 1) otherwise,

where i < 2d0 is the label of the tree.
We also define “ideal sizes” of the various parameters, which are rational numbers ap-

proximated by the real sizes. The ideal size of each tree is T ′(t) = n2−d0 . We already know
the ideal subtree capacity s′(t, d). The ideal bag capacity is defined by

b′(t, d) =

s
′(t, d)− 4s′(t, d+ 2) =

(
1− 1

4A2

)
nAdνt if d0 ≤ d ≤ d1, d ≡ t (mod 2),

0 otherwise,

and the ideal cold storage capacity is

c′(t) =


T ′(t)− s′(t, d0) =

1
4A2

nAd0νt if d0 ≡ t (mod 2),

T ′(t)− 2s′(t, d0 + 1) =
1

2A
nAd0νt otherwise.

Notice that d0(0) = d1(0) = 0, thus the structure at stage 0 consists of a single root
bag and the associated cold storage. We initialize the network by putting arbitrary s(0, 0)
elements to the root bag, and the rest to the cold storage.

Let tm be the least t > 0 such that d0(t) = d1(t). We will see below (Lemma 4.4) that
tm exists, tm ≤ cmdlog ne, and T (tm, i) is bounded by a constant. The stage tm will be the
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last regular stage of our network. After this stage, we sort each of the 2d0 constant-size trees
using a suitable constant-size sorting network, and stop.

We have to define the constant-depth network which makes the transition from stage
t < tm to stage t + 1. A general overview is that we will apply a suitable constant-depth
subnetwork to each nonempty bag to split its content into a few parts, which we send to its
parent and children bags. Root bags will exchange elements with their cold storage instead
of a parent. Notice that when a bag is nonempty at stage t, then its children and parent
are empty (except for the cold storage), whereas the opposite holds at stage t + 1. Now we
describe the actual network fragments. We have to distinguish several cases.

Case 1: we consider a nonempty bag B on level d such that d0 < d ≤ d1. If d = d1(t) >
d1(t + 1), we send all of B to its parent. Otherwise, we use an 〈l, ε, ε0〉-separator of depth
(p + 1)D2 from Lemma 3.7 to split B into FL, CL, CR, and FR, where l = s(t, d) − 2s(t +
1, d+ 1). We send CL to the left child, CR to the right child, and FL ∪ FR to the parent.

Case 2: a nonempty root bag B, assuming d0(t) = d0(t + 1). We apply a separator just
like in Case 1, except that we send FL ∪ FR to the cold storage instead of B’s parent.

Case 3: a root bag B of the ith tree, assuming d0(t) 6= d0(t+1). We will see in Lemma 4.2
that d0(t + 1) = d0(t) + 1, and b(t, d0) + c(t, i) is bounded by a constant. Note that d1(t) ≥
d0(t) + 2. We merge the bag with its cold storage, and apply a constant-size sorting network
to split it to two pieces, L of size T (t+1, 2i)− 2s(t, d0(t)+2), and R of size T (t+1, 2i+1)−
2s(t, d0(t) + 2), so that each element of L is less than or equal to each element of R. We put
arbitrary c(t+ 1, 2i) elements from L to the newly created cold storage of the left child of B,
and send the rest of L to the left child itself. We do the same with R and the right child.

Case 4: a cold storage. If d0 ≡ t (mod 2), we expand the storage with some elements
sent from its root bag, as described in Case 2, or merge it with the root bag and split it to
children, as described in Case 3. If d0 6≡ t (mod 2) (which implies d0(t) = d0(t + 1), as we
will see), we send arbitrary s(t+ 1, d0)− 2s(t, d0 + 1) elements to the root bag.

We observe that the network is defined by an NC 1
∗-function F (n).

4 Analysis of the network

We first check that our definition of the various parameters of the network are sensible, and
that all sizes work out correctly when shuffling elements around.

We have already seen why d0 and d1 are well-defined.

Lemma 4.1 (in VNC 1
∗)

(i) d′1(t) ≤ d′1(t+ 1) ≤ d′1(t) + 1.

(ii) d1(t+ 1)− d1(t) = ±1.

(iii) If t > 0, then d1(t) > 0.

Proof: (i) d′1(t) ≤ d′1(t + 1) is clear as ν < 1. We have (2A)d1(t)−1 ≥ ν−t, hence (2A)d1(t) ≥
ν−(t+1) as A ≥ ν−1, which implies d1(t+ 1) < d1(t) + 2.
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(ii) Since d′1(t) − 1 ≤ d1(t) ≤ d′1(t), we obtain |d1(t + 1) − d1(t)| ≤ 2 from (i). However,
d1(t) ≡ t 6≡ t+ 1 ≡ d1(t+ 1) (mod 2), hence |d1(t+ 1)− d1(t)| = 1.

(iii) Since (2A)0 = 1 < ν−t, we have d′1(t) ≥ 2 and d1(t) ≥ 1. �

Lemma 4.2 (in VNC 1
∗)

(i) d′0(t) ≤ d′0(t+ 1) ≤ d′0(t) + 1.

(ii) d′0(t− 1) ≤ d0(t) ≤ d′0(t).

(iii) d0(t) ≤ d0(t+ 1) ≤ d0(t) + 1.

(iv) If d0(t) < d0(t+ 1), then d0(t) ≡ t (mod 2), and b(t, d0(t)) + c(t, i) ≤ dC/νe.

Proof: (i) follows from ν < 1 < Aν as in the proof of Lemma 4.1.
(ii) If d0(t) 6= d′0(t), then d′0(t) > d′0(t− 1) and d0(t) = d′0(t)− 1 by the definition.
(iii) We have d0(t) ≤ d′0(t) ≤ d0(t + 1) from (ii). d0(t + 1) ≥ d0(t) could only happen if

d0(t) < d′0(t) < d′0(t + 1) = d0(t + 1). The former inequality implies d0(t) = d′0(t − 1) ≡ t

(mod 2), hence d′0(t) = d0(t)+1 ≡ t+1 (mod 2), thus by the definition d0(t+1) = d′0(t+1)−1,
a contradiction.

(iv) If d0(t) < d′0(t), then d0(t) = d′(t − 1) ≡ t (mod 2). If d0(t) = d′0(t), we must have
d0(t+ 1) = d′0(t+ 1) > d′0(t), hence d0(t) = d′0(t) ≡ t (mod 2).

Since d0(t) < d′0(t+ 1), we have nAd0(t)νt+1 < C, hence

b(t, d0(t)) + c(t, i) = T (t, i)− 4s(t, d0(t) + 2) < T ′(t)− 4s′(t, d0(t) + 2) + 1

= b′(t, d0(t)) + c′(t) + 1 = nAd0(t)νt + 1 < 1 + Cν−1.

�

Lemma 4.3 (in VNC 1
∗) If d0 ≤ d ≤ d1, d ≡ t (mod 2), and i < 2d0, then b(t, d) > 0 and

c(t, i) > 0.

Proof: Since d0(t) ≥ d′0(t− 1), we have nAd0νt−1 ≥ C. As s(t, d) < s′(t, d) + 2, we obtain

b(t, d) = s(t, d)− 4s(t, d+ 2) > s′(t, d)− 4s′(t, d+ 2)− 8 = b′(t, d)− 8

=
(

1− 1
4A2

)
nAdνt − 8 ≥

(
1− 1

4A2

)
nAd0νt − 8 ≥

(
1− 1

4A2

)
Cν − 8 ≥ 0.

If d0 ≡ t (mod 2), we have

c(t, i) = T (t, i)− s(t, d0) > c′(t)− 3 =
n

4A2
Ad0νt − 3 ≥ Cν

4A2
− 3 ≥ 0.

Similarly, if d0 6≡ t (mod 2), then

c(t, i) >
Cν

2A
− 5 ≥ 0. �
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Lemma 4.4 (in VNC 1
∗) There exists

tm = min{t > 0 | d0(t) = d1(t)},

which satisfies tm ≤ cmdlog ne. We have d0(t) < d1(t) for all 0 < t < tm. Moreover,
d′1(t) ≤ blog nc for all t ≤ tm, and T (tm, i) ≤ dC/νe.

Proof: Put t = cmdlog ne and d = d′0(t). As ν−cm ≥ 2A, we have

C ≤ nAdνt ≤ nAd(2A)−dlog ne ≤ Ad−dlog ne,

thus d ≥ dlog ne and 2d ≥ n. This implies

(2A)d−2νt ≥ 1
4A2

nAdνt ≥ C

4A2
≥ 1,

hence d′1(t) < d′0(t), and d1(t) ≤ d0(t).
On the other hand, d1(0) = 1 > d0(0) = 0 from Lemma 4.1 and nν ≥ C, hence there

exists
tm := min{t > 0 | d1(t) ≤ d0(t)} ≤ cmdlog ne.

We have d0(tm − 1) < d1(tm − 1). By Lemmas 4.1 and 4.2 we obtain d0(tm) = d1(tm) unless
d0(tm − 1) = d1(tm), d1(tm − 1) = d0(tm) = d1(tm) + 1. But then tm − 1 ≡ d0(tm − 1) =
d1(tm) ≡ tm (mod 2), a contradiction.

As d0(tm) = d1(tm), we have

T (tm, i) = c(tm, i) + s(tm, d0) ≤ c(tm, i) + b(tm, d0) ≤ dC/νe

by Lemma 4.2. Finally, bn2−d0(tm)c = T (tm, 0) = s(tm, d0(tm)) + c(tm, 0) ≥ 2 by Lemma 4.3,
hence d′1(t) ≤ d1(tm) + 1 = d0(tm) + 1 ≤ blog nc for any t ≤ tm. �

The Lemma below implies, among others, that Case 4 makes sense.

Lemma 4.5 (in VNC 1
∗) If d0(t + 1) ≤ d < d1(t) and d 6≡ t (mod 2), then s(t + 1, d) >

2s(t, d+ 1).

Proof: We have

s(t+ 1, d)− 2s(t, d+ 1) ≥ s′(t+ 1, d)− 2s′(t, d+ 1)− 4

=
n

2d

(
1− (2A)d−2νt+1 − 1 + (2A)d−1νt

)
− 4

=
n

4A2
Adνt(2A− ν)− 4 ≥ C

4A2
(2A− ν)− 4 > 0.

�

The following Lemma ensures that the 〈l, ε, ε0〉-separator in Cases 1 and 2 is used correctly.

Lemma 4.6 (in VNC 1
∗) Let d0(t) ≤ d < d1(t + 1), d ≡ t (mod 2), m = h(t, d), and

l = s(t, d)− 2s(t+ 1, d+ 1). Then m ≥ l ≥ mλ0.
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Proof: Recall that b′(t, d) =
(
1− (4A2)−1

)
nAdνt. Put l′ = s′(t, s)−2s′(t+1, d+1). We have

l′ =
n

2d

(
1− (2A)d−2νt

)
− n

2d

(
1− (2A)d−1νt+1

)
=

n

2d
(2A)d−2νt(2Aν − 1)

= nAdνt 1
4A2

(4A2λ+ 1− λ− 1) =
(

1− 1
4A2

)
nAdνtλ = λb′(t, d).

If d = d1(t), then l ≤ s(t, d) = m. Otherwise

m− l = 2s(t+ 1, d+ 1)− 4s(t, d+ 2) > 0

by Lemma 4.5.
For the other inequality, we have

l

m
≥ l

b(t, d)
= 1− 2s(t+ 1, d+ 1)− 4s(t, d+ 2)

s(t, d)− 4s(t, d+ 2)
≥ 1− 2s(t+ 1, d+ 1)− 4s(t, d+ 2)

s′(t, d)− 4s(t, d+ 2)

=
s′(t, d)− 2s(t+ 1, d+ 1)
s′(t, d)− 4s(t, d+ 2)

≥ s′(t, d)− 2s′(t+ 1, d+ 1)− 4
s′(t, d)− 4s′(t, d+ 2)

=
l′ − 4
b′(t, d)

≥ λ− 4(
1− (4A2)−1

)
Cν

≥ λ0.

�

The next Lemma shows that the splitting in Case 3 make sense.

Lemma 4.7 (in VNC 1
∗) Let t < tm be such that d0(t) < d0(t + 1), and i < 2d0(t). Put

xα = T (t + 1, 2i + α) − 2s(t, d0(t) + 2) for α = 0, 1. Then x0 + x1 = b(t, d0(t)) + c(t, i) and
xα ≥ c(t+ 1, 2i+ α).

Proof: As d0(t+ 1) = d0(t) + 1, we have

T (t+ 1, 2i) + T (t+ 1, 2i+ 1) = b(2i+ 2)n2−d0(t+1)c − b2in2−d0(t+1)c

= b(i+ 1)n2−d0(t)c − bin2−d0(t)c = T (t, i).

Then clearly
b(t, d0(t)) + c(t, i) = T (t, i)− 4s(t, d0(t) + 2) = x0 + x1.

Since d0(t+ 1) ≡ t+ 1 (mod 2), we have

xα − c(t+ 1, 2i+ α) = s(t+ 1, d0(t) + 1)− 2s(t, d0(t) + 2) > 0

by Lemma 4.5. �

Lemma 4.8 (in VNC 1
∗) Let t < tm, d0(t+ 1) ≤ d ≤ d1(t+ 1), d ≡ t+ 1 (mod 2). Then the

total number of elements sent from stage t to any bag of level d is h(t+ 1, d). If i < 2d0(t+1),
the number of elements sent to the ith cold storage is c(t+ 1, i).
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Proof: We start with the cold storage. If d0(t) < d0(t + 1), the cold storage gets c(t + 1, i)
elements by Case 3. Let thus d0(t) = d0(t+ 1). If d0 6≡ t (mod 2), there remain

c(t, i)− (s(t+ 1, d0)− 2s(t, d0 + 1)) = T (t, i)− s(t+ 1, d0) = c(t+ 1, i)

elements in the cold storage by Case 4. Otherwise, we get

c(t, i) + (s(t, d0)− 2s(t+ 1, d0 + 1)) = T (t, i)− 2s(t+ 1, d0 + 1) = c(t+ 1, i)

elements by Case 2.
Now we turn to regular bags. First assume d > d1(t), hence d = d1(t+ 1). We get

1
2

(
s(t, d− 1)− (s(t, d− 1)− 2s(t+ 1, d))

)
= s(t+ 1, d) = h(t+ 1, d)

elements from the parent by Case 1 or 2. Let thus assume d < d1(t).
If d > d0(t+ 1), we obtain

1
2

(
b(t, d− 1)− (s(t, d− 1)− 2s(t+ 1, d))

)
= s(t+ 1, d)− 2s(t, d+ 1)

elements from the parent by Case 1 or 2. If d = d0(t+1) = d0(t), we get s(t+1, d)−2s(t, d+1)
elements from cold storage by Case 4. If d = d0(t+ 1) > d0(t), we get

T (t+ 1, i)− 2s(t, d+ 1)− c(t+ 1, i) = s(t+ 1, d)− 2s(t, d+ 1)

elements from splitting of the parent by Case 3. Thus, in all cases, the bag obtains

s(t+ 1, d)− 2s(t, d+ 1)

elements “from above”.
If d = d1(t+ 1), then we obtain s(t, d+ 1) elements from each child by Case 1, hence we

get s(t+ 1, d) = h(t+ 1, d) elements in total.
If d < d1(t + 1), then we cannot have d + 1 = d1(t) > d1(t + 1). We thus obtain

s(t, d+ 1)− 2s(t+ 1, d+ 2) elements from each child by Case 1. We have

s(t+ 1, d)− 2s(t, d+ 1) + 2(s(t, d+ 1)− 2s(t+ 1, d+ 2))

= s(t+ 1, d)− 4s(t+ 1, d+ 2) = b(t+ 1, d) = h(t+ 1, d)

elements in total. �

Having checked that the network is coherently defined, we turn our attention to its be-
haviour when evaluated. In order to simplify the analysis, we first consider the special case
when the input is a permutation of the sequence 0, . . . , n−1 (the most important point being
that the inputs are pairwise distinct), and ≤ is the usual ordering. We fix an evaluation of
the network on such input. (Strictly speaking, we only defined evaluation of a network on set
inputs, not number inputs. We can encode numbers k < n by sets in a straightforward way,
e.g., by {k}.)
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We associate with each bag B its natural interval in [0, n): the ith bag on level d in the
left-to-right order corresponds to the interval

I(d, i) =
[
bin2−dc, b(i+ 1)n2−dc

)
.

An element x of the bag B whose value is outside I(d, i) is called a stranger, and its strangeness
is defined as the smallest number j such that x belongs to the natural interval of B’s ancestor
on level d− j, i.e., I(d− j, bi2−jc). We let Sj(t, d, i) denote the number of elements of B at
stage t of strangeness at least j. Let ξ(t) denote the NC 1

∗-formula which is the conjunction
of the following conditions:

(i) For every i < 2d0 , the values of all elements of the ith tree (including its cold storage)
at stage t belong to I(d0, i).

(ii) For every d, i, j such that d0 ≤ d ≤ d1, i < 2d, and 0 < j ≤ d− d0, we have

Sj(t, d, i) ≤ µδjb′(t, d),

where we put µ = 10, δ = 1/270.

Lemma 4.9 (in VNC 1
∗) If ξ(t) holds, then condition (i) of ξ(t+ 1) also holds.

Proof: If d0(t) = d0(t + 1), the conclusion is trivial, as element movements respect tree
boundaries. Let us thus assume d0(t + 1) = d0(t) + 1, and denote d0 = d0(t) for short. Fix
i < 2d0 . We know by ξ(t) that all elements of the 2ith and the (2i+ 1)th tree at stage t+ 1,
which come from the ith tree at stage t, belong to I(d0, i) = I(d0 + 1, 2i) ∪̇ I(d0 + 1, 2i+ 1).

Consider d > d0 such that d ≡ t (mod 2), and i′ < 2d such that bi′2d0−dc = i. Note that
d ≥ d0 + 2. Since Aδ ≤ 1, we have

Sd−d0(t, d, i
′) ≤ µδd−d0b′(t, d) = µδd−d0Ad−d0b′(t, d0) ≤ µ(Aδ)2b′(t, d0)

= µ(Aδ)2
(

1− 1
4A2

)
nAd0νt < µ(Aδ)2

(
1− 1

4A2

)
Cν−1 ≤ 1,

using ξ(t), and nAd0νt+1 < C, which follows from d0 < d′0(t + 1). This means that every
element of the i′th bag on level d at stage t has strangeness less than d − d0, i.e., it belongs
to the interval I(d0 + 1, bi′2d0+1−dc). On the other hand, these elements end up in the
bi′2d0+1−dcth tree at stage t+ 1, as required.

The remaining elements of the 2ith and (2i + 1)th tree at stage t + 1 come from the
root and cold storage of the ith tree at stage t. We know from above that there are exactly
2s(t, d0 + 2) elements of I(d0 + 1, 2i) and 2s(t, d0 + 2) elements of I(d0 + 1, 2i + 1) in the
rest of the ith tree at stage t. Since I(d0 + 1, 2i) and I(d0 + 1, 2i + 1) have T (t + 1, 2i) and
T (t+1, 2i+1) elements in total, respectively, the root and cold storage of the ith tree at stage
t contain T (t+ 1, 2i)− 2s(t, d0 + 2) elements of I(t+ 1, 2i), and T (t+ 1, 2i+ 1)− 2s(t, d0 + 2)
elements of I(t+ 1, 2i+ 1). By Case 3 of the definition of the network, we send the smallest
T (t + 1, 2i) − 2s(t, d0 + 2) of these elements to the 2ith tree at stage t + 1, and the largest
T (t+ 1, 2i+ 1)− 2s(t, d0 + 2) elements to the (2i+ 1)th tree. As elements of I(t+ 1, 2i) are
smaller than elements of I(t+ 1, 2i+ 1), all these elements end up in the correct tree. �

16



Lemma 4.10 (in VNC 1
∗) If ξ(t) holds, d0(t+ 1) ≤ d ≤ d1(t+ 1), d ≡ t+ 1 (mod 2), i < 2d,

and 2 ≤ j ≤ d− d0(t+ 1), then Sj(t+ 1, d, i) ≤ µδjb′(t+ 1, d).

Proof: Note that d0(t + 1) < d − 1. Denote by B the ith bag on level d. Elements of B of
strangeness j or more at stage t+1 come from two sources: elements of B’s children at stage
t of strangeness at least j + 1, and elements of B’s parent at stage t of strangeness at least
j − 1, both using Case 1 of the definition of the network.

Using ξ(t), the number of elements of B’s children with strangeness j + 1 or more is at
most

(∗) 2µδj+1b′(t, d+ 1).

Let P be B’s parent. The number of elements of P of strangeness j − 1 or more at stage
t is

k := Sj−1(t, d− 1, bi/2c) ≤ µδj−1b′(t, d− 1).

Let a be the number of elements of P whose value is smaller than x, and b the number of
elements of P whose value is at least y, where I(d− j, bi2−jc) = [x, y), so that a+ b = k. Put

l = s(t, d− 1)− 2s(t+ 1, d).

By Case 1, we apply to P ’s content an 〈l, ε, ε0〉-separator S, and send the part CL ∪ CR of
its output to B.

Notice that b′(t, d− 1) ≥
(
1− (4A2)−1

)
Cν by the proof of Lemma 4.3. Using the proof of

Lemma 4.6, we obtain

l ≥ s′(t, d− 1)− 2s′(t+ 1, d)− 4 = λb′(t, d− 1)− 4

≥

(
λ− 4(

1− (4A2)−1
)
Cν

)
b′(t, d− 1) ≥ 2µδ b′(t, d− 1) ≥ 2k,

hence a, b ≤ l/2. Let F (u) ∈ {0, 1} be defined by F (u) = 1 iff u ≥ x. The application of
F to the elements of P gives a 0-1 sequence with a zeros. If we evaluate S on this input, at
most εa zeros end up outside FL by Definition 3.6. Using Lemma 2.4, the application of S
to P sends at most εa elements smaller than x to CL ∪CR ∪ FR. By a similar argument, at
most εb elements greater than or equal to y end up in CL ∪ CR ∪ FL. In total, the number
of elements outside I(d− j, bi2−jc) sent from P to B is at most

(∗∗) εa+ εb = εk ≤ εµδj−1b′(t, d− 1).

Putting (∗) and (∗∗) together, we see that at stage t+ 1, B contains at most

2µδj+1b′(t, d+ 1) + εµδj−1b′(t, d− 1) =
(

2Aδ
ν

+
ε

Aδν

)
µδjb′(t+ 1, d) ≤ µδjb′(t+ 1, d)

elements of strangeness j or more. �
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Lemma 4.11 (in VNC 1
∗) If ξ(t) holds, d0(t + 1) < d ≤ d1(t + 1), d ≡ t + 1 (mod 2), and

i < 2d, then S1(t+ 1, d, i) ≤ µδ b′(t+ 1, d).

Proof: Let B be the ith bag on level d, P its parent, and B′ its sibling. Let i′ = i + (−1)i

be the label of B′, and put I = I(d, i), I ′ = I(d, i′).
Strangers in B at stage t+ 1 come from two sources: elements of strangeness at least 2 in

B’s children at stage t, of whom there are at most

(∗) 2µδ2b′(t, d+ 1) = 2Aµδ2b′(t, d),

and elements of P at stage t sent downwards to B which are either strangers in P , or belong
to I ′.

The number of elements of the subtree below B′ at stage t which do not belong to I ′ is

d1−d∑
j=1

j odd

2j(i′+1)−1∑
ı̂=2ji′

Sj+1(t, d+ j, ı̂) ≤
d1−d∑
j=1

j odd

2jµδj+1Ajb′(t, d)

= 2Aµδ2b′(t, d)
(d1−d−1)/2∑

k=0

(2Aδ)k ≤ 2Aµδ2

1− 4A2δ2
b′(t, d) =: αb′(t, d).

This subtree thus contains at least 2s(t, d+ 1)− αb′(t, d) elements of I ′, hence P contains

x ≤ card I ′ − 2s(t, d+ 1) + αb′(t, d) ≤ 1 + αb′(t, d) +
n

2d
− 2s′(t, d+ 1)

= 1 + αb′(t, d) +
n

2d
(2A)d−1νt = 1 +

(
α+

2A
4A2 − 1

)
b′(t, d)

elements of I ′. P also contains

y + z ≤ µδ b′(t, d− 1) =
µδ

A
b′(t, d)

strangers, where y is the number of elements below min(I ∪ I ′), and z the number of elements
above max(I ∪ I ′).

Assume that i is even (i.e., I < I ′); the other case is symmetric. Remember that we apply
a 〈l, ε, ε0〉-separator (hence an ε0-halver) to P , and send the content of CL to B. Let c be
the element of P which splits it in half, i.e., there are 1

2b(t, d− 1) elements of P greater than
c. Define F (u) ∈ {0, 1} by F (u) = 1 iff u > c. By Definition 3.3 and Lemma 2.4, there are at
most (ε0/2)b(t, d − 1) elements of P greater than c which end up in FL ∪ CL. Furthermore,
there are at most max

{
0, x + z − 1

2b(t, d − 1)
}

elements greater than max I below c, and y

elements smaller than min I. The total number of elements outside I in CL is thus bounded
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by

y + max
{
0, x+ z − 1

2b(t,d− 1)
}

+
ε0
2
b(t, d− 1)

≤ 1 +
(
α+

2A
4A2 − 1

+
µδ

A

)
b′(t, d)− 1− ε0

2
b(t, d− 1)

≤ 5 +
(
α+

2A
4A2 − 1

+
µδ

A

)
b′(t, d)− 1− ε0

2
b′(t, d− 1)

= 5 +
(
α+

2A
4A2 − 1

+
µδ

A
− 1− ε0

2A

)
b′(t, d)

≤

(
α+

1
2A(4A2 − 1)

+
µδ

A
+
ε0
2A

+
5(

1− (4A2)−1
)
ACν

)
b′(t, d),

as b′(t, d − 1) ≥
(
1 − (4A2)−1

)
Cν by the proof of Lemma 4.3. Combining this with (∗), we

see that the number of strangers in B at stage t+ 1 is at most(
2Aµδ2

1− 4A2δ2
+

1
2A(4A2 − 1)

+
µδ

A
+
ε0
2A

+
5(

1− (4A2)−1
)
ACν

+ 2Aµδ2
)
b′(t, d)

≤ µδν b′(t, d) = µδ b′(t+ 1, d).

�

Theorem 4.12 Under Assumption 3.2, there exists an NC 1
∗-function N(n), and a constant

c such that VNC 1
∗ proves the following:

For every n > 0, N(n) is a comparator network on n inputs of depth at most c log n. If ≤ is
a total ordering defined by an NC 1

∗-formula, and 〈Xi | i < n〉 a sequence of sets in the domain
of ≤, then there exists a permutation π of n such that eval(N(n),≤, ~X) = 〈Xπ(i) | i < n〉,
and Xπ(i) ≤ Xπ(j) for every i ≤ j < n.

Proof: If n ≤ C/ν, we let N(n) be any sorting network on n inputs, otherwise we define
N(n) as the network described in Section 3. Clearly, N(n) is a comparator network on n

inputs of depth at most cm(p+ 1)D2dlog ne+O(1).
First, let ~X be a permutation of 〈0, . . . , n−1〉, and ≤ the usual ordering. For every t < tm,

ξ(t) implies ξ(t+1) by Lemmas 4.9, 4.10, and 4.11, and ξ(0) holds trivially. Using induction,
we obtain ξ(tm). By condition (i), each of the 2d0 constant-size trees at stage tm contains
elements of its corresponding subinterval of [0, n), hence after the final application of sorting
subnetworks on the trees, the result is fully sorted.

In the general case, we pick a permutation π on n such that Xπ(i) ≤ Xπ(j) for each i ≤ j by
Lemma 2.6. Put xi = π−1(i), and F (i) = Xπ(i). Clearly F (~x) = ~X, and eval(N(n),≤, ~x) =
〈0, . . . , n− 1〉 by the first part of the proof, hence eval(N(n),≤, ~X) = 〈F (0), . . . , F (n− 1)〉 =
〈Xπ(i) | i < n〉 by Lemma 2.4. �

5 Monotone sequent calculus

The monotone sequent calculus MLK is the fragment of the usual Gentzen propositional
sequent calculus LK where we allow only sequents consisting of monotone formulas, i.e.,
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propositional formulas built using the connectives {∧,∨,⊥,>}. The calculus thus uses struc-
tural rules, the initial rule (axiom), the cut rule, and left and right introduction rules for ∧,
∨, ⊥, and >. Its introduction was originally motivated by results in circuit complexity [12, 3]
showing exponential lower bounds on the size of monotone circuits; the hope was that these
can be transformed to an exponential separation between MLK and LK . Atserias et al. [5]
proved that this is not the case, as MLK quasipolynomially simulates LK :

Theorem 5.1 ([5]) A monotone sequent in n variables which has an LK-proof of size s has
also an MLK-proof of size sO(1)nO(log n) with sO(1) lines. �

It remains an open problem (called the Think Positively Conjecture by Atserias [4]) whether
we can improve this quasipolynomial simulation to a p-simulation, i.e., whether there exists
a polynomial-time algorithm transforming an LK -proof of a monotone sequent to an MLK -
proof of the same sequent. Atserias et al. [5] suggested the following approach to attack the
problem, relying on a construction of suitable monotone formulas for the threshold functions

θn
m(x0, . . . , xn−1) = 1 ⇔ card{i | xi = 1} ≥ m.

Theorem 5.2 ([5]) Assume that there are monotone formulas Tn
m(p0, . . . , pn−1) for m ≤

n+ 1 such that the formulas

Tn
0 (p0, . . . , pn−1)(1)

¬Tn
n+1(p0, . . . , pn−1)(2)

Tn
m(p0, . . . , pk−1,⊥, pk+1, . . . , pn−1) → Tn

m+1(p0, . . . , pk−1,>, pk+1, . . . , pn−1)(3)

for m ≤ n, k < n have LK-proofs constructible in time nO(1). Then MLK p-simulates
LK-proofs of monotone sequents. �

A remarkable feature of Theorem 5.2 is that in the conclusion we construct MLK -proofs from
LK -proofs, nevertheless in the assumption we only require the existence of LK -proofs. This
significantly broadens the range of methods admissible for proving (1)–(3), and in particular,
we can use propositional translations of proofs in bounded arithmetic.

Recall that the sequent calculus LK is p-equivalent to Frege systems: these are proof sys-
tems given by a sound and implicationally complete finite set of rules of the form ϕ1, . . . , ϕn/ϕ,
such that a Frege proof of ϕ is a sequence of formulas ending with ϕ where each formula is
derived from previous formulas by a substitution instance of a basic rule. As shown in
[8], NC 1

∗-formulas provable in VNC 1
∗ translate to families of propositional tautologies with

polynomial-time Frege proofs. The translation works as follows. For each NC 1
∗-formula

ϕ(x1, . . . , xr, X1, . . . , Xs) (i.e., ϕ ∈ ΣB
0 (LVNC 1

∗
)) and natural numbers n1, . . . , nr,m1, . . . ,ms,

we define a propositional formula

[[ϕ(~x, ~X)]]~n,~m(p1,0, . . . , p1,m1−1, . . . , ps,0, . . . , ps,ms−1).

Let X1, . . . , Xs be sets such that |Xi| ≤ mi, and let X̃i denote the propositional assignment
which gives the value 1 to the variable pi,k iff k ∈ Xi. Then the translation satisfies

(∗) [[ϕ]]~n,~m(X̃1, . . . , X̃s) = 1 ⇔ N � ϕ(~n, ~X).
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In particular, if (the universal closure of) ϕ is valid in N, then [[ϕ]]~n,~m is a sequence of
tautologies. The translation of compound formulas is defined by

[[ϕ ◦ ψ]]~n,~m = [[ϕ]]~n,~m ◦ [[ψ]]~n,~m, ◦ ∈ {∧,∨,¬},

[[∃x ≤ t ϕ]]~n,~m =
∨

k≤bt(~n,~m)

([[x ≤ t]]k,~n,~m ∧ [[ϕ]]k,~n,~m),

[[∀x ≤ t ϕ]]~n,~m =
∧

k≤bt(~n,~m)

([[x ≤ t]]k,~n,~m → [[ϕ]]k,~n,~m),

where bt is a suitable L0-term such that t(~n, ~X) ≤ bt(~n, ~m) whenever |Xi| ≤ mi for each i.
The definition of [[ϕ]] for atomic formulas ϕ is more tedious and involves translation of terms
as well as formulas, but it proceeds in a more-or-less expected way, we refer the reader to [8]
for details.

Theorem 5.3 ([8]) If ϕ is an NC 1
∗-formula such thatVNC 1

∗ ` ϕ, then the tautologies [[ϕ]]~n,~m

have Frege proofs constructible in time poly(~n, ~m). �

Sorting a 0-1 input amounts to counting the number of ones, hence the AKS network
evaluated on a 0-1 input gives monotone circuits for threshold functions of logarithmic depth,
which can be unwinded into polynomial-size formulas. (We mention here that there is also
an elegant simple construction of monotone polynomial-size formulas for threshold functions
by Valiant [14]. Unfortunately, this construction is probabilistic, hence it does not give
concrete formulas with any hope of being formalizable by short Frege proofs.) Since funda-
mental properties of the network are provable inVNC 1

∗, we can use Theorem 5.3 to construct
polynomial-time Frege proofs of (1)–(3). We proceed with the details.

Let N(n) be the NC 1
∗-function computing a log-depth sorting network as in Theorem 4.12.

Let ϕ(n, e, f, h, l) be an NC 1
∗-formula expressing that there exists a comparator in N(n) whose

input edges are e, f , and whose higher and lower output edges are h and l, respectively. Using
Lemma 2.3, there is an NC 1

∗-formula ψ(n, e,X) expressing that edge e in N(n) evaluates to
1 on a 0-1 input X. Finally, let χ(n, i,X) denote the NC 1

∗-formula i ∈ eval(N(n),≤, X). We
define a monotone propositional formula An,e for each edge e of N(n) as follows. If e is the
outgoing edge of the ith input node, we put

An,e = pi.

If ϕ(n, e, f, h, l), we define

An,h = An,e ∨An,f ,

An,l = An,e ∧An,f .

Notice that the depth of An,e is the depth of e in N(n), which is bounded by O(log n), thus
An,e has polynomial size. If 0 < m ≤ n, and e is the incoming edge of the (n−m)th output
node of N(n), we put

Tn
m = An,e.

21



We also define

Tn
n+1 = ⊥,
Tn

0 = >.

Lemma 5.4 There are polynomial-time Frege proofs of the formulas

Tn
m ↔ [[m ≤ cardX]]m,n.

Proof: AsVNC 1
∗ proves the formula

α = ϕ(n, e, f, h, l) → [(ψ(n, h,X) ↔ ψ(n, e,X) ∨ ψ(n, f,X))

∧ (ψ(n, l,X) ↔ ψ(n, e,X) ∧ ψ(n, f,X))],

its translation [[α]]n,e,f,h,l,n has polynomial-time Frege proofs. If e, f, h, l are the respective
input and output edges of a comparator in N(n), then [[ϕ]]n,e,f,h,l is a true Boolean sentence,
hence it has a polynomial-time Frege proof. We obtain proofs of the formulas

[[ψ]]n,h,n ↔ [[ψ]]n,e,n ∨ [[ψ]]n,f,n,

[[ψ]]n,l,n ↔ [[ψ]]n,e,n ∧ [[ψ]]n,f,n.

If e is the outgoing edge of the ith input node in N(n), and f is the incoming edge of the ith
output node, we can similarly construct proofs of

[[ψ]]n,e,n ↔ pi,

[[ψ]]n,f,n ↔ [[χ(n, i,X)]]n,i,n.

Then we can construct proofs of
An,e ↔ [[ψ]]n,e,n

by induction on the depth of e, and we derive

Tn
m ↔ [[χ]]n,n−m,n

for 0 < m ≤ n. By Theorem 4.12 and the proof of Lemma 2.6,VNC 1
∗ proves

|X| ≤ n→ (χ(n, i,X) ↔ cardX ≥ n− i).

As there are short proofs of [[|X| ≤ n]]n,n, we obtain short proofs of

[[χ]]n,n−m,n ↔ [[cardX ≥ m]]m,n,

and we conclude
Tn

m ↔ [[cardX ≥ m]]m,n

for 0 < m ≤ n. The cases m = 0 and m = n+ 1 follow from translation of the formulas

cardX ≥ 0,

|X| ≤ n→ ¬(cardX ≥ n+ 1),

provable inVNC 1
∗. �
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Theorem 5.5 Under Assumption 3.2, the monotone sequent calculus MLK p-simulates LK-
proofs of monotone sequents.

Proof: In view of Theorem 5.2, it suffices to construct polynomial-time Frege proofs of (1)–(3)
for the formulas Tn

m defined above. (1) and (2) are trivial. VNC 1
∗ proves

∀u < n (u 6= k ∧X(u) → Y (u)) ∧ ¬X(k) ∧ Y (k) ∧ |Y | ≤ n

→ (m ≤ cardX → m+ 1 ≤ cardY ),

thus its (slightly simplified) propositional translation∧
u<n
u 6=k

(pu → qu) ∧ ¬pk ∧ qk → ([[u ≤ cardX]]m,n(~p) → [[u ≤ cardX]]m+1,n(~q))

for n ∈ ω, m ≤ n, and k < n has poly-time constructible Frege proofs. We substitute ⊥ for
pk, > for qk, and pu for qu, u 6= k, in the proof. We obtain

[[u ≤ cardX]]m,n(p0, . . . , pk−1,⊥, pk+1, . . . , pn−1)

→ [[u ≤ cardX]]m+1,n(p0, . . . , pk−1,>, pk+1, . . . , pn−1),

from which we derive

Tn
m(p0, . . . , pk−1,⊥, pk+1, . . . , pn−1) → Tn

m+1(p0, . . . , pk−1,>, pk+1, . . . , pn−1)

using Lemma 5.4. �

6 Open problems

The main problems we left open were already mentioned:

Problem 6.1 Is Assumption 3.2 valid?

Problem 6.2 Does MLK p-simulate LK on monotone sequents?

We also touched a problem of a more computational nature: as mentioned in the Intro-
duction, the reason for using VNC 1

∗ instead of VNC 1 is that we do not know whether the
AKS network is sufficiently uniform. In the most important 0-1 case, we can formulate it as
the following problem in circuit complexity.

Definition 6.3 A language L ⊆ {0, 1}∗ belongs to uniform monotone NC 1 (mNC 1 for short)
if it satisfies any of the following conditions, which can be shown equivalent by a straightfor-
ward adaptation of the arguments by Ruzzo [13]:

(i) L is computable by a log-time alternating Turing machine whose input queries are
restricted so that they force the machine to halt with the same result as the queried
input bit.
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(ii) L is computable by a UE-uniform sequence of log-depth bounded fan-in monotone cir-
cuits.

(iii) L is computable by a UE∗-uniform sequence of log-depth bounded fan-in monotone
circuits.

(iv) L is computable by a sequence of log-depth monotone formulas, ALOGTIME -uniform
in the usual infix notation.

Problem 6.4 Is Majority in mNC 1?

As is, the AKS network only seems to provide UD∗-uniform circuits for Majority (where UD∗

is to UD as UE∗ is to UE).
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