
Descriptional Complexity of Grammars
Regulated by Context Conditions

Tomáš Masopust and Alexander Meduna

Faculty of Information Technology, Brno University of Technology
Božetěchova 2, Brno 61266, Czech Republic

masopust@fit.vutbr.cz, meduna@fit.vutbr.cz

Abstract. This paper improves several well-known results concerning
the descriptional complexity of grammars regulated by context condi-
tions. Specifically, it proves that every recursively enumerable language
is generated (A) by a context-conditional grammar of degree (2, 1) with
no more than seven conditional productions and eight nonterminals, (B)
by a generalized forbidding grammar of degree two with no more than
eight conditional productions and ten nonterminals, or (C) by a sim-
ple semi-conditional grammar of degree (2, 1) with no more than nine
conditional productions and ten nonterminals.

Key words: formal languages, descriptional complexity, context-conditional
grammars, generalized forbidding grammars, simple semi-conditional grammars

1 Introduction

Grammars with derivations regulated by various context conditions have always
represented an important investigation area of language theory (see [1] for an
overview). The present paper continues with this vivid topic of language theory
by investigating their descriptional complexity. Specifically, it studies the de-
scriptional complexity of context-conditional, generalized forbidding, and simple
semi-conditional grammars.

Recall that every recursively enumerable language is generated (1) by a
context-conditional grammar, (2) by a generalized forbidding grammar of de-
gree two with no more than thirteen conditional productions and fifteen non-
terminals (see [2]), or (3) by a simple semi-conditional grammar of degree (2, 1)
with no more than ten conditional productions and twelve nonterminals (see
[3]). This paper improves these results. Specifically, it proves that every recur-
sively enumerable language is generated (A) by a context-conditional grammar
of degree (2, 1) with no more than seven conditional productions and eight non-
terminals, (B) by a generalized forbidding grammar of degree two with no more
than eight conditional productions and ten nonterminals, or (C) by a simple
semi-conditional grammar of degree (2, 1) with no more than nine conditional

productions and ten nonterminals. In fact, we establish all these results for gram-
mars with context conditions represented by strings consisting solely of nonter-
minals as opposed to the previous results that allow terminals to appear in them
as well.

2 Preliminaries

In this paper, we assume that the reader is familiar with the theory of formal
languages (see [4, 5]). For an alphabet V , V ∗ represents the free monoid generated
by V . The unit of V ∗ is denoted by ε. Set V + = V ∗ − {ε}. For w ∈ V ∗, |w|
denotes the length of w. Set sub(w) = {u : u is a subword of w}. For a finite
subset W ⊆ V ∗, max(W) is the minimal nonnegative integer n such that |x| ≤ n,
for all x ∈ W .

Recall that every recursively enumerable language is generated by a grammar,
G1, in the Geffert normal form (see [6]) of the form

G1 = ({S, A,B,C}, T, P ∪ {ABC → ε}, S),

where P contains context-free productions of the form

S → uSa, where u ∈ {A,AB}∗, a ∈ T ,
S → uSv, where u ∈ {A,AB}∗, v ∈ {BC, C}∗,
S → uv, where u ∈ {A,AB}∗, v ∈ {BC, C}∗.

In addition, any derivation in G1 generating a terminal string is of the form
S ⇒∗ w1w2w by productions from P , where w1 ∈ {A,AB}∗, w2 ∈ {BC, C}∗,
w ∈ T ∗, and w1w2w ⇒∗ w by the production ABC → ε.

3 Definitions

A context-conditional grammar, G, is a quadruple G = (N,T, P, S), where N
is a nonterminal alphabet, T is a terminal alphabet, N ∩ T = ∅, S ∈ N is the
start symbol, and P is a finite set of productions of the form (X → α,Per,For),
where X ∈ N , α ∈ (N ∪ T)∗, and Per,For ⊆ (N ∪ T)+ are finite sets. If
Per ∪For 6= ∅, then the production is said to be conditional. G has degree (i, j) if
for all productions (X → α,Per,For) ∈ P , max(Per) ≤ i and max(For) ≤ j. For
x ∈ (N ∪T)+ and y ∈ (N ∪T)∗, x directly derives y according to the production
(X → α,Per,For) ∈ P , denoted by x ⇒ y, if x = x1Xx2, y = x1αx2, for some
x1, x2 ∈ (N ∪ T)∗, Per ⊆ sub(x) and For ∩ sub(x) = ∅. As usual, ⇒ is extended
to ⇒i, for i ≥ 0, ⇒+, and ⇒∗. The language generated by a context-conditional
grammar, G, is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}.

Let G = (N,T, P, S) be a context-conditional grammar. If Per = ∅, for all
productions (X → α,Per,For) ∈ P , then G is said to be a generalized forbidding
grammar. In this case, (X → α, For) is written instead of (X → α, ∅, For), and
G is said to have degree i if G has degree (0, i) as a context-conditional grammar.

A simple semi-conditional grammar, G, is a quadruple G = (N,T, P, S),
where N is a nonterminal alphabet, T is a terminal alphabet, N ∩T = ∅, S ∈ N
is the start symbol, and P is a finite set of productions of the form (X → α, u, v),
where X ∈ N , α ∈ (N ∪ T)∗, u, v ∈ (N ∪ T)+ ∪ {0}, 0 6∈ N ∪ T is a special
symbol, and 0 ∈ {u, v}. If u 6= 0 or v 6= 0, then the production is said to be
conditional. G has degree (i, j) if for all productions (X → α, u, v) ∈ P , u 6= 0
implies |u| ≤ i and v 6= 0 implies |v| ≤ j. For x ∈ (N ∪ T)+ and y ∈ (N ∪ T)∗,
x directly derives y according to the production (X → α, u, v) ∈ P , denoted by
x ⇒ y, if x = x1Xx2, y = x1αx2, for some x1, x2 ∈ (N ∪ T)∗, and u 6= 0 implies
that u ∈ sub(x) and v 6= 0 implies that v 6∈ sub(x). As in the previous definition,
⇒ is extended to ⇒i, for i ≥ 0, ⇒+, and ⇒∗. The language generated by a
simple semi-conditional grammar, G, is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}.

4 Main Results

This section presents the main results of this paper.

4.1 Context-Conditional Grammars

Theorem 1. Every recursively enumerable language is generated by a context-
conditional grammar of degree (2, 1) with no more than 7 conditional productions
and 8 nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar
G1 = ({S, A,B,C}, T, P ∪{ABC → ε}, S) in the Geffert normal form such that
L = L(G1). Construct the grammar

G = ({S, A,B,C,A′, B′, C ′, B′′}, T, P ′ ∪ P ′′, S),

where
P ′ = {(X → α, ∅, ∅) : X → α ∈ P},

and P ′′ contains the following seven conditional productions:

1. (A → A′, ∅, {A′, B′′}),
2. (B → B′, ∅, {B′, B′′}),
3. (C → C ′, ∅, {C ′, B′′}),
4. (B′ → B′′, {A′B′, B′C ′}, ∅),
5. (A′ → ε, {B′′}, ∅),
6. (C ′ → ε, {B′′}, ∅),
7. (B′′ → ε, ∅, {A′, C ′}).

To prove that L(G1) ⊆ L(G), consider a derivation S ⇒∗ wABCw′v ⇒ ww′v
in G1 by productions from P and the only one production ABC → ε, where
w,w′ ∈ {A,B, C}∗ and v ∈ T ∗. Then, S ⇒∗ wABCw′v in G by productions
from P ′. By productions 1, 2, 3, 4, 5, 6, and 7,

wABCw′v ⇒ wA′BCw′v
⇒ wA′B′Cw′v
⇒ wA′B′C ′w′v
⇒ wA′B′′C ′w′v
⇒ wB′′C ′w′v
⇒ wB′′w′v
⇒ ww′v.

The inclusion follows by induction.
To prove that L(G1) ⊇ L(G), consider a terminal derivation. Notice that to

eliminate a nonterminal, there is B′′ in the derivation. From production 4 and
the observation that there is no more than one A′, B′, C ′ in the derivation (see
productions 1, 2, 3), there cannot be a terminal between any two nonterminals.
Therefore, the derivation is of the form S ⇒∗ w1w2w3 in G by productions from
P ′, where w1 ∈ {A,AB}∗, w2 ∈ {BC, C}∗, and w3 ∈ T ∗, and w1w2w3 ⇒∗ w3.
Note that before S is eliminated, there is no occurrence of the substring ABC
in the derivation. Then, S ⇒∗ w1w2w3 in G1 by productions from P . We prove
that w1w2w3 ⇒∗ w3 in G1.

For w1w2 = ε, the proof is done. For w1w2 6= ε, there is B in w1w2; otherwise,
B′′ cannot be obtained and no nonterminal can be eliminated. To obtain B′′,
production 4 is applied. Therefore, w1w2 = wABCw′, where w ∈ {A,AB}∗ and
w′ ∈ {BC, C}∗; otherwise, the conditions of production 4 are not met. Thus, at
the beginning, only productions 1, 2, and 3 are applicable. Then, only produc-
tion 4 is applicable, and, after that, only productions 5 and 6 are applicable.
Finally, only production 7 is applicable;

wABCw′w3 ⇒3 wA′B′C ′w′w3 ⇒ wA′B′′C ′w′w3 ⇒2 wB′′w′w3 ⇒ ww′w3.

Thus, if S ⇒∗ w1w2w3 ⇒∗ w3 in G, where w1 ∈ {A,AB}∗, w2 ∈ {BC, C}∗,
and w3 ∈ T ∗, then S ⇒∗ w1w2w3 ⇒∗ w3 in G1. ut

4.2 Generalized Forbidding Grammars

Theorem 2. Every recursively enumerable language is generated by a general-
ized forbidding grammar of degree 2 with no more than 8 conditional productions
and 10 nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar
G1 = ({S, A,B,C}, T, P ∪{ABC → ε}, S) in the Geffert normal form such that
L = L(G1). Construct the grammar

G = ({S, S′, Z,A,B,C,A′, B′, C ′,#}, T, P ′ ∪ P ′′, S),

where P ′ contains productions of the form

(S → ZS′Z, ∅),
(S′ → uS′ZaZ, ∅) if S → uSa ∈ P , u ∈ {A,AB}∗, a ∈ T ,
(S′ → uS′v, ∅) if S → uSv ∈ P , u ∈ {A,AB}∗, v ∈ {B,BC}∗,
(S′ → uv, ∅) if S → uv ∈ P , u ∈ {A,AB}∗, v ∈ {B,BC}∗,

and P ′′ contains the following eight conditional productions:

1. (A → #A′, {#, S′}),
2. (B → B′, {B′,#, S′}),
3. (C → C ′, {C ′,#, S′}),
4. (A′ → ε, {A′}{A,B, C, C ′, Z}),
5. (B′ → ε, {B′}{A,B, C, Z} ∪ {A,B, C, C ′, Z}{B′}),
6. (C ′ → ε, {A′, B′} ∪ {A,B, C, Z}{C ′}),
7. (# → ε, {A′, B′, C ′}),
8. (Z → ε, {S′, A, A′, B, B′, C, C ′}).

To prove that L(G1) ⊆ L(G), consider a derivation S ⇒∗ wABCw′v ⇒ ww′v
in G1 by productions from P and the only one application of the production
ABC → ε, where w,w′ ∈ {A,B, C}∗ and v ∈ T ∗. Then, S ⇒∗ ZwABCw′Zv′

in G by productions from P ′, where v′ ∈ (T ∪ {Z})∗ is such that h(v′) = v,
for a homomorphism h : (T ∪ {Z})∗ → T ∗ defined as h(a) = a, for a ∈ T , and
h(Z) = ε. By productions 3, 2, 1, 4, 5, 6, and 7,

ZwABCw′Zv′ ⇒ ZwABC ′w′Zv′

⇒ ZwAB′C ′w′Zv′

⇒ Zw#A′B′C ′w′Zv′

⇒ Zw#B′C ′w′Zv′

⇒ Zw#C ′w′Zv′

⇒ Zw#w′Zv′

⇒ Zww′Zv′.

The inclusion follows by induction and, eventually, by production 8.
To prove that L(G1) ⊇ L(G), observe that if there is a string of the form

Z{B′, C ′} as a substring of a sentential form, then neither of productions 5 and
6 is applicable to the rightmost nonterminal of this string—there is Z before the
nonterminal. Thus, we can assume that S ⇒∗ Zw1w2Zw3 in G, by productions
from P ′, and that Zw1w2Zw3 ⇒∗ h(w3), where w1 ∈ {A,AB}∗, w2 ∈ {BC, C}∗,
and w3 ∈ (T ∪ {Z})∗. Notice that before S and S′ are eliminated, there is no
occurrence of ABC in the sentential form (see [6]), and, moreover, no production
from P ′′ can be applied. Then, S ⇒∗ w1w2h(w3) in G1 by productions from P .
We prove that w1w2h(w3) ⇒∗ h(w3).

By induction on the length of w1w2, we prove that w1w2 = w′
1ABCw′

2, for
some w′

1 ∈ {A,AB}∗ and w′
2 ∈ {BC, C}∗, or w1w2 = ε. In any derivation step,

there is no more than one A′, B′, C ′, and no X ′, for X ∈ {A,B, C}, is generated
while there is # in the sentential form (see productions 1, 2, 3). Moreover, # is
eliminated after all primed nonterminals are eliminated (see production 7). We
prove that A, B, and C are in sub(w1w2), for w1w2 6= ε.

1. A ∈ sub(w1w2): to eliminate A, A has to be rewritten to A′. Then, B′ has
to follow A′ (by production 4) and C ′ has to follow B′ (by production 5).

2. B ∈ sub(w1w2): to eliminate B, B has to be rewritten to B′. Then, A′ or #
has to be before B′ and C ′ has to follow B′ (by production 5).

3. C ∈ sub(w1w2): to eliminate C, C has to be rewritten to C ′. Then, # has
to be before C ′ (by production 6)—that is, A ∈ sub(w1w2); otherwise, this
case is analogical to 1.

In all above cases, ABC ∈ sub(w1w2). Thus, w1w2 = w′
1ABCw′

2, for some
w′

1 ∈ {A,AB}∗ and w′
2 ∈ {BC, C}∗.

We prove that while ABC is eliminated, no other nonterminal is eliminated,
and then # is removed.

First, only productions 1, 2, and 3 are applicable.
(i) If production 1 is applied, then productions 2 and 3 are not applicable

because there is # in the sentential form. Also, production 4 is not applicable
because A′ is followed by A, B, C, or Z. Thus, the derivation is blocked.

(ii) Assume that production 2 is applied first. Then, there is B′ in the sen-
tential form. Notice that production 5 is not applicable because B′ is followed
by A, B, C, or Z. Thus, only productions 1 and 3 are applicable. To apply pro-
duction 5, # or A′ has to be before B′ and C ′ has to follow B′. If production 1 is
applied, then production 3 is not applicable—C ′ cannot be generated. Moreover,
if there is #A′B′{A,B, C, Z} as a substring of the sentential form, then A′ can
be eliminated (by production 4). However, no other production is applicable.
Thus, the sequence of productions in the derivation is 2, 3, and 1.

(iii) Assume that production 3 is applied first. Then, there is C ′ in the sen-
tential form. Notice that production 6 is not applicable because A, B, C, or Z
is before C ′. To apply production 6, # has to be before C ′. Thus, only produc-
tions 1 and 2 are applicable. If production 1 is applied, then production 2 is not
applicable. To eliminate A′, A′ has to be followed by B′ (see production 4)—
a contradiction; there is no B′ in the sentential form. Therefore, production 2
had to be applied before production 1. Thus, the sequence of productions in the
derivation is 3, 2, and 1.

After the sequence of productions 2, 3, 1, or 3, 2, 1, productions 4 and 5
are applicable if and only if #A′B′C ′ is a substring of the sentential form (see
productions 4 and 5). Notice that no other productions are applicable. Thus,

w′
1ABCw′

2h(w3) ⇒2 w′
1AB′C ′w′

2h(w3) ⇒ w′
1#A′B′C ′w′

2h(w3).

After the application of productions 4 and 5 (in this order, otherwise A′ cannot
be eliminated),

w′
1#A′B′C ′w′

2h(w3) ⇒ w′
1#B′C ′w′

2h(w3) ⇒ w′
1#C ′w′

2h(w3),

only production 6 is applicable,

w′
1#C ′w′

2h(w3) ⇒ w′
1#w′

2h(w3).

If w′
1w

′
2 6= ε, then only production 7 is applicable because there is no A′, B′, C ′ in

the sentential form. If w′
1w

′
2 = ε, then also production 8 is applicable. However,

it is easy to see that it does not matter whether some Zs are eliminated before
is removed. Then,

w′
1#w′

2h(w3) ⇒+ w′
1w

′
2h(w3).

As a result, by the induction hypothesis,

w′
1ABCw′

2h(w3) ⇒∗ w′
1w

′
2h(w3) ⇒∗ h(w3).

Thus, if S ⇒∗ Zw1w2Zw3 ⇒∗ h(w3) in G, where w1 ∈ {A,AB}∗, w2 ∈
{BC, C}∗, and w3 ∈ (T ∪{Z})∗, then S ⇒∗ w1w2h(w3) ⇒∗ h(w3) in G1. Hence,
the other inclusion holds. ut

4.3 Simple Semi-Conditional Grammars

Theorem 3. Every recursively enumerable language is generated by a simple
semi-conditional grammar of degree (2, 1) with no more than 9 conditional pro-
ductions and 10 nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar
G1 = ({S, A,B,C}, T, P ∪{ABC → ε}, S) in the Geffert normal form such that
L = L(G1). Construct the grammar

G = ({S, A,B,C,#, B′, C ′, $, B′′, C ′′}, T, P ′ ∪ P ′′, S),

where
P ′ = {(S → α, 0, 0) : S → α ∈ P}

and P ′′ contains the following nine conditional productions:

1. (A → #, 0,#),
2. (B → B′, 0, B′),
3. (C → C ′, 0, C ′),
4. (B′ → B′′,#B′, 0),
5. (C ′ → C ′′, B′′C ′, 0),
6. (B′′ → ε, B′′C ′′, 0),
7. (# → $,#C ′′, 0),
8. (C ′′ → ε, $, 0),
9. ($ → ε, 0, C ′′).

To prove that L(G1) ⊆ L(G), consider a derivation S ⇒∗ wABCw′v ⇒
ww′v in G1 by productions from P with only one application of the production
ABC → ε, where w,w′ ∈ {A,B, C}∗ and v ∈ T ∗. Then, S ⇒∗ wABCw′v in G
by productions from P . By productions 3, 2, 1, 4, 5, 6, 7, 8, and 9,

wABCw′v ⇒ wABC ′w′v
⇒ wAB′C ′w′v
⇒ w#B′C ′w′v
⇒ w#B′′C ′w′v
⇒ w#B′′C ′′w′v
⇒ w#C ′′w′v
⇒ w$C ′′w′v
⇒ w$w′v
⇒ ww′v.

The inclusion follows by induction.
To prove that L(G1) ⊇ L(G), consider a terminal derivation. Let X ∈

{A,B, C} be in a sentential form. To eliminate X, there are following three
possibilities:

1. if X = A, then there has to be C (by production 7) and B (by production 5)
in the sentential form;

2. if X = B, then there has to be A (by production 4) and C (by production 6)
in the sentential form;

3. if X = C, then there has to be B (by production 5) and A (by production 8)
in the sentential form.

In all above cases, there are A, B, and C in the sentential form. By productions 1,
2, and 3, there can be no more than one #, B′, and C ′ in the sentential form. By
productions 4 and 5, # is before B′ and C ′ follows this B′. We prove that in any
terminal derivation, there is no terminal symbol between any two nonterminals.
More precisely, there is no substring of the form T{BC, C}. Assume that aB,
for some a ∈ T , is a substring of the sentential form. Then, B is rewritten to B′

and B′ cannot be rewritten to B′′ because # is before aB′. Similarly, if there is
aC in the sentential form, for some a ∈ T , then C is rewritten to C ′ and aC ′

cannot be rewritten to aC ′′ because there is never B′′ followed by C ′. Thus, any
terminal derivation in G is of the form

(*) S ⇒∗ w1#w2B
′w3C

′w4w

by productions from P and productions 1, 2, 3, and

⇒∗ w

where w1 ∈ {A,B}∗, w2, w3 ∈ {A,B, C, S}∗, w4 ∈ {B,C}∗, and w ∈ T ∗. We
prove that S 6∈ sub(w2w3). To rewrite B′ (by production 4), w2 = ε. Thus,

(**) w1#B′w3C
′w4w ⇒ w1#B′′w3C

′w4w

and, also, production 2 is applicable. However, to rewrite C ′ (by production 5),
w3 = ε. Thus,

⇒+ w1#B′′C ′′w4w

where w1 ∈ {A,B, B′}∗, w4 ∈ {B,B′, C}∗. Thus, #B′C ′ is a substring of
w1#w2B

′w3C
′w4w, and #B′C ′ was obtained from ABC.

Next, we prove that no other nonterminal is eliminated while ABC is elimi-
nated. Besides a possible application of productions 2 and 3, only production 6
is applicable. Thus,

⇒+ w1#C ′′w4w

where w1 ∈ {A,B, B′}∗, w4 ∈ {B,B′, C, C ′}∗. Besides a possible application of
productions 2 and 3, only production 7 is applicable. Thus,

⇒+ w1$C ′′w4w

where w1 ∈ {A,B, B′}∗, w4 ∈ {B,B′, C, C ′}∗. Besides a possible application of
productions 1, 2, 3, and 4, only production 8 is applicable. Thus,

⇒+ w1$w4w

where w1 ∈ {A,#,#B′′, B, B′}∗, w4 ∈ {B,B′, C, C ′}∗. Besides a possible appli-
cation of productions 1, 2, 3, and 4, only production 9 is applicable. Thus,

⇒+ w1w4w

where w1 ∈ {A,#,#B′′, B, B′}∗, w4 ∈ {B,B′, C, C ′}∗. Thus,

⇒∗ uvw

by productions 1, 2, and 3, if they are applicable. Then,

uvw ∈ {u1#B′C ′u4w : u1 ∈ {A,B}∗, u4 ∈ {B,C}∗}

∪{v1#B′′C ′v4w : v1 ∈ {A,B, B′}∗, v4 ∈ {B,B′, C}∗}

or uv = ε. Thus, the string ABC, and only the string, was eliminated. By
induction (see (*) and (**)), the inclusion holds. ut

Can the results achieved in this paper be established for fewer nonterminals
or conditionals productions with the same (or even less) degree?

Acknowledgments. The authors would like to thank all anonymous refer-
ees for their suggestions. This work was supported by the GAČR 201/07/0005,
102/05/H050, FR762/2007/G1, and MSM 0021630528 grants.

References

1. Meduna, A., Švec, M.: Grammars with Context Conditions and Their Applications.
John Wiley & Sons, New York (2005)

2. Meduna, A., Švec, M.: Descriptional complexity of generalized forbidding grammars.
International Journal of Computer Mathematics 80 (2003) 11–17

3. Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated
by context conditions. Theoretical Computer Science 330 (2005) 361–373

4. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin (1989)

5. Meduna, A.: Automata and Languages: Theory and Applications. Springer-Verlag,
London (2000)

6. Geffert, V.: Context-free-like forms for the phrase-structure grammars. In Chytil,
M., Janiga, L., Koubek, V., eds.: MFCS. Volume 324 of Lecture Notes in Computer
Science., Springer (1988) 309–317

