
On theories of bounded arithmetic for NC 1

Emil Jeřábek∗

Institute of Mathematics of the Academy of Sciences

Žitná 25, 115 67 Praha 1, Czech Republic, email: jerabek@math.cas.cz

August 18, 2010

Abstract

We develop an arithmetical theory VNC 1
∗ and its variant VNC 1

∗, corresponding to
“slightly nonuniform” NC 1. Our theories sit betweenVNC 1 and VL, and allow evaluation
of log-depth bounded fan-in circuits under limited conditions. Propositional translations
of ΣB

0 (LVNC1
∗
)-formulas provable inVNC 1

∗ admit L-uniform polynomial-size Frege proofs.

1 Introduction

In proof complexity, there is a well-known general correspondence between theories of bounded
arithmetic, complexity classes, and propositional proof systems (see e.g. [14, 8, 10, 11]). A
theory T corresponds to a complexity class C if the provably total computable functions of
T are the C-functions. A propositional proof system P corresponds to T if the propositional
translations of theorems of T of certain complexity have polynomial-size proofs in P , and T

proves a reflection principle for P .
Here we are particularly concerned about theories corresponding to variants of the class

NC 1. Several theories corresponding to uniform NC 1 (i.e., ALOGTIME , UE-uniform NC 1)
and to the Frege propositional proof system have been described in the literature: an equa-
tional theory ALV by Clote [7], theories AID and AID+Σb

0-CA by Arai [2], and a second-order
theoryVNC 1 by Cook and Morioka [9]. (All these theories are more or less equivalent: VNC 1

is RSUV -isomorphic to AID + Σb
0-CA, which is in turn a conservative extension of ALV .)

Uniform NC 1 is a robust and well-behaved complexity class, but it is too strict for certain
applications, namely those involving circuit evaluation. Nonuniform complexity classes usu-
ally consist of languages definable by a family of polynomial-size Boolean circuits satisfying
certain requirements (e.g., concerning their depth, fan-in, or available connectives): this holds
for example for nonuniform AC k, NC k, TC 0, P ; in particular, nonuniform NC 1-languages
are given by a family of bounded fan-in circuits of logarithmic depth. Typically, the corre-
sponding uniform class consists of languages definable by a sufficiently uniform family of the

∗Supported by grant IAA1019401 of GA AV ČR, grant 1M0545 of MŠMT ČR, and a grant from the John

Templeton Foundation.

1

same kind of circuits, and moreover, the class includes the universal language which evaluates
circuits of this kind described in a natural way by binary strings. This is not true for NC 1.
Even DLOGTIME -uniform (i.e., UD-uniform) families of log-depth circuits define a class
(presumably) still larger than uniform NC 1; we can only define uniform NC 1 using circuits
by employing the more complicated description by so-called extended connection languages
of Ruzzo [15]. Likewise, the universal evaluator for log-depth circuits is (presumably) not in
NC 1 (even nonuniform).

Consequently,VNC 1 (and friends) do not prove that one can evaluate log-depth circuits, or
even a uniformly given (say, definable by a ΣB

0 -formula) sequence of log-depth circuits. There
are situations where evaluation of such circuits would be desirable in an NC 1-theory. The
particular application we have in mind, and the main motivation for this work, is the paper
[13], which aims at formalizing a version of the Ajtai–Komlós–Szemerédi sorting network in
bounded arithmetic (under the assumption that we can formalize construction of suitable
expander graphs). On the one hand, we need the formalization to proceed in an NC 1-theory,
and in particular, in a theory which translates to polynomial-time Frege proofs: the point is
that this implies polynomial simulation of the sequent calculus (i.e., Frege) by the monotone
sequent calculus MLK , using results of Atserias et al. [3]. On the other hand, the sorting
network is essentially a monotone log-depth circuit which we need to evaluate; it is uniformly
described, but its extended connection language is not available.

To address these issues, we introduce new theories VNC 1
∗ and VNC 1

∗, corresponding to
a subclass of NC 1 slightly larger than uniform NC 1, which allow evaluation of sufficiently
uniform families of log-depth circuits. We work with second-order theories in the spirit of
Zambella [16]. The theoryVNC 1

∗ is formulated in the usual language of second-order bounded
arithmetic; it includes V 0, and a derivation rule allowing to evaluate a kind of monotone log-
depth bounded fan-in circuits described by formulas without second-order parameters which
are provably ∆B

1 . The theory VNC 1
∗ has a richer language LVNC 1

∗
including comprehension

function symbols for ΣB
0 -formulas, and function symbols for evaluation of monotone log-

depth bounded fan-in circuits described by open formulas (in the extended language) without
second-order parameters.

In Section 4, we prove basic properties of our new theories: VNC 1
∗ contains VNC 1 and

is contained in VL,VNC 1
∗ is an open theory conservatively extendingVNC 1

∗ (more precisely,
it is an extension of VNC 1

∗ by ΣB
1 -definitions), VNC 1

∗ is ΣB
1 -axiomatizable, ∃ΣB

1 -formulas
provable in VNC 1

∗ are witnessed by terms in VNC 1
∗ (in particular, provably ∆B

1 -formulas of
VNC 1

∗ are equivalent to open formulas), the provably total computable functions of VNC 1
∗

include uniform (and even UD-uniform) NC 1-functions, and are included in L-uniform NC 1-
functions, andVNC 1

∗ extended by the axiom of choice for ∃ΣB
1 -formulas is ∃ΣB

1 -conservative
over VNC 1

∗. To show the latter, we prove a general theorem on conservativity of the axiom
of choice over theories meeting certain requirements. In Section 5 we show that propositional
translations of ΣB

0 (LVNC 1
∗
)-theorems ofVNC 1

∗ have L-uniform polynomial-size Frege proofs.

2

2 Complexity classes

We recall that a (bounded fan-in) circuit in n inputs is a directed acyclic graph whose nodes
are labelled by gate types ∧, ∨, ¬, or input variables xi, i < n. Input nodes have fan-in 0,
¬-gates have fan-in 1, and ∧ and ∨-gates have fan-in 2. One node of the circuit is designated
as the output node. The circuit computes a Boolean function f : 2n → 2 in the obvious way.
The depth of a circuit is the maximal length of a path in the circuit. A formula is a circuit
in which all nodes save the output have fan-out 1.

If C is any class of languages, we define FC to be the class of functions f(~x) such that
|f(~x)| is at most polynomial in |~x|, and the bit-graph

{〈~x, i〉 | the ith bit of f(~x) is 1}

is in C. We will sometimes call functions f ∈ FC just C-functions.
A language L is in nonuniform NC 1 if there exists a family {Cn | n ∈ ω} of circuits such

that Cn computes the characteristic function of L ∩ 2n, and the depth of Cn is O(log n) (in
short, Cn is a log-depth circuit). Equivalently, L is in nonuniform NC 1 if it is computable in
a similar way by a family of polynomial-size formulas.

Let U be a complexity class. A language L is in U -uniform NC 1 if it is computable by
a sequence {Cn | n ∈ ω} of log-depth circuits such that, given n in unary, we can compute
the description of Cn by a U -function. Since this definition may be sensitive to details of the
chosen representation of circuits, we make it more precise using the terminology of Ruzzo [15].
Given a node x in a circuit C, we fix an ordering of its input nodes, and denote by x(i) the ith
input of x. The direct connection language LDC(C) of a family of circuits C = {Cn | n ∈ ω},
where Cn has n inputs, is a set of tuples 〈n, x, p, y〉, where n is an integer given in unary, x
is a binary string identifying a node in a circuit, p ∈ {ε, 0, 1}, and y is either another string
denoting a node, or a gate type from {xi,∧,∨,¬}. It is defined by

LDC(C) = {〈n, x, ε, t〉 | node x in Cn is a t-gate} ∪ {〈n, x, p, y〉 | p ∈ {0, 1}, x(p) = y in Cn}.

We define U -uniform NC 1 to consist of languages L computable by a family C of log-depth
circuits with node labels of length |x| = O(log n) such that LDC(C) ∈ U . DLOGTIME -
uniform NC 1 is usually called UD-uniform, where DLOGTIME = DTIME (O(log n)). Here
and below, Turing machines supposed to work in sublinear time do not have the usual input
tape. Instead, there is a special index type, and read states. If the machine enters a read
state with a, k written on the index tape, where a is a symbol of the input alphabet, and k is
a binary integer, it continues in one of two given states according to whether the kth symbol
of the input is a.

Fully uniform NC 1 (also called UE-uniform) is defined as ALOGTIME , the languages
computable by an alternating Turing machine in O(log n) steps. Uniform NC 1 is not known
to coincide with U -uniform NC 1 for any natural class U . However, we can define it using
circuits as follows. We extend the x(i) notation so that if p is a binary string, x(p) is the
node we obtain by following the path which starts in x, and moves to the left or right input
according to successive bits of p. The extended connection language LEC(C) of a family

3

C = {Cn | n < ω} of circuits is defined by

LEC(C) = {〈n, x, ε, t〉 | node x in Cn is a t-gate}
∪ {〈n, x, p, y〉 | p ∈ {0, 1}∗, 0 < |p| ≤ log n, x(p) = y in Cn}.

Then a language L is in uniform NC 1 if and only if it is computable by a family C of log-depth
circuits such that LEC(C) is computable in DLOGTIME . The class does not change if we
allow LEC(C) to be in AC 0 or ALOGTIME . Here, (uniform) AC 0 can be defined as languages
computable by an alternating Turing machine in time O(log n) with O(1) alternations.

Buss [5] has shown that one can evaluate in uniform NC 1 Boolean formulas represented
as strings in the usual infix notation. We can define the extended connection language for a
single circuit (rather than sequence) in a natural way, and represent it as a polynomial-size
string. Log-depth circuits in this representation can be also evaluated in uniform NC 1 (this
is implicit in Ruzzo [15]). On the other hand, evaluation of log-depth circuits represented
by the direct connection language (or equivalent form) is not known to be possible even in
nonuniform NC 1, but it can be done in logarithmic space. (One reason why formulas are
easier to evaluate than circuits is that they carry more structure due to linear order on their
symbols: it is not hard to see that given a formula in the usual notation, we can compute
its LEC in uniform TC 0, which immediately implies it can be evaluated in uniform NC 1 if it
has logarithmic depth. The hard part of Buss’ algorithm is to deal with formulas of arbitrary
depth.) Regarding the former, we observe the following reduction of a combinatorial problem
which is apparently not in nonuniform NC 1:

Proposition 2.1 The following problem is many-one AC 0-reducible to evaluation of bounded
fan-in log-depth circuits (described by LDC). Given a directed graph G on n vertices with
bounded out-degree, vertices x, y ∈ G, and a number d ≤ log n, determine whether y is
reachable from x in at most d steps.

Proof: Without loss of generality assume that G contains all self-loops. We construct a
circuit with d + 1 layers, where each layer is labeled by nodes of G. Every node u on layer
l+ 1 is a disjunction gate, and its inputs are nodes v on layer l such that u→ v is an edge of
G. We initialize the bottom layer by assigning 1 to node y, and 0 to all other nodes, and we
evaluate the circuit. Then the value of node x on the top layer is 1 iff y is reachable from x

in d steps. �

A kind of converse also holds: it can be shown that an algorithm for the problem described
in Proposition 2.1, even restricted to graphs with out-degree 1 (this problem is denoted by
REACH1(log n) in Allender and Barrington [1]), can be used to transform a direct connection
language of a log-depth circuit to its extended connection language, which can be evaluated in
uniform NC 1. (That is, using an appropriate notion of relativization of uniform circuit classes,
evaluation of bounded fan-in log-depth circuits is many-one (AC 0)REACH1(logn)-reducible to
NC 1, and in particular, it is in (NC 1)REACH1(logn).) The complexity of REACH1(log n) is
briefly discussed in [1]; in particular, they observe that it lies in the class FOLL introduced by
Barrington et al. [4], consisting of languages computable by uniform families of polynomial-
size unbounded fan-in circuits of depth O(log log n).

4

3 Theories

We will work with second-order (i.e., two-sorted) arithmetical theories as in [16, 11], but
for convenience we include the function |x| = dlog2(x + 1)e among the basic symbols. Our
theories thus have two sorts of variables: numbers, denoted by lowercase letters, and finite sets
or strings, denoted by uppercase letters. The basic language is L0 = 〈0, s,+, ·, |x|,≤,∈, |X|〉.
The theory BASIC consists of the axioms

x+ 0 = x x+ s y = s(x+ y)

x · 0 = 0 x · s y = x · y + x

s y ≤ x→ y < x x 6= 0 → ∃y x = s y

x ∈ X → x < |X| sx = |X| → x ∈ X
|0| = 0 x 6= 0 → |x+ x| = s|x|
∀x (x ∈ X ↔ x ∈ Y) → X = Y |s(x+ x)| = s|x|

where x < y is an abbreviation for x ≤ y ∧ x 6= y. We also write X(x) for x ∈ X. We define
the constants 1 = s 0, 2 = s s 0, 3 = s s s 0, . . . , and we will often write x+ 1 for sx (the two
expressions being equal by the BASIC axioms). We introduce the bounded quantifiers

∃x ≤ t ϕ⇔ ∃x (x ≤ t ∧ ϕ),

∀x ≤ t ϕ⇔ ∀x (x ≤ t→ ϕ),

∃X ≤ t ϕ⇔ ∃X (|X| ≤ t ∧ ϕ),

∀X ≤ t ϕ⇔ ∀X (|X| ≤ t→ ϕ),

where t is a term not involving x or X (respectively), and similarly for strict inequalities. A
formula is bounded if it uses only bounded quantifiers. A bounded L0-formula without set
quantifiers is called ΣB

0 or ΠB
0 . Inductively, ΣB

i+1 consists of formulas of the form

∃X1 ≤ t1 . . .∃Xn ≤ tn ϕ

for ϕ ∈ ΠB
i , and ΠB

i+1 consists of formulas of the form

∀X1 ≤ t1 . . .∀Xn ≤ tn ϕ

for ϕ ∈ ΣB
i . A formula is Σ1

1 if it consists of a block of second-order existential quantifiers
followed by a ΣB

0 -formula. A predicate is ΣB
0 -definable in the standard model iff it is com-

putable in AC 0, and for i > 0, the ΣB
i -definable (ΠB

i -definable) predicates coincide with the
levels ΣP

i (ΠP
i) of the polynomial hierarchy. Note that we use ΣB

i and ΠB
i to denote formulas

of the basic language L0 only. If we expand the definition to allow atomic formulas in a richer
language L, we will call the corresponding classes ΣB

i (L) and ΠB
i (L), respectively.

If Γ is a set of formulas, the Γ-comprehension axiom is the schema

(Γ-COMP) ∃X ≤ x∀u < x (u ∈ X ↔ ϕ),

where ϕ ∈ Γ has no free occurrence of X. We define the theory V 0 as BASIC + ΣB
0 -COMP .

5

The theoryVNC 1 is axiomatized over V 0 by

∃Y ≤ 2a∀x < a [(Y (x+ a) ↔ I(x))

∧ (Y (x) ↔ ((G(x) ∧ (Y (2x) ∨ Y (2x+ 1))) ∨ (¬G(x) ∧ Y (2x) ∧ Y (2x+ 1))))].

The meaning is that we can evaluate a monotone formula laid out in a balanced binary tree
with 2a − 1 nodes, represented by nonzero numbers below 2a so that nodes 0 < x < a are
conjunction or disjunctions (according to G(x)) of nodes 2x and 2x+1, and nodes a ≤ x < 2a
are truth constants given by I.

The theory VL is axiomatized over V 0 by the axiom

∀x < a∃!y < aF (x, y) → ∃P ((P)0 = 0 ∧ ∀v < aF ((P)v, (P)v+1)),

where P encodes a sequence of numbers, and (P)v is the vth member of the sequence (see [11]
for details of the sequence coding). The meaning is that we can iterate a number function, or
equivalently, that we can trace a path in a directed graph where each node has out-degree 1.

Let ϕ(d, x, y) be a formula, possibly with other free variables. We put

ϕ∗(d, x, y) ⇔ ϕ(d, x, y) ∧ (∀z < y ¬ϕ(d, x, z) ∨ ∀z > y ¬ϕ(d, x, z)),

eval(n,m,ϕ, I, Y) ⇔ ∀x < n [(Y (0, x) ↔ I(x))

∧ ∀d < m (Y (d+ 1, x) ↔ ((2 | d ∧ ∃y < n (ϕ∗(d, x, y) ∧ Y (d, y)))

∨ (2 - d ∧ ∀y < n (ϕ∗(d, x, y) → Y (d, y))))],

where Y (d, x) stands for dn+x ∈ Y . (By abuse of notation, we include ϕ among the arguments
of eval to indicate the dependence of eval on ϕ, even though ϕ is a formula, not a variable.
Note that free variables of eval include parameters of ϕ, i.e., its free variables other than
d, x, y.) The meaning of eval is that Y is the evaluation of a bounded fan-in monotone circuit
described by ϕ on input I. The circuit consists of m+ 1 layers, each with n nodes. Nodes on
layer 0 are truth constants given by I. Layers d > 0 consist of alternating disjunction (odd d)
and conjunction (even d) gates. Gates on level d can only use nodes on level d− 1 as inputs.
The formula ϕ(d, x, y) means that node x on level d+ 1 uses node y on level d as input. The
formula ϕ∗ is actually employed instead of ϕ to force each gate to have at most two inputs.

We defineVNC 1
∗ to be the closure of V 0 under the derivation rule

(∆B
1 -SCV)

ϕ↔ ¬ϕ′

∃Y ≤ (|m|+ 1)n eval(n, |m|, ϕ, I, Y)
,

where ϕ and ϕ′ are ΣB
1 -formulas with no free set variables. (A ΣB

1 -formula provably equivalent
to a ΠB

1 -formula in a theory T will be called a ∆B
1 (T)-formula. SCV stands for “shallow circuit

value”.)
The language LVNC 1

∗
contains L0, and a function symbol Cϕ(n, ~x, ~X) for each ΣB

0 -formula

ϕ(u, ~x, ~X) (with all free variables indicated). Moreover, it is closed under the following rule:
for each open LVNC 1

∗
-formula ϕ(~p, d, x, y) without free set variables (but with arbitrary free

number variables, viz ~p), we include a function symbol Yϕ(~p, n,m, I). We will usually denote
Cϕ(n, ~x, ~X) by {u < n | ϕ(u, ~x, ~X)}.

6

VNC 1
∗ is a theory in LVNC 1

∗
consisting of the axioms of BASIC , the axiom

(ΣB
0 -COMP) u ∈ Cϕ(n, ~x, ~X) ↔ u < n ∧ ϕ(u, ~x, ~X)

for each ΣB
0 -formula ϕ(u, ~x, ~X), and the axiom

(Open-SCV) |Yϕ(~p, n,m, I)| ≤ (|m|+ 1)n ∧ eval(n, |m|, ϕ, I, Yϕ(~p, n,m, I))

for each open LVNC 1
∗
-formula ϕ(~p, d, x, y). (That is, Cϕ is the bounded comprehension term

for ϕ, or as a string, the truncated characteristic function of ϕ. Yϕ gives a string containing
evaluation of all gates of the circuit described by ϕ, just like the variable Y in ∆B

1 -SCV
above.)

Notice thatVNC 1
∗ contains V 0.

4 Properties of VNC 1
∗ and VNC 1

∗

The ∆B
1 -SCV and Open-SCV axioms provide evaluation of a certain type of circuits, but

they were designed to be formally simple rather than feature-rich. We will introduce a more
elaborate setting for convenient evaluation of log-depth circuits.

We will describe circuits using the following data:

• Numbers k, m, and s, where k is the number of input bits, m is the number of layers,
and s is the size of each layer (we assume all layers have been padded with unused gates
to have the same size).

• A function T : m × s → {p∨q, p∧q, p¬q} ∪ {pxiq | i < k} indicating the type of each
node, where we put e.g. p∨q = 0, p∧q = 1, p¬q = 2, and pxiq = i+ 3, and we represent
T by its graph (a set T ≤ ms(k+ 3)): i.e., T (d, x, p) iff xth node on layer d has type p.

• A formula ϕ(d, x, d′, x′) (possibly with other parameters) which states that node x′ on
layer d′ is an input of gate x on layer d.

In order for a circuit to be well-formed, we demand that any gate uses only nodes on lower
layers as inputs (but not necessarily from the adjacent layer), and all nodes have the correct
number of inputs: 1 for negation nodes, 0 for input nodes, and at most 2 for conjunction and
disjunction gates. Notice that we allow ∧ and ∨ gates with no inputs, which compute the
truth constants ⊥ and >, or with one input, which act as the identity function. The formula

Circ(k,m, s, T, ϕ) ⇔ ∀d < m∀x < s∃!p < k + 3T (d, x, p)

∧ ∀d, d′ < m∀x, x′ < s (ϕ(d, x, d′, x′) → d′ < d)

∧ ∀d, d0, d1, d2 < m∀x, x0, x1, x2 < s(∧
i<3

ϕ(d, x, di, xi) →
∨
i<j

(di = dj ∧ xi = xj)
)

∧ ∀d, d0, d1 < m∀x, x0, x1 < s

7

(
T (d, x, p¬q) ∧

∧
i<2

ϕ(d, x, di, xi) → d0 = d1 ∧ x0 = x1

)
∧ ∀d < m∀x < s (T (d, x, p¬q) → ∃d′ < m∃x′ < sϕ(d, x, d′, x′))

∧ ∀d, d′ < m∀x, x′ < s∀i < k (T (d, x, pxiq) → ¬ϕ(d, x, d′, x′)).

formalizes these requirements. The formula

Eval(k,m, s, T, ϕ, I, Y) ⇔ ∀d < m∀x < s
(
Y (d, x) ↔

(T (d, x, p∨q) ∧ ∃d′ < m∃x′ < s (ϕ(d, x, d′, x′) ∧ Y (d′, x′)))

∨ (T (d, x, p∧q) ∧ ∀d′ < m∀x′ < s (ϕ(d, x, d′, x′) → Y (d′, x′)))

∨ (T (d, x, p¬q) ∧ ∃d′ < m∃x′ < s (ϕ(d, x, d′, x′) ∧ ¬Y (d′, x′)))

∨ ∃i < k (T (d, x, pxiq) ∧ I(i))
)

states that Y is an evaluation of the circuit described by k,m, s, T, ϕ on input I ≤ k.

Remark 4.1 Note that any ΣB
0 -formula ϕ is equivalent in VNC 1

∗ to an open formula, e.g.,
0 ∈ {u < 1 | ϕ} (where u is not free in ϕ). We will prove later (Corollary 4.7) that the same
also holds for ΣB

0 (LVNC 1
∗
)-formulas.

Theorem 4.2

(i) If ϕ is a ∆B
1 (VNC 1

∗)-formula without free set variables, then VNC 1
∗ proves

Circ(k, |m|, s, T, ϕ) → ∃!Y ≤ |m|s Eval(k, |m|, s, T, ϕ, I, Y).

(ii) If ϕ is an open LVNC 1
∗
-formula without free set variables, then there exists an LVNC 1

∗
-

term Y such that VNC 1
∗ proves

Circ(k, |m|, s, T, ϕ) → Eval(k, |m|, s, T, ϕ, I, Y (~p, k,m, s, T, I)),

where ~p are the parameters of ϕ.

Proof: Uniqueness of Y can be proved by straightforward ΣB
0 -induction, the problem is to

show its existence. We will reduce evaluation of the circuit to another circuit in the simplified
framework of eval, which can be evaluated using the axioms ∆B

1 -SCV or Open-SCV . For the
sake of clarity we will use w and friends to denote nodes in the simulated circuit (described
by T (d,w, p) and ϕ(d,w, d′, w′)), whereas x, y will refer to nodes in the newly constructed
eval-style circuit. We subject the original circuit to the following transformations:

• The input layer of the new circuit will consist of bits I(j) of the original input string I,
their negations ¬I(j), and bits T (d,w, p) of T .

• We introduce a dual node w¬ to each node w in the circuit, in order to allow making
the new circuit monotone.

8

• We replicate each node on all layers to overcome the restriction that each gate may only
use nodes of its immediately preceding layer as inputs in the new circuit.

• If w is a node with possible inputs w0, w1, we include in the new circuit the following
gadgets (suppressing for simplicity the mention of layers, i.e., the first variable d of T):

w =
∨
j<k

(T (w, pxjq) ∧ I(j)) ∨ (T (w, p¬q) ∧ w¬
0)

∨ (T (w, p∧q) ∧ w0 ∧ w1) ∨ (T (w, p∨q) ∧ (w0 ∨ w1)),

w¬ =
∨
j<k

(T (w, pxjq) ∧ ¬I(j)) ∨ (T (w, p¬q) ∧ w0)

∨ (T (w, p∨q) ∧ w¬
0 ∧ w¬

1) ∨ (T (w, p∧q) ∧ (w¬
0 ∨ w¬

1)).

More precisely, we put O(|k|) layers to the bottom of the circuit which compute the
disjunctions

∨
j<k(T (w, pxjq) ∧ (¬)I(j)) arranged in a balanced binary tree, and we

replace each node in the original circuit with the constant-size remaining part of its
gadget.

• We introduce padding to shift the nodes so that odd layers consist of disjunctions, and
even layers of conjunctions.

We proceed with the formal details to verify that we can arrange the result in such a way
that the wires of the new circuit are described by a ∆B

1 -formula or an open LVNC 1
∗
-formula

without set parameters, as required by the axioms.
Our new circuit will have m′+1 := 2+2|k|+6|m| layers, each containing n′ := 2k+(5k+

7)|m|s nodes.
Nodes i(0, j) := j < k on each layer represent the input bits I(j), nodes i(1, j) := k + j

give ¬I(j), and nodes t(d,w, p) := 2k+(ds+w)(k+3)+ p give T (d,w, p) for d < |m|, w < s,
p < k + 3. Nodes

r(ε, d, w, u) := 2k + (k + 3)|m|s+ ((ε|m|+ d)s+ w)(2k − 1) + u

for ε < 2, d < |m|, w < s, and u < 2k − 1 are used to compute
∨
j<k(T (d,w, pxjq) ∧ Iε(j)),

where I0 = I, I1 = ¬I. Finally, nodes

n(ε, d, w, u) := 2k + (5k + 1)|m|s+ ((ε|m|+ d)s+ w)3 + u

for ε < 2, d < |m|, w < s, u < 3 represent node w (if ε = 0) or w¬ (if ε = 1) on layer d in the
original circuit, as well as its associated gadget.

The layers are laid out as follows. Layer 0 is the input layer, initialized to

I ′ = {i(0, j) | I(j)} ∪ {i(1, j) | ¬I(j)} ∪ {t(d,w, p) | T (d,w, p)}.

Layer 1 is a copy of layer 0 (as we need conjunctions at the bottom of our new circuit, and odd
layers are disjunctions). Layers 2 to 2|k|+ 1 are used to compute

∨
j<k(T (d,w, pxjq)∧ Iε(j))

into node r(ε, d, w, 0). On layer 2, we put T (d,w, pxjq) ∧ Iε(j) to node r(ε, d, w, k − 1 + j).

9

Odd layers 3 to 2|k|+1 then consist of disjunctions arranged in a balanced binary tree, where
the children of node r(ε, d, w, u), u < k − 1, are r(ε, d, w, 2u+ 1) and r(ε, d, w, 2u+ 2). Even
layers 4 to 2|k| copy the previous layer. The remaining layers 2|k|+2 to 2|k|+1+6|m| do the
main simulation of the original circuit. Let l(D, v) = 2|k| + 2 + 6D + v for D < |m|, v ≤ 5.
Node w on layer d of the original circuit is simulated by node n(0, d, w, 0) on layers l(D, 5) for
all D ≥ d, and its negation w¬ is in node n(1, d, w, 0). They are also replicated on the next
layer l(D+ 1, 0) as n(ε, d, w, 2). Other nodes n(ε, d, w, u), u ≤ 2, on layers l(D, v), v ≤ 4, are
parts of the gadget needed to compute w or w¬.

Let us abbreviate r = r(0, 0, 0, 0) = 2k+(k+3)|m|s, n = n(0, 0, 0, 0) = 2k+(5k+1)|m|s.
For convenience, we define the functions

εr(x) =
⌊

x− r

|m|s(2k − 1)

⌋
, dr(x) =

⌊
x− r

s(2k − 1)

⌋
mod |m|,

wr(x) =
⌊
x− r

2k − 1

⌋
mod s, ur(x) = (x− r) mod (2k − 1),

so that x = r(εr(x), dr(x), wr(x), ur(x)) for any r ≤ x < n. Similarly, we can define
functions εn, dn, wn, un, Dl, vl so that x = n(εn(x), dn(x), wn(x), un(x)) for any x ≥ n, and
d′ = l(Dl(d′), vl(d′)) for any d′ ≥ l(0, 0).

Wires of the new circuit are described by the formula

ϕ′(d′, x, y) ⇔ (Copy(d′, x) ∧ x = y)

∨ (r ≤ x < n ∧ 0 < d′ ≤ 2|k| ∧Disj (d′, x, y))

∨ (x ≥ n ∧ d′ > 2|k| ∧Gadget(vl(d′), x, y))

(recall from the definition of eval that this means that node y on layer d′ is an input of node x
on layer d′ + 1). The first line takes care of nodes whose value needs to be copied over to the
next layer, the second line handles the computation of R(ε, d, w) =

∨
j<k(T (d,w, pxjq)∧Iε(j))

at the bottom of the circuit, and the third line implements the gadgets doing the main
simulation.

The disjunction R(ε, d, w) is computed by initializing nodes r(ε, d, w, (k−1)+j) on layer 2
to T (d,w, pxjq)∧Iε(j), and making node x = r(ε, d, w, u) on layer d′+1 to be the disjunction
of nodes x+ u+ 1, x+ u+ 2 from layer d′, for every even positive d′ ≤ 2|k|:

Disj (d′, x, y) ⇔ (2 | d′ ∧ ur(x) < k − 1 ∧ y ∈ {x+ ur(x) + 1, x+ ur(x) + 2})
∨ (d′ = 1 ∧ ur(x) ≥ k − 1

∧ y ∈ {i(εr(x), ur(x)− (k − 1)), t(dr(x), wr(x), pxur(x)−(k−1)q)})

Moreover, we need to copy the whole tree from odd layers d′ ≤ 2|k| to the next (i.e., conjunc-
tion) layer, and the initial nodes r(ε, d, w, (k− 1) + j) through layers d′ ≤ 2|k|. We also need
to copy over the input bits on all layers of the circuit, and the computed values of R(ε, d, w)
above layer 2|k|:

Copy(d′, x) ⇔ x < r

∨ (r ≤ x < n ∧ (d′ = 0 ∨ d′ > 2|k| ∨ (2 - d′ ∧ d′ 6= 1) ∨ (2 | d′ ∧ ur(x) ≥ k − 1)))

10

w0

�
���

w1

A
AAK

∧0,1

6
◦1,1T (d,w, p∧q)

�
�

��> 6
∧2,1

�
���

w′
0

�
���

w′
1

A
AAK

∨1,2 T (d,w, p∨q)
Z

Z
ZZ}6

∧2,2

@
@@I

∨3,1

6
◦4,1

H
H

H
HHY

w¬
0

�
���

w¬
1

A
AAK

∧0,0

6
◦1,0

6

T (d,w, p¬q)
�

�
��>

∧2,0

�
���

R(0, d, w)
@

@@I
∨3,0

6
◦4,0
�

�
�

��*
w = ∨5,0

6
w′ = ◦0,2

Figure 1: Simulation of one node of the original circuit

The main part of the simulating circuit is given by

Gadget(v, x, y) ⇔ 〈y, v, un(x)〉 = 〈r(εn(x), dn(x), wn(x), 0), 2, 0〉
∨ 〈y, v, un(x)〉 = 〈t(dn(x), wn(x), p¬q), 1, 0〉
∨ 〈y, v, un(x)〉 = 〈t(dn(x), wn(x), p∧q), 1, 1 + εn(x)〉
∨ 〈y, v, un(x)〉 = 〈t(dn(x), wn(x), p∨q), 1, 2− εn(x)〉
∨ 〈y − x, v, un(x)〉 ∈ {〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 1, 0〉, 〈0, 1, 1〉, 〈0, 1, 2〉,

〈0, 2, 0〉, 〈0, 2, 1〉, 〈1, 2, 1〉, 〈0, 3, 0〉, 〈0, 3, 1〉,
〈0, 4, 0〉, 〈1, 4, 0〉, 〈−2, 5, 2〉}

∨ (Edge(v, x, y) ∧ ϕ(dn(x), wn(x), dn(y), wn(y)))

Edge(v, x, y) ⇔ (〈v, un(x), un(y)〉 = 〈5, 0, 0〉 ∧ εn(x) 6= εn(y))

∨ (〈v, un(x), un(y)〉 ∈ {〈5, 1, 0〉, 〈0, 2, 2〉} ∧ εn(x) = εn(y))

The layout of the gadget is explained in Figure 1 for the case εn(x) = 0. Nodes x = n(0, d, w, u)
on layers l(D, v) are labelled with connectives subscripted with v, u, where ◦ stands for one-
argument ∧ or ∨ employed to satisfy the restriction that odd layers are disjunctions and
even layers are conjunctions. Plain w marks n(0, d, w, 0) on layer l(D, 5), and w′ its copy
n(0, d, w, 2) on layer l(D + 1, 0). Let the children of node w on layer d in the original circuit
be nodes w0, w1 on layers d0, d1 (one or both of them could be missing). The labels w0,
w1, w¬

0 , w¬
1 , w′

0, w
′
1 mark nodes n(0, d0, w0, 0), n(0, d1, w1, 0), n(1, d0, w0, 0), n(1, d1, w1, 0) on

11

layer l(D − 1, 5) and nodes n(0, d0, w0, 2), n(0, d1, w1, 2) on layer l(D, 0), respectively. Note
that the condition Circ(k, |m|, s, T, ϕ) ensures that w has only one child if T (d,w, p¬q).

Notice that integer division and mod are ΣB
0 -definable. It is thus easy to see that ϕ′ ∈

∆B
1 (VNC 1

∗) if ϕ ∈ ∆B
1 (VNC 1

∗), and, using Remark 4.1, that ϕ′ is equivalent to an open LVNC 1
∗
-

formula if ϕ is. By ∆B
1 -SCV or Open-SCV , there exists Y ′ such that eval(n′,m′, ϕ′, I ′, Y ′).

It is tedious, but completely straightforward, to verify that parts of Y ′ correspond to an
evaluation of the original circuit as described above, hence Eval(k, |m|, s, T, ϕ, I, Y), where

Y = {〈d, x〉 | Y ′(m′, n(0, d, x, 0))}.

In the case of VNC 1
∗, we can compute I ′ from I and T by a comprehension function sym-

bol, compute Y ′ using the Yϕ′ function, and compute Y from Y ′ by another comprehension
function, hence Y is given by a term in the original data. �

Corollary 4.3 VNC 1
∗ and VNC 1

∗ contain VNC 1. �

Definition 4.4 Let Γ be a set of formulas. A c-ary set function F (X0, . . . , Xc−1) is com-
putable by a family of Γ-definable shallow circuits (computable by Γ-circuits for short) if there
are L0-terms s(n), m(n), and o(n), a ΣB

0 -formula τ(n, d, x, p), and a Γ-formula ϕ(n, d, x, d′, x′),
such that

• s(n) ≥ cn, s(n) ≥ o(n), m(n) > 0,

• Circ(cn, |m(n)|, s(n), T (n), ϕ), where T (n) = {(s(n)d+ x)(cn+ 3) + p | τ(n, d, x, p)},

• if ~X are sets such that |Xi| ≤ n, I = {in+ u | i < c, u ∈ Xi}, and

Eval(cn, |m(n)|, s(n), T (n), ϕ, I, Y),

then

(∗) F (~X) = {u < o(n) | Y (|m(n)| − 1, u)}.

A function F (~u, ~X) or f(~u, ~X) with number inputs and/or output is computable by Γ-circuits,
if the same holds for the set function F ′(~U, ~X) which we obtain by representing every number
x by the set {u | u < x}. A predicate ψ(~u, ~X) is computable by Γ-circuits if its characteristic
function

χψ(~u, ~X) =

{
{0} if ψ(~u, ~X),

∅ if ¬ψ(~u, ~X)

is. In other words, if we can fix o(n) = 1 in the above definition, and replace (∗) with

ψ(~u, ~X) ↔ Y (|m(n)| − 1, 0).

The next lemma is a key technical result needed to show various properties ofVNC 1
∗ and

VNC 1
∗, e.g., thatVNC 1

∗ is a conservative extension ofVNC 1
∗.

12

Lemma 4.5 Let α(~X, ~x) be a LVNC 1
∗
-term, or a ΣB

0 (LVNC 1
∗
)-formula. Then α is provably in

VNC 1
∗ computable by Open(LVNC 1

∗
)-circuits, and provably inVNC 1

∗ computable by ∆B
1 (VNC 1

∗)-
circuits in such a way that VNC 1

∗ proves the defining axiom of α.
Moreover, the graph of α or of its characteristic function is definable in VNC 1

∗ by a ΣB
1 -

formula ∃Y ≤ t ϑ(~X, ~x, ε, Y) with ϑ ∈ ΣB
0 , and provably in VNC 1

∗, we can compute some Y
satisfying the formula from ~x, ~X by ∆B

1 (VNC 1
∗)-circuits.

Proof: We proceed by induction on the complexity of α (defined in such a way that the
complexity of Cϕ and Yϕ is larger than that of ϕ, and in the case of Yϕ, also ϕ∗).We will show
two cases, and leave the rest to the reader.

Let α be the formula ∃xc ≤ t(~X, ~x)β(~X, ~x, xc), and fix a polynomial q(n) such that
t(~X, ~x) < q(n) whenever | ~X|, ~x ≤ n. By the induction hypothesis, we can compute the formula
α′ = xc ≤ t(~X, ~x) ∧ β(~X, ~x, xc) by Open(VNC 1

∗)-circuits or ∆B
1 (VNC 1

∗)-circuits described by
s′, m′, τ ′, and ϕ′. We construct circuits for α by taking q(n) copies of the circuit for α′, fixing
the value of xc to the representation of i in the ith copy, and computing the disjunction of the
outputs (arranged in a binary tree, as in the proof of Theorem 4.2). To be exact, we put s(n) =
q(n)s′(n) (assuming s′(n) ≥ 2), m(n) = 4m′(n)q(n) (so that |m(n)| ≥ |m′(n)|+ |q(n)|+ 1),

τ(n, d, x, p) ⇔ (d ≥ |m′| ∧ p = p∨q)

∨ (d < |m′| ∧ τ ′(n, d, x mod s′, p) ∧ ¬∃j < n p = pxcn+jq)

∨ (d < |m′| ∧ ∃j < n (τ ′(n, d, x mod s′, pxcn+jq)

∧ ((j < bx/s′c ∧ p = p∧q) ∨ (j ≥ bx/s′c ∧ p = p∨q)))),

ϕ(n, d, x, d′, x′) ⇔ (d < |m′| ∧ ϕ′(n, d, x mod s′, d′, x′ mod s′) ∧ bx/s′c = bx′/s′c)
∨ (d = |m′| ∧ d′ = d− 1 ∧ q − 1 ≤ x < 2q − 1 ∧ x′ = (x− (q − 1))s′)

∨ (d > |m′| ∧ d′ = d− 1 ∧ x ≥ q − 1 ∧ x′ = x)

∨ (d > |m′| ∧ d′ = d− 1 ∧ x < q − 1 ∧ 1 ≤ x′ − 2x ≤ 2),

where we write m′, s′, q for m′(n), s′(n), q(n). Note that xcn+j represents the jth bit in
xc. The definition of τ thus ensures that each input node corresponding to xc in the original
circuit for α′ is replaced with a disjunction or conjunction gate in the new circuit; since the
gate has no inputs, it actually computes the constant ⊥ or >, respectively, accomplishing
the above mentioned replacement of xc with the representation of i. Clearly, τ is ΣB

0 , ϕ is
Open(LVNC 1

∗
) or ∆B

1 (VNC 1
∗) as appropriate, and it is easy to see that the circuit defined by

s, m, τ , ϕ computes α.
Let ∃Y ≤ uϑ(~X, ~x, xc, ε, Y) be a ΣB

1 -definition of the graph χα′(~X, ~x, xc) = ε of the
characteristic function of α′, such that Y is computable from ~X, ~x, xc by ∆B

1 (VNC 1
∗)-circuits.

Consider the ΣB
1 -formula

(∗) |ε| ≤ 1 ∧ ∃Z ≤ uq(n) (∀xc < q(n) (ϑ(~X, ~x, xc,∅, Z [xc]) ∨ ϑ(~X, ~x, xc, {0}, Z [xc]))

∧ (0 ∈ ε↔ ∃xc < q(n)ϑ(~X, ~x, xc, {0}, Z [xc]))),

where n =
∑

i|Xi|+
∑

i xi, and Z [x] denotes {y < u | xu+y ∈ Z}. We take q(n) parallel copies
of the circuit computing Y , and wire the xc inputs in the ith copy to the representation of i,

13

as above in the construction of the circuit for α. The resulting circuit computes Z satisfying

∀xc < q(n) (ϑ(~X, ~x, xc,∅, Z [xc]) ∨ ϑ(~X, ~x, xc, {0}, Z [xc]))

from ~X, ~x. Given Z, it is easy to see that (∗) is equivalent to χα(~X, ~x) = ε.
Let us turn to the case α = Yψ(~p(~X, ~x), s(~X, ~x),m(~X, ~x), I(~X, ~x)), where ψ(~p, d, x, y) is an

openVNC 1
∗-formula. By the induction hypothesis, we can compute the terms ~p, s, m, and I

by suitable circuits. Let q(n) be a polynomial such that ~p(~X, ~x), s(~X, ~x),m(~X, ~x), |I(~X, ~x)| <
q(n) whenever | ~X|, ~x ≤ n.

As with other compound terms, the expected idea of how to evaluate α by a circuit would
be to take circuits evaluating ~p(~X, ~x), s(~X, ~x), m(~X, ~x), I(~X, ~x), and plug them into a circuit
evaluating Yψ. However, we cannot do this directly: computing Yψ amounts to simulation of
the circuit C described by ψ, and the parameters ~p, s,m are not inputs of C, they actually
affect the shape of C (|m| is its depth, s the size of each layer, and ~p are free variables of the
formula ψ describing edges of C). In order to evaluate C, we must first fix these parameters
to some constants. We cannot quite do this either, because the terms m(~X, ~x) etc. are not
really constant. However, we have a polynomial bound q(n) on their possible value, hence
what we can do is to evaluate in parallel polynomially many variants of C, one for each choice
of ~p, s,m < q(n). (Note that here we use essentially that ψ has no set free variables: if we had
a set parameter P instead of ~p, we would have to evaluate C for exponentially many possible
choices of P .) Then we have to select the real result among results of all these circuits: this
is done using selector functions h~p,s,m(~X, ~x) indexed by ~p, s,m < q(n), whose value is 1 iff
~p, s,m agree with the real values of ~p(~X, ~x), s(~X, ~x), m(~X, ~x).

Explicitly, we construct circuits computing α as follows:

• We compute s(~X, ~x),m(~X, ~x), I(~X, ~x), ~p(~X, ~x) using their respective circuits. We de-
note the jth bit of the result by sj , mj , ij , prj (we index elements of the ~p sequence by
superscripts, to avoid clashes with bit subscripts).

• For every ~p, s,m < q(n), we evaluate in parallel the eval-style circuit defined by s, |m|,
and ψ∗(~p, ·, ·, ·) on input I. That is, we take the circuit with |m| + 1 layers, each of
size s. The bottom layer is initialized to the first s bits ij , and the other layers are
alternating disjunctions and conjunctions, where yth node on dth layer is an input to
xth node on (d + 1)st layer iff ψ∗(~p, d, x, y). We denote the value of the xth node on
dth layer by v~p,s,m,d,x.

• For each ~p, s,m < q(n), we compute in parallel the selector h~p,s,m which states that∧
r(p

r(~X, ~x) = pr) ∧ s(~X, ~x) = s ∧m(~X, ~x) = m. This can be done using

h~p,s,m =
∧
r

(prpr−1 ∧ ¬prpr) ∧ ss−1 ∧ ¬ss ∧mm−1 ∧ ¬mm,

where we omit the conjuncts with index −1 (i.e., treat them as >).

• We compute in parallel the output bits

od,x =
∨

~p,s,m<q(n)

(h~p,s,m ∧ v~p,s,m,d,x).

14

We spare the reader the formal definitions of the τ and ϕ formulas describing the circuit, and
leave it to their imagination to verify that τ is ΣB

0 , and ϕ is a Boolean combination of ΣB
0 -

formulas and formulas obtained from ψ∗ by substituting ΣB
0 -definable functions like division

with remainder for some of its free variables. By the induction hypothesis, ψ∗ is equivalent to
a ∆B

1 (VNC 1
∗)- and Open(LVNC 1

∗
)-formula, therefore so is ϕ. It is easy to see that the circuit

indeed computes α.
We also have to describe the graph of α(~X, ~x) in VNC 1

∗ by a ΣB
1 -formula such that wit-

nesses to the existential second-order quantifier can be computed by ∆B
1 (VNC 1

∗)-circuits.
(Note that now we do not have to compute α itself, its value Y is given to us.) This is easy:
it suffices to take as a witness of α the sequence of witnesses of ~p(~X, ~x), s(~X, ~x), m(~X, ~x),
I(~X, ~x), the value of I(~X, ~x), and witnesses of ψ(~p, d, x, y) for each d, x, y needed to describe
the circuit evaluated by Yψ.

Formally, let ϑ be ΣB
0 -formula such that the graph χψ(~p, d, x, y) = ε of the characteristic

function of ψ is equivalent to ∃W ≤ t ϑ(~p, d, x, y, ε,W), and W is computable by ∆B
1 (VNC 1

∗)-
circuits by the induction hypothesis. Consider the formula

∃Z ≤(q(n))3t∃I, ~p, s,m ≤ q(n)
(
eval(s, |m|, ξ, I, Y)(∗∗)

∧
∧
r

pr(~X, ~x) = pr ∧ s(~X, ~x) = s ∧m(~X, ~x) = m ∧ I(~X, ~x) = I

∧ ∀d < |m| ∀x, y < s (ϑ(~p, d, x, y,∅, Z [d,x,y]) ∨ ϑ(~p, d, x, y, {0}, Z [d,x,y]))
)
,

where
ξ(d, x, y) ⇔ ϑ(~p, d, x, y, {0}, Z [d,x,y]),

n =
∑

i|Xi| +
∑

i xi, and Z [d,x,y] denotes {u < t | ((dq(n) + x)q(n) + y)t + u ∈ Z}. If we
replace pr(~X, ~x), s(~X, ~x), m(~X, ~x), and I(~X, ~x) with their ΣB

1 -definitions which exist by the
induction hypothesis and prenex the second-order existential quantifiers, we obtain a ΣB

1 -
formula, which we can further normalize to the form with only one second-order quantifier
using a pairing function. Given ~X, ~x, we can compute a witness to this formula by ∆B

1 (VNC 1
∗)-

circuits as follows. We compute (using the induction hypothesis) the values of ~p, s, m, and I,
and witnesses to the second-order quantifiers used in their graphs. Then we take the circuit
computing W , and evaluate in parallel its q(n)3 copies for all fixed values d, x, y < q(n) to
obtain a Z such that

∀d < |m| ∀x, y < s (ϑ(~p, d, x, y,∅, Z [d,x,y]) ∨ ϑ(~p, d, x, y, {0}, Z [d,x,y])).

Given such Z, we have ξ(d, x, y) ↔ ψ(~p, d, x, y), hence eval(s, |m|, ξ, I, Y) is valid for Y =
Yψ(~p, s,m, I), and only for this Y . Thus, (∗∗) defines the graph of α, and witnesses for its
second-order quantifiers can be computed by ∆B

1 (VNC 1
∗)-circuits. �

Corollary 4.6 VNC 1
∗ is contained in an extension ofVNC 1

∗ by ΣB
1 -definitions. In particular,

VNC 1
∗ is conservative over VNC 1

∗. �

Corollary 4.7 Every ΣB
0 (LVNC 1

∗
)-formula is in VNC 1

∗ equivalent to an open formula. �

15

Corollary 4.8 VNC 1
∗ proves ΣB

0 (LVNC 1
∗
)-COMP, and ΣB

0 (LVNC 1
∗
)-IND. Moreover, there are

comprehension terms F (a, ~x, ~X) = {u < a | ϕ(u, ~x, ~X)} for ΣB
0 (VNC 1

∗)-formulas ϕ.

Proof: Induction follows from comprehension. Let ϕ(u, ~x, ~X) be a ΣB
0 (LVNC 1

∗
)-formula, and

let n = a+
∑

i xi +
∑

i|Xi|. By Lemma 4.5, ϕ is computable by an Open(LVNC 1
∗
)-circuit on

inputs of size n. We take a parallel copies of the circuit as in the proof of Lemma 4.5, and
wire the output of the ith circuit to the ith new output bit. We evaluate the circuit on the
input which sets ~x and ~X in each copy to the value of the respective parameters, and sets u
to the representation of i in the ith copy. Then the output of the new circuit is {u < a | ϕ}.
The circuit is described by an open formula, hence its value is computable by an LVNC 1

∗
-term

using Theorem 4.2. �

Theorem 4.9 VNC 1
∗ is an open theory.

Proof: For any ΣB
0 (LVNC 1

∗
)-formula ϕ, let ϕ be an open formula equivalent to ϕ inVNC 1

∗ by
Corollary 4.7. We may assume that ϕ = ϕ if ϕ is already open. Let T be the set of formulas
which contains

ϕ ∨ ψ ↔ ϕ ∨ ψ

and similarly for other Boolean connectives, and the formulas

ϕ(x) ∧ x ≤ t→ ∃x ≤ t ϕ(x),

∃x ≤ t ϕ(x) → ϕ(|S|) ∧ |S| ≤ t,

where S is a term (with the same free variables as ∃x ≤ t ϕ) such that VNC 1
∗ proves S =

{x < t | ϕ(x+ 1)} (such a term exists by Corollary 4.8).
Clearly, T is an open subtheory ofVNC 1

∗, and every ΣB
0 (LVNC 1

∗
)-formula is in T equivalent

to an open formula. AsVNC 1
∗ is ΣB

0 (LVNC 1
∗
)-axiomatized, it is equivalent to an open extension

of T . �

Theorem 4.10 If VNC 1
∗ proves ∃Y ϕ(~x, ~X, Y), where ϕ is a Σ1

1-formula, then there exists
an LVNC 1

∗
-term F such that VNC 1

∗ proves ϕ(~x, ~X, F (~x, ~X)).

Proof: Write ϕ = ∃~Z ϑ(~x, ~X, Y, ~Z) with ϑ ∈ ΣB
0 (LVNC 1

∗
). By Corollary 4.7, ϑ is equivalent

to an open formula. By Theorem 4.9 and Herbrand’s theorem, there exist terms Fr, G
j
r such

thatVNC 1
∗ proves

ϑ(~x, ~X, F0(~x, ~X), ~G0(~x, ~X)) ∨ · · · ∨ ϑ(~x, ~X, Fc(~x, ~X), ~Gc(~x, ~X))

for some c. Put

αr ⇔ ϑ(~x, ~X, Fr(~x, ~X), ~Gr(~x, ~X)) ∧
∧
s<r

¬ϑ(~x, ~X, Fs(~x, ~X), ~Gs(~x, ~X)),

16

and let p be a polynomial such that |Fr|, |Gjr| ≤ p(~x, | ~X|). By Corollary 4.8, there are terms
F and Gj such thatVNC 1

∗ proves

F (~x, ~X) =
{
u < p(~x, | ~X|)

∣∣∣ ∨
r

(αr ∧ u ∈ Fr(~x, ~X))
}
,

Gj(~x, ~X) =
{
u < p(~x, | ~X|)

∣∣∣ ∨
r

(αr ∧ u ∈ Gjr(~x, ~X))
}
,

Clearly,VNC 1
∗ proves ∨

r

αr,

αr → F (~x, ~X) = Fr(~x, ~X),

αr → Gj(~x, ~X) = Gjr(~x, ~X),

hence also
ϑ(~x, ~X, F (~x, ~X), ~G(~x, ~X)),

which implies ϕ(~x, ~X, F (~x, ~X)). �

Corollary 4.11 Every ∆B
1 (VNC 1

∗)-formula is in VNC 1
∗ equivalent to an open formula.

Proof: Given ϕ ∈ ∆B
1 (VNC 1

∗) (or even ∆1
1(VNC 1

∗)), we apply Theorem 4.10 to the formula
∃Y (0 ∈ Y ↔ ϕ). We obtain a term F such that the open formula 0 ∈ F (~x, ~X) is equivalent
to ϕ. �

Corollary 4.12 VNC 1
∗ contains VNC 1

∗, thus VNC 1
∗ is the L0-fragment of VNC 1

∗.

Proof: By Corollary 4.11,VNC 1
∗ is closed under ∆B

1 -SCV . �

Corollary 4.13 VNC 1
∗ is ΣB

1 -axiomatizable.

Proof: We can take axioms stating the totality of ΣB
1 -definitions of LVNC 1

∗
-functions by Corol-

lary 4.6, and a translation of an open axiom system for VNC 1
∗ to L0, which exists by Theo-

rem 4.9. The resulting theory exhaustsVNC 1
∗ by Corollary 4.12.

Alternatively, assume that a ΣB
1 -formula ϕ = ∃~Z ≤ t ϑ(~p, d, x, y, ~Z) is equivalent to a

ΠB
1 -formula ¬∃~Z ≤ t λ(~p, d, x, y, ~Z) in VNC 1

∗ (and therefore in VNC 1
∗). Then ϕ is equivalent

to an openVNC 1
∗-formula by Corollary 4.11, hence by the proof of Lemma 4.5,VNC 1

∗ proves

(∗) ∃Y ≤ (|m|+ 1)n ∃Z ≤ |m|n2t [eval(n, |m|, ξ, I, Y)

∧ ∀d < |m| ∀x, y < n (ϑ(~p, d, x, y, Z [d,x,y]) ∨ λ(~p, d, x, y, Z [d,x,y]))],

where
ξ(d, x, y) ⇔ ϑ(~p, d, x, y, Z [d,x,y]).

Clearly, (∗) is a ΣB
1 -formula, and it implies

∃Y ≤ (|m|+ 1)n eval(n, |m|, ϕ, I, Y)

over V 0, hence we can axiomatizeVNC 1
∗ by (∗) for all such ϕ over V 0. �

17

Theorem 4.14 VNC 1
∗ is contained in VL.

Proof: We need to show that VL is closed under the ∆B
1 -SCV rule. If ϕ ∈ ∆B

1 (VL), then ϕ
is, provably in VL, log-space computable, hence VL proves comprehension for ϕ (see [11]). It
thus suffices to show that VL proves

∀n,m,E, I ∃Y eval(n, |m|, E, I, Y).

We will prove this by formalizing in VL the standard log-space algorithm for evaluation of
log-depth circuits.

Fix d0 ≤ |m| and x0 < n, we will describe how to evaluate the node x0 on layer d0

of the circuit. The idea of the algorithm is to make a depth-first traversal of the circuit,
evaluating the nodes along the way, and taking short cuts when we have enough information
to determine the value of a particular node. The states of the algorithm will be described by
numbers below some a, and we will define the graph of the transition function F : a → a of
the algorithm; computation of the algorithm will then be simulated by iterating F using the
VL axiom. The states of the algorithm will have the following form, with 〈↓, 1, x0〉 being the
initial state:

(i) 〈◦, b〉, where b < 2. This is the final state, b is the result of the computation.

(ii) 〈↓, s, x〉, where x < n, 0 < s < 2|m|+1. We have just descended one layer down the
circuit (or we are starting the search in node x0 on layer d0). The path from 〈d0, x0〉 to
the current node is recorded by a sequence encoded by s: if the binary expansion of s
is 1s0 . . . sk−1, then si is 0 (1) if we have descended to the left-most (right-most, resp.)
child at the ith branching (i.e., at ith layer below the top). The current node is node x
on layer d0 − k = d0 − |s|+ 1.

(iii) 〈↑, s, b, t, i, x〉, where 0 < s < 2|m|+1, b < 2, t < 2, i < |s|, x < n. We have ascended up
from a child node. Again, s describes the path to the current node. b is the computed
value of the child, and t is 0 if the child was the left-most child, or 1 otherwise. In
this situation, we do not know the number of the node we are in, as it cannot be
uniquely inferred from the child node; we can however recover it from the sequence s.
We compute the node number in a loop with |s| − 1 steps, we use i as the loop counter,
and x to keep track of the node number. We will obtain the current node number in x
when i = |s| − 1.

We pick sufficiently large a so that all states above are encoded by a number below a. The
function F is ΣB

0 -defined by

F (〈◦, b〉) = 〈◦, b〉

18

F (〈↓, s, x〉) =



〈◦, I(x)〉 d0 = 0

〈↑, bs/2c, I(x), s mod 2, 0, x0〉 |s| − 1 = d0 > 0

〈↑, bs/2c, (d0 − |s|) mod 2, s mod 2, 0, x0〉 |s| − 1 < d0,

∀y < n¬E(d0 − |s|, x, y)
〈↓, 2s, l(d0 − |s|+ 1, x)〉 |s| − 1 < d0,

∃y < nE(d0 − |s|, x, y)

F (〈↑, s, b, t, i, x〉) =



〈↑, s, b, t, i+ 1, l(d0 − i, x)〉 i < |s| − 1, si = 0

〈↑, s, b, t, i+ 1, r(d0 − i, x)〉 i < |s| − 1, si = 1

〈◦, b〉 i = |s| − 1 = 0,

t = 1 or d0 − |s| 6≡ b (mod 2)

〈↑, bs/2c, b, s mod 2, 0, x0〉 i = |s| − 1 > 0,

t = 1 or d0 − |s| 6≡ b (mod 2)

〈↓, 2s+ 1, r(d0 − |s|+ 1, x)〉 i = |s| − 1 > 0,

t = 0, d0 − |s| ≡ b (mod 2)

where

l(d, x) = min{y < n | E(d− 1, x, y)},
r(d, x) = max{y < n | E(d− 1, x, y)},

and F is defined arbitrarily on other numbers below a. By the VL axiom, there exists a
sequence P such that (P)0 = 〈↓, 1, x0〉 and (P)v+1 = F ((P)v) for all v < a. We leave to
the reader to verify that P determines a correct partial evaluation of the original circuit, in
particular, (P)a = 〈◦, b〉, where b is the value of node x0 on layer d0.

In order to evaluate the whole circuit at once, we take a copy of the above algorithm for
every d0 ≤ |m| and x0 < n, and “concatenate” them in such a way that a final state 〈◦, b〉 of
node 〈d0, x0〉 is followed by the initial state 〈↓, 1, x′0〉 of the next node 〈d′0, x′0〉. We leave the
details to the reader. �

Definition 4.15 A function F (~x, ~X) is a provably total computable function of a theory
T ⊇ V 0, if there exists a Σ1

1-formula ϕ(~x, ~X, Y) which defines the graph of F in the standard
model such that

T ` ∃!Y ϕ(~x, ~X, Y).

Complexity classes like NC 1 can be adapted to the second-order setting in a straightfor-
ward way: we represent sets by binary strings, and we write numbers in unary (i.e., as in
Definition 4.4).

Corollary 4.16 The provably total computable functions of VNC 1
∗ and VNC 1

∗ include the
uniform NC 1-functions, and are contained in the L-uniform NC 1-functions.

19

Proof: Uniform NC 1-functions are provably total already in VNC 1. On the other hand,
assume that F (~x, ~X) is provably total inVNC 1

∗. By Theorem 4.10, F is definable by an LVNC 1
∗
-

term, hence it is computable by ∆B
1 (VNC 1

∗)-circuits using Lemma 4.5. As VNC 1
∗ ⊆ VL, the

formula ϕ defining the circuits as in Definition 4.4 must be in ∆B
1 (VL) = L. The description of

the circuits by the formulas ϕ and τ is a notational variant of the direct connection language,
hence F is in L-uniform FNC 1. �

Remark 4.17 We can describe the provably total functions of VNC 1
∗ exactly, but the char-

acterization does not lead to a transparent previously studied class. Let NC 1
∗ be the smallest

class X ⊇ AC 0 such that X-uniform NC 1 is included in X, and let FNC 1
∗ denote the class of

functions whose output has length polynomially bounded in the length of input, and whose
bit-graph is in NC 1

∗. (We could stratify this definition as follows: let NC 1
0 = AC 0, let NC 1

k+1

consist of NC 1
k-uniform NC 1, and put NC 1

∗ =
⋃
k∈ω NC 1

k. Notice that UD-uniform NC 1 is
included in NC 1

1.) Then it is possible to show that the provably total computable functions
of VNC 1

∗ (i.e., functions defined by an LVNC 1
∗
-term) are exactly the FNC 1

∗-functions, and
∆1

1(VNC 1
∗)-predicates (i.e., predicates definable by an open LVNC 1

∗
-formula) are exactly the

NC 1
∗-languages.

The theory V i extended by the axiom of choice

∀x < a∃X ≤ b ϕ(x,X) → ∃Z ∀x < aϕ(x,Z [x])

for ΣB
i+1-formulas ϕ is ∀∃ΣB

i+1-conservative over V i (Zambella [16]). We will prove that the
axiom of choice for ΣB

1 -formulas can be similarly ∀∃ΣB
1 -conservatively added to VNC 1

∗. We
will in fact show that the same holds for a version of the axiom of choice without the bound
on X.

Definition 4.18 Let Γ be a set of formulas. The unbounded axiom of choice is the schema

(Γ-AC) ∀x < a∃X ϕ(x,X) → ∃Z ∀x < aϕ(x,Z [x]),

where ϕ ∈ Γ may have other parameters, and Z [x] denotes {u | 〈x, u〉 ∈ Z}, where 〈·, ·〉 is a
pairing function. A theory T is closed under the unbounded choice rule Γ-CR, if

T ` ∃X ϕ(x,X) ⇒ T ` ∃Z ∀x < aϕ(x,Z [x]),

where ϕ ∈ Γ may have other parameters.
It is easy to see that ΣB

0 -AC is equivalent to ∃ΣB
1 -AC , and similarly for CR.

Theorem 4.19 Let T be a ∀∃∀ΠB
1 -axiomatized extension of V 0 closed under ΣB

0 -CR. Then
T + ∃ΣB

1 -AC is a ∀∃ΣB
1 -conservative extension of T .

Proof:

Claim 1 Let M � T , a ∈ M , and ϕ a ΣB
0 -formula with parameters from M . Then there

exists a model N � T such that M�∃ΣB1
N , and N satisfies

∃Z ∀x < aϕ(x,Z [x])

20

or
∃x < a∀X ¬ϕ(x,X).

Proof: Let MM be the expansion of M by constants for all elements of M . If

T + Th∀ΠB1 (MM) + ∃x < a∀X ¬ϕ(x,X)

is consistent, then any its model N satisfies the conclusion. Otherwise there is a sentence
ψ = ∀X ϑ(X), where ϑ ∈ ΣB

0 has parameters from M , such that M � ψ, and

T ` ψ → ∀x < a∃X ϕ(x,X).

We can rewrite it as
T ` ∃X (ϑ(X) ∧ x < a→ ϕ(x,X)),

hence
T ` ∃Z ∀x < a (ϑ(Z [x]) → ϕ(x,Z [x]))

by ΣB
0 -CR, which implies

M � ∃Z ∀x < aϕ(x,Z [x]).

Thus we may take N = M. � (Claim 1)

Claim 2 Any model of T has an ∃ΣB
1 -elementary extension to a model of T + ΣB

0 -AC .

Proof: Let M0 � T . We enumerate all pairs of an element a ∈ M0 and a formula ϕ ∈ ΣB
0

with parameters from M0 as 〈aα, ϕα〉 for α < κ, where κ is a cardinal. We construct an ∃ΣB
1 -

elementary chain of models Nα � T , α ≤ κ, where N0 = M0, Nα+1 is obtained from Nα by
an application of Claim 1 using a = aα, ϕ = ϕα, and Nλ =

⋃
α<λNα for limit λ. Notice that

validity of T is preserved by unions of ∃ΣB
1 -elementary chains, as T is ∀∃∀ΠB

1 -axiomatized.
Then M1 := Nκ is an ∃ΣB

1 -elementary extension of M0, M1 � T , and

M1 � ∀x < a∃X ϕ(x,X) → ∃Z ∀x < aϕ(x,Z [x])

for all a ∈ M0, and ϕ ∈ ΣB
0 with parameters from M0. We continue in the same way to

construct a chain M0 �∃ΣB1
M1 �∃ΣB1

M2 �∃ΣB1
. . . , whose union is a model of T + ΣB

0 -AC .
� (Claim 2)

Assume that T +∃ΣB
1 -AC = T +ΣB

0 -AC proves a ∀∃ΣB
1 -formula α, and let M be any model

of T . Take an ∃ΣB
1 -elementary extension N � T + ΣB

0 -AC of M by Claim 2. Then N � α,
hence M � α. �

Corollary 4.20 VNC 1
∗ + ∃ΣB

1 -AC is a ∀∃ΣB
1 -conservative extension of VNC 1

∗.

Proof: In view of Theorem 4.19 and Corollary 4.13, it suffices to show that VNC 1
∗ is closed

under ΣB
0 -CR. Let

VNC 1
∗ ` ∃X ϕ(x,X,~a, ~A),

21

where ϕ ∈ ΣB
0 with all free variables shown. By Corollary 4.12 and Theorem 4.10, there exists

an LVNC 1
∗
-term F such that

VNC 1
∗ ` ϕ(x, F (x,~a, ~A),~a, ~A).

By Corollary 4.8, there exists an LVNC 1
∗
-term G such thatVNC 1

∗ proves

G(a,~a, ~A) = {〈x, y〉 | x < a, y ∈ F (x,~a, ~A)}.

Then
VNC 1

∗ ` ∀x < aϕ(x,G(a,~a, ~A)[x],~a, ~A),

hence
VNC 1

∗ ` ∃Z ∀x < aϕ(x,Z [x],~a, ~A)

by Corollary 4.6. �

5 Propositional translation

We will define a propositional formula

[[ϕ(x1, . . . , xr, X1, . . . , Xs)]]n1,...,nr,m1,...,ms(p1,0, . . . , p1,m1−1, . . . , ps,0, . . . , ps,ms−1)

for each ΣB
0 (LVNC 1

∗
)-formula ϕ(~x, ~X), and natural numbers ~n, ~m. Let X1, . . . , Xs be sets such

that |Xi| ≤ mi, and let X̃i denote the propositional valuation which assigns the value 1 to
pi,k iff k ∈ Xi. Then the translation is defined in such a way that

(1) [[ϕ]]~n,~m(X̃1, . . . , X̃s) = 1 ⇔ N � ϕ(~n, ~X).

If T (~x, ~X) is a set LVNC 1
∗
-term, we define a bounding term bT (~n, ~m), that is a number L0-term

such that |T (~n, ~X)| ≤ bT (~n, ~m) whenever |Xi| ≤ mi for each i, and we define propositional
formulas [[T]]k~n,~m for k < bT (~n, ~m) so that

(2) [[T]]k~n,~m(X̃1, . . . , X̃s) = 1 ⇔ N � k ∈ T (~n, ~X).

Finally, if t(~x, ~X) is a number LVNC 1
∗
-term, we define a bounding L0-term bt such that

t(~n, ~X) ≤ bt(~n, ~m) whenever |Xi| ≤ mi for all i, and we introduce propositional formulas
[[t]]k~n,~m for k ≤ bt(~n, ~m) so that

(3) [[t]]k~n,~m(X̃1, . . . , X̃s) = 1 ⇔ N � t(~n, ~X) = k.

The bounding terms are defined inductively as follows:

bxi(~n, ~m) = ni,

bXj (~n, ~m) = mj ,

bf(t1,...,tr)(~n, ~m) = f(bt1(~n, ~m), . . . , btr(~n, ~m)), f ∈ {0, s,+, ·, |x|},
b|T |(~n, ~m) = bT (~n, ~m),

bCϕ(s,~t,~T)(~n, ~m) = bs(~n, ~m),

bYϕ(~t,s,u,T)(~n, ~m) = (|bu(~n, ~m)|+ 1)bs(~n, ~m).

22

The translations [[ϕ]]~n,~m, [[T]]k~n,~m, [[t]]k~n,~m are defined by simultaneous induction on complexity,
along with formulas {{R}}~n,~m, {{F}}k~n,~m, {{f}}k~n,~m for predicates R (including equality), set
function symbols F , and number function symbols f . (The formulas {{α}} are in a sense
variants of [[α]], cf. Lemma 5.1 (v). However, they are conceptually different: they are defined
for symbols of the language, not for formulas. In particular, they are not tied to particular
variables Xj , and by the same token, they are not supposed to use the same propositional
variables pj,k as above. They are only used in the definition of [[α(~t, ~T)]] below where formulas
are explicitly substituted for their propositional variables, and we will indicate their variables
explicitly when defining them. Their purpose is to make the definition of [[α(~t, ~T)]] below
uniform, so that we do not have to treat specially the case where ~t, ~T are simple variables,
and so that we do not have to repeat the unsightly expression with wide conjunctions and
disjunctions for each symbol of the language separately.) Let us denote

I(ϕ) =

{
> if ϕ holds,

⊥ otherwise.

If α is a predicate or function symbol, we put

[[α(t1, . . . , tr, T1, . . . , Ts)]]k~n,~m =
∨

k1≤bt1 (~n,~m)
...

kr≤btr (~n,~m)

(r∧
i=1

[[ti]]ki~n,~m

∧ {{α}}k~k,bT1
(~n,~m),...,bTs (~n,~m)

(
[[T1]]0~n,~m, . . . , [[T1]]

bT1
−1

~n,~m , . . . , [[Ts]]0~n,~m, . . . , [[Ts]]
bTs−1
~n,~m

))
,

where the superscript k is omitted if α is a predicate. We further define

[[xi]]k~n,~m = I(k = ni),

[[Xj]]k~n,~m = pj,k,

[[ϕ ◦ ψ]]~n,~m = [[ϕ]]~n,~m ◦ [[ψ]]~n,~m, ◦ ∈ {∧,∨,¬},

[[∃x ≤ t ϕ]]~n,~m =
∨

k≤bt(~n,~m)

[[x ≤ t ∧ ϕ]]k,~n,~m,

[[∀x ≤ t ϕ]]~n,~m =
∧

k≤bt(~n,~m)

[[x ≤ t→ ϕ]]k,~n,~m,

{{R}}n,n′ = I(n R n′), R ∈ {≤,=},

{{∈}}n,m(p0, . . . , pm−1) =

{
pn if n < m,

⊥ otherwise,

{{=}}m,m′(p0, . . . , pm−1, q0, . . . , qm′−1) =
∧

i<min(m,m′)

(pi ↔ qi) ∧
m−1∧
i=m′

¬pi ∧
m′−1∧
i=m

¬qi,

{{f}}k~n = I(f(~n) = k), f ∈ {0, s,+, ·, |x|},

23

{{|X|}}km(p0, . . . , pm−1) =


pk−1 ∧

m−1∧
i=k

¬pi if k > 0,∧
i<m

¬pi otherwise,

{{Cϕ(u,~x, ~X)}}
k
n,~n,~m(~p) = I(k < n) ∧ [[ϕ]]k,~n,~m(~p).

It remains to define the formula {{Yϕ(~p, n, r, I)}}k~p,n,r,m(q0, . . . , qm−1) for an open LVNC 1
∗
-

formula ϕ(~p, d, x, y). We fix ~p, n,m, r, and we write {{Yϕ}}d,x for {{Yϕ}}dn+x
~p,n,r,m, where x < n.

As ϕ has no free set variables, [[ϕ]]~p,d,x,y is a Boolean sentence with a definite truth value. We
may thus define the edge relations

e(d, x, y) ⇔ [[ϕ]]~p,d,x,y = 1,

e∗(d, x, y) ⇔ e(d, x, y) ∧
(∧
z<y

¬e(d, x, z) ∨
n−1∧
z=y+1

¬e(d, x, z)
)

for d < |m|, x, y < n. By induction on d < |m|, we define

{{Yϕ}}0,x(q0, . . . , qm−1) =

{
qx if x < r,

⊥ otherwise,

{{Yϕ}}d+1,x(q0, . . . , qm−1) =



∨
e∗(d,x,y)

{{Yϕ}}d,y(q0, . . . , qm−1) if d is even,

∧
e∗(d,x,y)

{{Yϕ}}d,y(q0, . . . , qm−1) if d is odd.

We also put {{Yϕ}}d,x = ⊥ for d > |m|. Notice that the definition of e∗ ensures that there are
at most two y such that e∗(d, x, y) for any given d, x, hence the conjunctions and disjunctions
in the definition of {{Yϕ}}d+1,x are at most binary. As the formulas have depth d ≤ |m|, they
are of size O(m). It follows by induction on complexity that the formulas [[α]](k)~n,~m for any fixed
formula or term α have size poly(~n, ~m) and logarithmic depth.

In fact, [[α]](k)~n,~m is constructible in logarithmic space given ~n, ~m, k in unary (note that
α is fixed, it is not given to the machine as input). This can be established by induction
on the complexity of α. The only non-obvious case is {{Yϕ}}, which can be constructed in
log-space as follows. Given ~p, d, x, y, we can construct the Boolean sentence [[ϕ]]~p,d,x,y by the
induction hypothesis, and we can evaluate it in log-space (note that we do not have to write
it down, the log-space formula evaluator will call an algorithm computing bits of [[ϕ]]~p,d,x,y as
a subroutine). This means that we can compute the relation e above, from which we compute
e∗ easily. We can also compute in log-space the extended connection language LEC(C) of
the circuit C whose edge relation is given by e∗: given a starting node and p ∈ {0, 1}∗, we
can trace the path determined by p in a loop, where in each step we compute the (at most
two) inputs of the given node by calling the algorithm for e∗ to check all possibilities, and
we follow the left or right input according to the relevant bit of p. Then we can compute
the description of the formula {{Yϕ}} (which is essentially C unfolded into a tree) by recursive

24

depth-first traversal of C; the depth of recursion is logarithmic, and for each recursive call
we only need to remember one bit (namely, whether we have descended into the left or right
child), as we can recover the current node in C from the recursion stack using LEC(C).

It is also straightforward to show (1), (2), (3) by induction on complexity.
We recall that a Frege system is a propositional proof system given by a finite set F of

rules of the form
ϕ1, . . . , ϕn

ϕ

which is sound and implicationally complete. An F -proof of a formula ϕ is a sequence
of propositional formulas ending with ϕ such that every formula is derived from previous
formulas by an instance of an F -rule. By a well-known theorem of Cook and Reckhow [12], all
Frege systems are polynomially equivalent, hence the choice of the basic rules does not matter
(often one takes Modus Ponens and a list of axioms). Frege systems are also polynomially
equivalent to the propositional version of Gentzen’s sequent calculus LK , which is easier to
work with in some contexts.

Lemma 5.1

(i) If τ, σ are terms, then bτ(~x, ~X,σ(~x, ~X))(~n, ~m) = bτ (~n, ~m, bσ(~n, ~m)).

(ii) If α(~x, ~X, Y) is a formula or term, and T (~x, ~X) is a set term, then

[[α(~x, ~X, T (~x, ~X))]](k)~n,~m = [[α]](k)~n,~m,bT (~n,~m)

(
[[T]]0~n,~m, . . . , [[T]]bT (~n,~m)−1

~n,~m

)
,

where k is present only if α is a term, and on the right-hand side the formulas are
substituted for the variables corresponding to Y .

(iii) If t(~x, ~X) is a number term, there are size poly(~n, ~m) log-space constructible Frege proofs
of the formulas ∨

k≤bt(~n,~m)

[[t]]k~n,~m,∧
k<l≤bt(~n,~m)

([[t]]k~n,~m → ¬[[t]]l~n,~m).

(iv) If α(y, ~x, ~X) is a formula or term, and t(~x, ~X) is a number term, then there are size
poly(~n, ~m) log-space constructible Frege proofs of the formulas

[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔
∨

r≤bt(~n,~m)

(
[[t]]r~n,~m ∧ [[α]](k)r,~n,~m

)
,

where k is present only if α is a term, and we put [[α]]kr,~n,~m = ⊥ if α is a number term
and k > bα(~n, ~m), or if α is a set term and k ≥ bα(~n, ~m).

(v) If α(~x, ~X) is a predicate or function symbol, there are size poly(~n, ~m) log-space con-
structible Frege proofs of

{{α}}(k)
~n,~m(~p) ↔ [[α(~x, ~X)]](k)~n,~m(~p).

25

Proof: By straightforward induction on complexity. For example, we will show the proof of
the step for α = β(~t, ~T) in (iv), where β is a predicate or function symbol. Let r ≤ bt(~n, ~m).
By the induction hypothesis, we can construct proofs of

[[ti(t(~x, ~X), ~x, ~X)]]ki~n,~m ↔
∨

s≤bt(~n,~m)

(
[[t]]s~n,~m ∧ [[ti]]kis,~n,~m

)
,

hence we construct proofs of

[[t]]r~n,~m →
(
[[ti(t(~x, ~X), ~x, ~X)]]ki~n,~m ↔ [[ti]]kir,~n,~m

)
using (iii). Similarly, we can construct proofs of

[[t]]r~n,~m →
(
[[Ti(t(~x, ~X), ~x, ~X)]]j~n,~m ↔ [[Ti]]

j
r,~n,~m

)
.

Using the definition of [[β(~t, ~T)]] and (i), we infer

[[t]]r~n,~m →
[
[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔

∨
k1≤bt1 (bt(~n,~m),~n,~m)

...

(∧
i

[[ti]]kir,~n,~m

∧ {{β}}(k)
~k,bT1

(bt(~n,~m),~n,~m),...
([[T1]]0r,~n,~m, . . .)

)]
.

It is easy to see that there are short proofs of

{{β}}(k)
~k,~v

(~p) ↔ {{β}}(k)
~k,~u

(~p, ~⊥)

for any ~u ≥ ~v. Using the fact that bTj (r, ~n, ~m) ≤ bTj (bt(~n, ~m), ~n, ~m), and the definition of
[[ti]]j or [[Ti]]j as ⊥ for too large j, we obtain a proof of

[[t]]r~n,~m →
[
[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔

∨
k1≤bt1 (r,~n,~m)

...

(∧
i

[[ti]]kir,~n,~m

∧ {{β}}(k)
~k,bT1

(r,~n,~m),...
([[T1]]0r,~n,~m, . . .)

)]
,

hence
[[t]]r~n,~m →

(
[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔ [[α]](k)r,~n,~m

)
by the definition of [[β(~t, ~T)]]. We get the required

[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔
∨

r≤bt(~n,~m)

(
[[t]]r~n,~m ∧ [[α]](k)r,~n,~m

)
using (iii). �

Theorem 5.2 Let ϕ(~x, ~X) be a ΣB
0 (LVNC 1

∗
)-formula provable in VNC 1

∗. Then the formulas
[[ϕ]]~n,~m have Frege proofs of size poly(~n, ~m) constructible in logarithmic space.

26

Proof: It will be more convenient to work with sequent calculus, which is p-equivalent to
Frege systems. The sequent ` ϕ has an LK -proof π using substitution instances of axioms of
VNC 1

∗ and equality axioms as extra initial sequents. We may reformulate the extensionality
axiom ∀x (x ∈ X ↔ x ∈ Y) → X = Y of BASIC as

∀x < |X| (x ∈ X → x ∈ Y) ∧ ∀x < |Y | (x ∈ Y → x ∈ X) → X = Y,

hence all the initial sequents are ΣB
0 (LVNC 1

∗
). Using the free-cut elimination theorem [6], we

may thus assume that all formulas in π are ΣB
0 (LVNC 1

∗
). We will show by induction on the

length of the proof that for every sequent Γ ` ∆ in π, the sequents [[Γ]]~n,~m ` [[∆]]~n,~m have
propositional LK -proofs constructible in logarithmic space, where [[Γ]]~n,~m denotes {[[ψ]]~n,~m |
ψ ∈ Γ} for any set of formulas Γ.

The induction steps for the cut rule, propositional rules, and structural rules is trivial, we
simply use the induction hypothesis and apply the same rule.

If the last rule in the proof is the ∀-right rule, it must have the form

Γ ` y ≤ t→ ψ(y),∆
Γ ` ∀x ≤ t ψ(x),∆

as the conclusion is ΣB
0 (LVNC 1

∗
). By the induction hypothesis we can construct proofs of

[[Γ]]~n,~m ` [[y ≤ t→ ψ(y)]]r,~n,~m, [[∆]]~n,~m

for every r ≤ bt(~n, ~m), from which we derive

[[Γ]]~n,~m `
∧

r≤bt(~n,~m)

[[y ≤ t→ ψ(y)]]r,~n,~m, [[∆]]~n,~m

using the ∧-right rule. The case of ∃-left is similar.
If the last rule in the proof is the ∃-right rule, it must have the form

Γ ` s ≤ t ∧ ψ(s),∆
Γ ` ∃x ≤ t ψ(x),∆

where s is a term. By the induction hypothesis we can construct a proof of

[[Γ]]~n,~m ` [[s ≤ t ∧ ψ(s)]]~n,~m, [[∆]]~n,~m.

By Lemma 5.1 (iv), there are short Frege proofs of

[[s ≤ t ∧ ψ(s)]]~n,~m ↔
∨

r≤bs(~n,~m)

([[s]]r~n,~m ∧ [[x ≤ t ∧ ψ(x)]]r,~n,~m).

Moreover, we can construct Frege proofs of ¬[[x ≤ t∧ψ(x)]]r,~n,~m for all bt(~n, ~m) < r ≤ bs(~n, ~m),
hence we can construct a proof of the sequent

[[s ≤ t ∧ ψ(s)]]~n,~m `
∨

r≤bt(~n,~m)

[[x ≤ t ∧ ψ(x)]]~r,~n,~m.

27

We derive
[[Γ]]~n,~m `

∨
r≤bt(~n,~m)

[[x ≤ t ∧ ψ(x)]]~r,~n,~m, [[∆]]~n,~m

by a cut. The case of the ∀-left rule is analogous.
It remains to construct proofs of propositional translations of substitution instances of

axioms ofVNC 1
∗ and equality axioms. If ψ′ = ψ(~t, ~T) is an instance of an axiom ψ, then there

are short Frege proofs of

(∗) [[ψ′]]~n,~m ↔
∨

k1≤bt1 (~n,~m)
...

(∧
i

[[ti]]ki~n,~m ∧ [[ψ]]~k,bT1
(~n,~m),...

(
[[T1]]0~n,~m, . . .

))

by Lemma 5.1 (ii,iv). If we can construct short proofs of [[ψ]], we can substitute the formulas
[[Ti]]

j
~n,~m in the proof (incurring a polynomial blow-up) and combine it with Lemma 5.1 (iii)

to obtain the right-hand side of (∗). It thus suffices to construct translations of the base form
of the axioms.

Axioms of BASIC and equality axioms for L0 are provable in V 0, hence their translations
have log-space constructible proofs already in bounded-depth Frege [11].

The ΣB
0 -COMP axiom translates to

[[u ∈ Cψ(v, ~x, ~X)]]k,l,~n,~m ↔ [[u < v]]k,l ∧ [[ψ(u, ~x, ~X)]]k,~n,~m,

which can be proven equivalent to the tautology

I(k < l) ∧ [[ψ]]k,~n,~m ↔ I(k < l) ∧ [[ψ]]k,~n,~m

by Lemma 5.1 (v) and the definition of {{Cψ}}.
Consider an instance

|Yψ(~p, n, r, I)| ≤ (|r|+ 1)n ∧ eval(n, |r|, ψ, I, Yψ(~p, n, r, I))

of Open-SCV . We can prove

[[|Yψ(~p, n, r, I)| ≤ (|r|+ 1)n]]~p,n,r,m

easily using Lemma 5.1 (iii) and bYψ = (|r| + 1)n. Using the notation from the definition of
{{Yψ}}, we can construct short proofs of

[[dn+ x ∈ Yψ(~p, n, r, I)]]d,x,~p,n,r,m ↔ {{Yψ}}d,x

using Lemma 5.1 (v). As there are short proofs evaluating the Boolean sentences [[2 | d]]d and
[[ψ∗(~p, d, x, y)]]~p,d,x,y to I(2 | d) and I(e∗(d, x, y)), we can construct short proofs of

{{Yψ}}d+1,x ↔
((

[[2 | d]]d ∧
∨
y<n

([[ψ∗]]~p,d,x,y ∧ {{Yψ}}d,y)
)

∨
(
[[2 - d]]d ∧

∧
y<n

([[ψ∗]]~p,d,x,y → {{Yψ}}d,y)
))

28

for d < |r| and x < n, using the definition of {{Yψ}}d+1,x. Similarly, we construct proofs of

{{Yψ}}0,x ↔ [[x ∈ I]]x,m.

Putting it all together, we obtain a proof of

[[eval(n, |r|, ψ, I, Yψ(~p, n, r, I))]]~p,n,r,m.

Translation of the equality axioms for Cψ and Yψ is easy and left to the reader. (As a
matter of fact, one can show that these axioms are redundant inVNC 1

∗.) �

6 Acknowledgement

I am grateful to Phuong Nguyen for enlightening discussions on VNC 1, and to David Mix
Barrington for bringing FOLL to my attention.

References

[1] Eric Allender and David A. Mix Barrington, Uniform circuits for division: consequences
and problems, Technical Report TR00-065, Electronic Colloquium on Computational
Complexity, 2000.

[2] Toshiyasu Arai, A bounded arithmetic AID for Frege systems, Annals of Pure and Ap-
plied Logic 103 (2000), pp. 155–199.

[3] Albert Atserias, Nicola Galesi, and Pavel Pudlák, Monotone simulations of non-
monotone proofs, Journal of Computer and System Sciences 65 (2002), no. 4, pp. 626–638.

[4] David A. Mix Barrington, Peter Kadau, Klaus-Jörn Lange, and Pierre McKenzie, On
the complexity of some problems on groups input as multiplication tables, Journal of
Computer and System Sciences 63 (2001), no. 2, pp. 186–200.

[5] Samuel R. Buss, The Boolean formula value problem is in ALOGTIME , in: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, pp. 123–131.

[6] , An introduction to proof theory, in: Handbook of Proof Theory (S. R. Buss,
ed.), Studies in Logic and the Foundations of Mathematics vol. 137, Elsevier, Amsterdam,
1998, pp. 1–78.

[7] Peter Clote, ALOGTIME and a conjecture of S.A. Cook, Annals of Mathematics and
Artificial Intelligence 6 (1992), no. 1–3, pp. 57–106.

[8] Peter Clote and Gaisi Takeuti, Bounded arithmetic for NC, ALogTIME, L and NL,
Annals of Pure and Applied Logic 56 (1992), pp. 73–117.

[9] Stephen Cook and Tsuyoshi Morioka, Quantified propositional calculus and a second-
order theory for NC1, Archive for Mathematical Logic 44 (2005), no. 6, pp. 711–749.

29

[10] Stephen A. Cook, Theories for complexity classes and their propositional translations,
in: Complexity of computations and proofs (J. Kraj́ıček, ed.), Quaderni di Matematica
vol. 13, Seconda Universita di Napoli, 2004, pp. 175–227.

[11] Stephen A. Cook and Phuong Nguyen, Logical foundations of proof complexity, Cam-
bridge University Press, New York, 2010.

[12] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propositional proof
systems, Journal of Symbolic Logic 44 (1979), no. 1, pp. 36–50.

[13] Emil Jeřábek, A sorting network in bounded arithmetic, Annals of Pure and Applied
Logic, accepted.

[14] Jan Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory, Encyclo-
pedia of Mathematics and Its Applications vol. 60, Cambridge University Press, 1995.

[15] Walter L. Ruzzo, On uniform circuit complexity, Journal of Computer and System Sci-
ences 22 (1981), no. 3, pp. 365–383.

[16] Domenico Zambella, Notes on polynomially bounded arithmetic, Journal of Symbolic
Logic 61 (1996), no. 3, pp. 942–966.

30

