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Abstract

The principle sPHPa
b (PV (α)) states that no oracle circuit can compute a surjection of

a onto b. We show that sPHP%(a)
P (a)(PV (α)) is independent of PV1(α)+ sPHPπ(a)

Π(a)(PV (α))
for various choices of the parameters π, Π, %, P . We also improve the known separation
of iWPHP(PV ) from S1

2 + sWPHP(PV ) under cryptographic assumptions.
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1 Introduction

Many variants of the weak pigeonhole principle for polynomial-time functions have been used
in the literature on bounded arithmetic: on the one hand, we have the injective version
iPHPa

b (PV ), which prohibits the existence of injective functions from a to b < a, and the
surjective (or dual) version sPHPa

b (PV ), which prohibits surjective functions from a onto
b > a. On the other hand, we may vary the parameters a and b; for example, we may con-
sider sPHPa

a#a(PV ), sPHPa
a2(PV ), sPHPa

2a(PV ), or sPHPa|a|
a(|a|+1)(PV ). For many choices

of the parameters of sWPHP(PV ), the resulting principles are equivalent over S1
2 , by a well-

known construction which goes back to Paris and Wilkie [14]. In the case of iWPHP , similar
equivalences are provable even in the weaker theory PV1.

We will show that in the case of sWPHP , we cannot weaken the base theory to PV1 if we
relativize the principles: sPHPa

a#a(PV (α)), sPHPa
a2(PV (α)), sPHPa

2a(PV (α)), etc., are not
equivalent over PV1(α). In fact, we will find a general condition on PV -functions π, Π, %, and
P which guarantees that PV1(α)+∀a sPHPπ(a)

Π(a)(PV (α)) does not prove ∀a sPHP%(a)
P (a)(PV (α)),

and we will show that the condition is almost optimal.
∗The research was done while the author was visiting the Department of Computer Science of the University

of Toronto. Supported by NSERC Discovery grant, grant IAA1019401 of GA AV ČR, and grant 1M0545 of
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Another interesting problem is the relation of the (unrelativized) surjective and injective
versions of sWPHP . By a result of Kraj́ıček and Pudlák [10], later improved by Thapen [16],
the theory S1

2 + sWPHP(PV ) does not prove iWPHP(PV ), assuming the security of the
RSA cryptosystem against randomized polynomial-time attacks. We will show that the same
conclusion holds under a weaker assumption, viz. there is no randomized poly-time algorithm
for factoring of integers; moreover, we exhibit a simple number-theoretic statement about
quadratic residues which separates S1

2 + iWPHP(PV ) from S1
2 + sWPHP(PV ) under this

assumption. We also point out that S2
2(α)+iWPHP(PV (α)) does not prove sWPHP(PV (α)).

2 Preliminaries

We briefly summarize basic definitions and facts about bounded arithmetic to fix the notation.
More details can be found in Kraj́ıček [9] or Buss [3].

Buss’ theories are formulated in the language L = 〈0, S,+,×,≤,#, |x|,
⌊
x
2

⌋
〉. The intended

meaning of the symbols are the usual arithmetical operations on non-negative integers, and
|x| = dlog2(x+ 1)e, x# y = 2|x| |y|. Bounded quantifiers are introduced by

∃x ≤ t ϕ :⇔ ∃x (x ≤ t ∧ ϕ),

∀x ≤ t ϕ :⇔ ∀x (x ≤ t→ ϕ),

where t is a term without an occurrence of the variable x. Such a quantifier is sharply
bounded, if the head function symbol of t is |·|. A formula ϕ is bounded (sharply bounded)
if all quantifiers in ϕ are bounded (sharply bounded). A formula is Σb

1 if it is constructed
from sharply bounded formulas by means of ∧, ∨, sharply bounded, and existential bounded
quantifiers. In general, Σb

i -formulas consist of i alternating blocks of bounded quantifiers
followed by a sharply bounded formula, where the first block is existential, and we ignore
sharply bounded quantifiers which are allowed to appear anywhere in the quantifier prefix.
The theory Si

2 is axiomatized by a finite set of open axioms denoted by BASIC , which state
elementary properties of the symbols of L, and the schema of polynomial induction

(PIND) ϕ(0) ∧ ∀x ≤ a (ϕ(
⌊
x
2

⌋
) → ϕ(x)) → ϕ(a)

for Σb
i -formulas ϕ. Alternatively, Si

2 can be axiomatized by BASIC and the length induction
schema

(LIND) ϕ(0) ∧ ∀x < |a| (ϕ(x) → ϕ(x+ 1)) → ϕ(|a|)

for Σb
i -formulas.

The theory T i
2 is axiomatized over BASIC by the induction schema

(IND) ϕ(0) ∧ ∀x < a (ϕ(x) → ϕ(x+ 1)) → ϕ(a)

for Σb
i -formulas ϕ.

PV is an equational theory introduced by Cook [5]. Its language contains function symbols
for all polynomial-time algorithms, introduced inductively using limited recursion on notation
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(cf. Cobham [4]). It is axiomatized by defining equations of its function symbols, and a
derivation rule similar to PIND . PV1, also known as QPV , T 0

2 (�p
1), or ∀Σb

1(S
1
2), is a first-

order variant of PV . It can be axiomatized by equations provable in PV together with the
axioms 0 6= 1 and

⌊
x
2

⌋
= 0 → x = 0 ∨ x = 1, and it proves the PIND and IND schemata

for sharply bounded formulas. We will also use the symbol PV to denote the set of function
symbols of PV .

The theory S1
2(PV ), which is axiomatized by PV1 and Σb

1(PV )-PIND , is an extension of
S1

2 by definitions; for this reason, we will usually work in the more convenient language of
PV , and identify S1

2 with S1
2(PV ). By Buss’ theorem, S1

2 is Σb
1-conservative over PV1.

For any function f , the surjective (also called dual) and injective variants of the pigeonhole
principle are defined as

sPHPa
b (f) :⇔ ∃v < b∀u < a f(u) 6= v,

iPHPa
b (f) :⇔ ∃u < a f(u) ≥ b ∨ ∃u0 < a∃u1 < u0 f(u0) = f(u1).

We also define

sPHPa
b (PV ) :⇔ ∀C sPHPa

b (eval(C, ·)),
iPHPa

b (PV ) :⇔ ∀C iPHPa
b (eval(C, ·)),

where eval(C, x) is a PV -function which evaluates a circuit C on an input x. This is equiv-
alent to taking sPHPa

b (f) (or iPHPa
b (f)) for all PV -functions f (with parameters), but our

formulation is a single formula rather than an infinite schema. We define sWPHP(PV ) and
iWPHP(PV ) as ∀a > 0 sPHPa

2a(PV ) and ∀a > 0 iPHP2a
a (PV ) (respectively), but we will

only use this notation in contexts where Theorem 3.1 is applicable, so that the exact value of
the bounds does not matter.

All these theories can be relativized in a straightforward way. We include a new predicate
α in the language, and define Σb

i(α) as before, but allowing α to be used in atomic formulas.
The theory Si

2(α) consists of BASIC and Σb
i(α)-PIND (i.e., there are no axioms involving

α apart from the induction axioms), and similarly T i
2(α) = BASIC + Σb

i(α)-IND . In the
case of PV (α) and PV1(α), we allow the characteristic function of α to appear in functions
constructed by limited recursion on notation, so that function symbols of PV (α) correspond
to polynomial-time oracle algorithms.

We define

sPHPa
b (PV (α)) :⇔ ∀C sPHPa

b (evalα(C, ·)),
iPHPa

b (PV (α)) :⇔ ∀C iPHPa
b (evalα(C, ·)),

where the function evalα(C, x) evaluates an oracle circuit C on input x, supplying values of α
for the oracle. Both sWPHP(PV (α)) and iWPHP(PV (α)) are provable in T 2

2 (α) [14, 9, 12],
but neither is provable in S2

2(α) [15].
We will generally reserve the variables C, D, . . . for oracle circuits, and we will write

C(u) instead of evalα(C, u). When we wish to emphasize the dependence on the oracle, we
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write it as a superscript Cα. We identify a number a with the integer interval [0, a). The
notation

C : a→ b

means that the oracle circuit C computes a function from a to b, i.e., ∀u < aC(u) < b. We
write

C : a � b,

C : a ↪→ b,

if the function is surjective or injective (respectively). Thus, we can express sPHPa
b (PV (α))

and iPHPa
b (PV (α)) concisely as

sPHPa
b (PV (α)) ⇔ ¬∃C (C : a � b),

iPHPa
b (PV (α)) ⇔ ¬∃C (C : a ↪→ b).

We will need several results on provability in bounded arithmetic, most importantly wit-
nessing theorems. The first one is Parikh’s theorem.

Theorem 2.1 (Parikh [13]) Let T be an extension of BASIC axiomatized by bounded for-
mulas. If

T ` ∀x∃y ϕ(x, y),

where ϕ is a bounded formula, then there exists a term t such that

T ` ∀x∃y ≤ t(x)ϕ(x, y).

The next one is Buss’ witnessing theorem.

Theorem 2.2 (Buss [2]) Let i > 0, and ϕ ∈ Σb
i(α) such that Si

2(α) ` ∀x∃y ϕ(x, y). Then
there exists an FPΣb

i−1(α)-algorithm fα such that 〈N, A〉 � ϕ(x, f(x)) for every x and every
oracle A.

Wilkie’s witnessing theorem is a variant of Buss’ theorem for sWPHP(PV (α)). (The
result was never published by A. Wilkie, see Kraj́ıček [9] or Thapen [17] for a proof.) We
only formulate it in the unrelativized version for simplicity.

Theorem 2.3 If S1
2 + sWPHP(PV ) ` ∀x∃y ϕ(x, y), where ϕ is a Σb

1-formula, then there
exists a probabilistic polynomial-time algorithm which, for every x, computes with high prob-
ability a y such that N � ϕ(x, y).

As noted in [7], Thapen’s proof of Wilkie’s witnessing theorem also implies a description of
∀Σb

1(α)-theorems of S1
2(α)+ sWPHP(PV (α)). We need to introduce another variant of PHP

to state it:
rPHPa

b (f, g) ⇔ ∃v < b (g(v) ≥ a ∨ f(g(v)) 6= v).

(Here r stands for “retraction pair”, borrowed from category theory terminology.)

4



Theorem 2.4 ([17, 7]) ∀Σb
1(α)-consequences of S1

2(α) + sWPHP(PV (α)) are axiomatized
by PV1(α) + rWPHP(PV (α)).

Finally, we will make use of the KPT witnessing theorem. In its basic form, it is a variant
of Herbrand’s theorem.

Theorem 2.5 (Kraj́ıček, Pudlák, Takeuti [11]) Assume that

PV1(α) ` ∀x∃y ∀z ϕ(x, y, z),

where ϕ is an existential formula. There exist PV (α)-functions f0, . . . , fk such that

PV1(α) ` ϕ(x, f0(x), z0) ∨ ϕ(x, f1(x, z0), z1) ∨ · · · ∨ ϕ(x, fk(x, z0, . . . , zk−1), zk).

The KPT witnessing theorem also has a computational interpretation. We consider an in-
teractive protocol with two players, a student and a teacher (who both have access to the
oracle α). They are given a number x, and the student tries to find y such that ∀z ϕ(x, y, z).
The teacher either accepts the student’s answer, or responds with a counterexample: z such
that ¬ϕ(x, y, z). The KPT witnessing theorem can be restated as follows: if PV (α) proves
∃y ∀z ϕ(x, y, z), there exists a constant k, and a polynomial-time strategy for the student,
which makes any correct (computationally unlimited) teacher accept after at most k rounds.
Here, polynomial-time means time polynomial in the length of x, and of the previous re-
sponses of the teacher; however, if the quantifier ∀z is bounded, the time is polynomial in |x|
alone.

3 Variants of sWPHP

As we already mentioned in the introduction, variants of sWPHP(PV (α)) are equivalent in
S1

2(α) for a wide range of the parameters, and the corresponding variants of iWPHP(PV (α))
and rWPHP(PV (α)) are equivalent over PV1(α). The result is implicit in [14], but for
completeness and illustrative purposes, we include a proof.

Theorem 3.1

(i) The following are equivalent over S1
2(α).

(α) ∀a∃b sPHPa
b (PV (α))

(β) ∀a > 0 sPHPa
2a(PV (α))

(γ) ∀a > 0∀b sPHPa|b|
a(|b|+1)(PV (α))

(ii) The following are equivalent over PV1(α).

(α) ∀a∃b iPHP b
a(PV (α))

(β) ∀a > 0 iPHP2a
a (PV (α))

(γ) ∀a > 0∀b iPHPa(|b|+1)
a|b| (PV (α))
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(iii) The following are equivalent over PV1(α).

(α) ∀a∃b rPHPa
b (PV (α))

(β) ∀a > 0 rPHPa
2a(PV (α))

(γ) ∀a > 0∀b rPHPa|b|
a(|b|+1)(PV (α))

Proof: Let us start with (i). The implication (γ) → (α) is trivial. (β) → (γ): assume
that there exists an oracle circuit C such that C : a|b| � a(|b| + 1). We define a new circuit
C ′ : a(2|b| − 1) → 2a|b| by

C ′(u) =

{
C(u), u < a|b|,
u+ a, otherwise.

Notice that C ′ : a(|b| + i) � a(|b| + i + 1) for every i < |b|. Let Ci be the composition of i
copies of C ′. For any v < 2a|b|, we can prove

∃u < a(2|b| − i)Ci(u) = v

by Σb
1(α)-LIND on i ≤ |b|, thus C |b| : a|b| � 2a|b|.

(α) → (β): let C : a � 2a, and fix any b > 0. Define C ′ : a2|b|−1 � a2|b| by

C ′(u) = C(u mod a) + 2abu/ac,

and let Ci be the composition of i copies of C ′. We have C ′ : a2i � a2i+1 for every i < |b|.
For any fixed v < a2|b|, we prove

∃u < a2|b|−iCi(u) = v

by Σb
1(α)-LIND on i ≤ |b|. Thus C |b| : a � a2|b| > b, and D : a � b, where D(u) =

min(b− 1, C |b|(u)).
The proofs of (ii) and (iii) are quite similar. We will only show the proof of (β) → (γ)

in (ii), to see why the complexity of the induction formula drops. Let C : a(|b| + 1) ↪→ a|b|.
Define C ′ : 2a|b| ↪→ a(2|b| − 1) by

C ′(u) =

{
C(u), u < a(|b|+ 1),

u− a, otherwise,

and for every i ≤ |b|, let Ci be the composition of i copies of C ′. We have C ′ : a(|b|+ i+1) ↪→
a(|b|+ i) for every i < |b|. For any u < u′ < 2a|b|, we prove

Ci(u) 6= Ci(u′)

by induction on i ≤ |b|, thus C |b| : 2a|b| ↪→ a|b|. �
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Corollary 3.2 Let π(a), Π(a) be PV -functions such that PV1 proves that π is unbounded,
and

Π(a)
π(a)

≥ 1 +
1
|a|c

for some constant c. Then

S1
2(α) + ∀a sPHPπ(a)

Π(a)(PV (α)) = S1
2(α) + sWPHP(PV (α)),

PV1(α) + ∀a iPHPΠ(a)
π(a) (PV (α)) = PV1(α) + iWPHP(PV (α)),

PV1(α) + ∀a rPHPπ(a)
Π(a)(PV (α)) = PV1(α) + rWPHP(PV (α)),

and moreover, the theories

PV1(α) + ∀a sPHPπ(a)
Π(a)(PV (α))

PV1(α) + sWPHP(PV (α))

prove the same ∀Σb
1(α)-sentences.

Proof: Use Theorems 3.1 and 2.4. �

We are going to show that PV1(α) does not prove the equivalence from Theorem 3.1
(i), or even its typical special cases. Before doing that, we remark that the proof of 3.1
(i) we have given requires S1

2(α). We used Σb
1(α)-induction to show that the composition

of a sequence of surjective circuits (or iteration of a single circuit) is itself surjective. Let
us define the Surjective Circuit Iteration Principle (SCIP) to be the following statement: if
a = {ai; i ≤ k} is a sequence of numbers, and C is an oracle circuit such that C : ai � ai+1

for every i < k, then the k-fold iterate of C is a surjection of a0 to ak.

Theorem 3.3 PV1(α) + SCIP = S1
2(α).

Proof: Work in PV1(α) + SCIP , and assume

ϕ(0) ∧ ∀i < |x| (ϕ(i) → ϕ(i+ 1)),

where ϕ is a strict Σb
1(α)-formula, we will show ϕ(|x|). There exists a number b ≥ 2, and a

Boolean oracle circuit D such that

ϕ(i) ↔ ∃u < bD(u, i) = 1

for every i ≤ |x|. For any i ≤ |x|, we identify bi with the set of sequences of length i with
elements from b. We put

ai =
bi+1 − 1
b− 1

+ 1

for every i ≤ |x|, and we identify ai with the disjoint union

{∗} ∪
⋃
j≤i

bj ,
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where ∗ is a new element. (All these identifications can be realized by polynomial-time
functions in a straightforward way.) We define a circuit C : a|x| → a|x|−1 by

C(〈uj ; j ≤ i〉) =

{
〈uj ; j < i〉, if D(ui, i) = 1 or i > 0 ∧D(ui−1, i− 1) = 0,

∗, otherwise,

C(〈〉) = C(∗) = ∗.

We claim C : ak+1 � ak for every k < |x|. Consider any u = 〈uj ; j < i〉 ∈ ak. If i = 0, we
can pick u0 < b such that D(u0, 0) = 1, as ϕ(0). If i > 0, and D(ui−1, i− 1) = 0, we take any
ui < b. If i > 0, and D(ui−1, i− 1) = 1, then ϕ(i− 1), thus ϕ(i), and we may choose ui < b

such that D(ui, i) = 1. In each case, u′ = 〈uj ; j ≤ i〉 ∈ ak+1, and C(u′) = u.
For every i ≤ |x|, let Ci be the composition of i copies of C. SCIP implies that C |x| : a|x| �

a0, thus there exists u ∈ a|x| such that C |x|(u) = 〈〉. As C |x|(∗) = ∗, we have u = 〈uj ; j < k〉
for some k ≤ |x|. We have

Ci(u) = 〈uj ; j < k − i〉

by induction on i ≤ |x|, thus k = |x|. Then we can prove

∀j ≤ iD(uj , j) = 1

by induction on i ≤ |x|, which implies ϕ(|x|). �

Of course, Theorem 3.3 does not exclude the possibility that we can prove the equivalence
of variants of sWPHP(PV (α)) in PV1(α) in a completely different way. We will need a more
complicated argument to rule it out. This is the main result of this paper.

Theorem 3.4 Let π, Π, %, P be PV -functions such that Π(x) > π(x) and P (x) > %(x) for
every x. Assume that

PV1(α) + ∀b sPHPπ(b)
Π(b)(PV (α)) ` ∀a sPHP%(a)

P (a)(PV (α)).

Then there exists a constant c > 1 such that the following holds. For every a ≥ c such that
%(a) ≥ |a|c, there exists b such that

|b| ≤ |a|c ∧ π(b) ≥ %(a)
|a|c

∧
((

P (a)
%(a)

)c

≥ Π(b)
π(b)

∨ P (a)
%(a)

− 1 ≥
(

Π(b)
π(b)

− 1
)c)

.

Proof: For convenience, we will consider α as a function rather than predicate (we could
encode it by its bit graph). By assumption, PV1(α) proves

∃b, C ∀v < Π(b)∃u < π(b)C(u) = v ∨ ∃y < P (a)∀x < %(a)α(x) 6= y.

By Parikh’s theorem and prenexing, there exists a constant k such that PV1(α) proves the
∃∀∃-formula

∃b, C ≤ 2|a|
k∃y < P (a)∀x < %(a)∀v < Π(b)∃u < π(b) (C(u) = v ∨ α(x) 6= y).
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By the KPT witnessing theorem, there exists a constant c′, and an interactive protocol be-
tween a student (S) and teacher (T) with the following properties. Given a number a, S tries
to find either (1) a y ∈ P (a) r rng(α � %(a)), or (2) a number b, and an oracle circuit C such
that C : π(b) � Π(b). T provides counterexamples to S’s suggestions: x < %(a) such that
α(x) = y in case (1), and v ∈ Π(b) r rng(C � π(b)) in case (2). Both S and T have oracle
access to α; S works deterministically in time |a|c′ , and T is computationally unlimited. S
succeeds after at most c′ rounds for every honest T. Notice that S’s final answer must be of
type (1), as in fact no surjection from π(b) to Π(b) exists. We may assume that S verifies the
correctness of T’s counterexamples in case (1) by an oracle call to α.

Fix a such that %(a) > 4|a|c′ , and put s := b%(a)/(2|a|c′)c. We modify S as follows:
whenever she would ask T for a counterexample to C : π(b) � Π(b) such that π(b) ≤ s, she
computes the answer herself by evaluating C on all possible inputs. (When π(b) > s, the
algorithm is unchanged.) S no longer works in polynomial time, but the number of oracle
calls is bounded by %(a)/2: at most s|C| calls (i.e., |C| for each input) are used to evaluate
Cα, and the sum of the sizes of all C is bounded by |a|c′ , the original running time. We
consider the following randomized procedure:

• choose a uniformly random injection α : %(a) ↪→ P (a)

• choose a sufficiently large pool of random bits w

• run the interactive protocol described above, using the following answers for T:

– in case (1), reply with the (unique) x < %(a) such that α(x) = y, or with ∗ if
y /∈ rng(α)

– in case (2), use fresh random bits from w to select uniformly a v < Π(b)

Notice that T may break the protocol: in case (2), there is no guarantee that v /∈ rng(Cα).
However, we have a simple upper bound on the probability of such event.

Claim 1 For any fixed α, and random w, all answers of T are correct with probability at

least (1− p)c′ , where

p = max
{
π(b)
Π(b)

; |b| ≤ |a|c′ , π(b) ≥ s

}
.

Proof: For a given C : π(b) → Π(b), the probability of v ∈ rng(Cα) is at most π(b)/Π(b) ≤
p. T answers at most c′ questions in total, and the answers of type (2) are independent.

� (Claim 1)

The next task is to bound the probability that S fails to find a y ∈ P (a) r rng(α), i.e., that
T does not answer ∗ to any question. Fix w, and for random α, let Ei denote the event “T
did not answer ∗ to any of the first i questions of type (1)”, where i ≤ c′. Clearly, S fails iff
Ec. We have Prα(E0) = 1, and Ei+1 implies Ei, thus

Prα(Ec′) = Prα(E1 | E0) Prα(E2 | E1) · · ·Prα(Ec′ | Ec′−1).
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Claim 2 For any fixed w and i < c′,

Prα(Ei+1 | Ei) ≥
(
%(a)
P (a)

)2

.

Proof: For any α, there exists a set Qα ⊆ %(a) of size %(a)/2 such that when we run our
procedure on α, S only queries the oracle α for values on Qα. Put B = {α � Qα; Ei(α)}. If
β ∈ B and α ⊇ β, then Ei(α) holds. Indeed, if α′ is such that β = α′ �Qα′ and Ei(α′), then
the procedure behaves identically on α and α′ until the (i + 1)th question of type (1): the
computation of S is deterministic, answers of T of type (2) are predetermined as w is fixed,
answers to oracle calls of S to α are determined by β from the definition of Qα′ , and T’s
answers of type (1) are also fixed by β as all return an x such that α′(x) = y, and we required
S to query α′(x) after any such answer. Thus,

Prα(Ei+1 | Ei) ≥ min
β∈B

Prα(Ei+1 | α ⊇ β).

Fix β ∈ B, and let y < P (a) be the (i+ 1)th question of type (1). If there exists x ∈ dom(β)
such that β(x) = y, then clearly Prα(Ei+1 | α ⊇ β) = 1. Otherwise, choosing a random
injection α ⊇ β is equivalent to choosing a random injection γ : %(a) r dom(β) ↪→ P (a) r
rng(β), hence

Prα(Ei+1 | α ⊇ β) = Prγ(y ∈ rng(γ)) =
%(a)− |dom(β)|
P (a)− |rng(β)|

=
%(a)/2

P (a)− %(a)/2
=

%2(a)
2P (a)%(a)− %2(a)

≥
(
%(a)
P (a)

)2

,

as P 2(a)− 2P (a)%(a) + %2(a) = (P (a)− %(a))2 ≥ 0. � (Claim 2)

By soundness of the protocol, S succeeds whenever all answers of T are correct, thus by Claim
1, there exists b such that |b| ≤ |a|c′ , π(b) ≥ b%(a)/(2|a|c′)c ≥ %(a)/(4|a|c′), and S succeeds
with probability at least (

1− π(b)
Π(b)

)c′

.

On the other hand, Claim 2 and the preceding discussion implies that S fails with probability
at least (

%(a)
P (a)

)2c′

,

thus (
%(a)
P (a)

)d

+
(

1− π(b)
Π(b)

)d

≤ 1,

where d := 2c′. Put u = P (a)/%(a) and v = Π(b)/π(b). Notice that |a|d ≥ 4|a|c′ for large
enough a; the theorem thus follows from the following claim.

Claim 3 For every constant d ≥ 1, there exists a constant c ≥ d such that for every u, v > 1,

u−d + (1− v−1)d ≤ 1 → uc ≥ v ∨ u− 1 ≥ (v − 1)c.

10



Proof: As xd is convex and x1/d is concave,

uc ≥ 1
1− (1− v−1)d

≥ 1
1− (1− dv−1)

= d−1v,

u ≥ 1
(1− (1− v−1)d)1/d

≥ 1
1− d−1(1− v−1)d

≥ 1 + d−1(1− v−1)d.

If v ≤ 3/2, we have
u− 1 ≥ d−1v−d(v − 1)d ≥ (v − 1)2d+log d

from the second inequality, because v−1 ≥ 1/2 ≥ v − 1. If v ≥ 3/2, the second inequality
gives u ≥ 1 + d−13−d, thus ud3d ≥ 2, and

ud(1+3d log d) ≥ dud ≥ v

from the first inequality. � (Claim 3)

�

Remark 3.5 The disjuncts of the condition

(∗)
(
P (a)
%(a)

)c

≥ Π(b)
π(b)

∨ P (a)
%(a)

− 1 ≥
(

Π(b)
π(b)

− 1
)c

are each relevant only for certain settings of the parameters, the cross-over point being when
Π(b)/π(b) is about 1 + Θ(1). More precisely, for every constant 0 < ε < 1 and c > 1, there is
a constant d > 1 such that

• if Π(b)/π(b) ≥ 1 + ε, then (∗) implies(
P (a)
%(a)

)d

≥ Π(b)
π(b)

,

• if Π(b)/π(b) ≤ 1 + ε, then (∗) implies

P (a)
%(a)

− 1 ≥
(

Π(b)
π(b)

− 1
)d

.

Corollary 3.6

(i) PV1(α) + ∀a∃b sPHPa
b (PV (α)) 0 ∀a sPHPa

f(a)(PV (α)) for any PV -function f ,

(ii) PV1(α) + ∀a sPHPa
a#a(PV (α)) 0 ∀a > 1 sPHPa

a2(PV (α)),

(iii) PV1(α) + ∀a > 1 sPHPa
a2(PV (α)) 0 ∀a > 0 sPHPa

2a(PV (α)),

(iv) PV1(α) + ∀a > 0 sPHPa
2a(PV (α)) 0 ∀a > 0 sPHPa||a||

a(||a||+1)(PV (α)),

(v) PV1(α) + ∀a > 0 sPHPa||a||
a(||a||+1)(PV (α)) 0 ∀a > 0 sPHPa|a|

a(|a|+1)(PV (α)).

11



(vi) PV1(α) + ∀a > 0 sPHPa|a|
a(|a|+1)(PV (α)) 0 ∀a sPHPa

a+1(PV (α)).

Proof: We will show (i), the others are similar but easier. Let fk(a) = 2|a|
k
. There exists a

k ≥ 1 such that PV1 proves f(a) ≤ fk(a), and obviously

PV1(α) + ∀a sPHPa
fk+1(a)(PV (α)) ` ∀a∃b sPHPa

b (PV (α)),

it thus suffices to prove

PV1(α) + ∀a sPHPa
fk+1(a)(PV (α)) 0 sPHPa

fk(a)(PV (α)).

Assume otherwise. By Theorem 3.4 and Remark 3.5, there exists a constant c such that for
all sufficiently large a, there exists b such that b ≥ a/|a|c, and(

fk(a)
a

)c

≥ fk+1(b)
b

.

The function fk+1(b)/b is close enough to monotone to obtain(
fk(a)
a

)c

≥ fk+1(a/|a|c+1)
a/|a|c+1

for all a� 0. Taking logarithms, we have

c|a|k − c|a| ≥ (|a| − (c+ 1)||a||)k+1 − |a|+ (c+ 1)||a||,

thus |a|k+1 = O(|a|k), a contradiction. �

Example 3.7 If ∀a sPHPa
P (a)(PV (α)) is equivalent to ∀a sPHPa

2a(PV (α)) over PV1(α), then

• P (a) = a+ Ω(a),

• ∃c∀n ∃a (n ≤ |a| ≤ nc ∧ P (a) ≤ ca). �

The reader may wish to see that the messiness of the condition in Theorem 3.4 is a
property of nature, not just an accidental residue of our proof. We will indeed show that the
condition is close to optimal; moreover, the only manipulations of circuits we need are the
trivial constructions listed in the following lemma.

Lemma 3.8 PV1(α) proves:

(i) If C : % � P , π ≥ %, and 0 < Π ≤ P , there exists a D such that D : π � Π.

(ii) If C1 : %1 � P1 and C2 : %2 � P2, there exist D and E such that D : %1 + %2 � P1 + P2

and E : %1%2 � P1P2.

(iii) If C1 : %1 � %2 and C2 : %2 � %3, there exists a D such that D : %1 � %3.

(iv) If C : %+ |a| � P + |a| and P > 0, there exists a D such that D : % � P .

12



Proof:

(i): put D(u) = min(C(min(u, %− 1)),Π− 1).
(ii): define E(u) = P1C2(

⌊
u
%1

⌋
) + C1(u mod %1) and

D(u) =

{
C1(u), u < %1,

C2(u− %1) + P1, u ≥ %1.

(iii): take D(u) = C2(C1(u)).
(iv): Σb

0(PV (α))-defined subsets of k := [0, k), where k = |a| for some a, can be encoded by
numbers. If X ⊆ k is encoded by a number x, we can define card(X) (i.e., the number of 1s
in the binary expansion of x) by a PV -function, and we can prove basic properties of card,
such as

card(k) = k,

X ∩ Y = ∅ ⇒ card(X ∪ Y ) = card(X) + card(Y ),

card(rng(w)) ≤ card(dom(w)),

(where w is a function encoded by a number) by a straightforward application of Σb
0(PV )-

LIND .
The sets

Y = {i < |a|; C(%+ i) ≥ P},
X = {j < |a|; ∃i < |a|C(%+ i) = P + j}

are encoded by numbers, as they are Σb
0(PV (α))-definable. As i 7→ C(%+i)−P is a surjection

of Y to X, we have card(X) ≤ card(Y ), thus card(|a|rX) ≥ card(|a|rY ). For any encoded
set Z ⊆ k, the mapping cZ(i) := card(Z ∩ i) provides a bijection of Z onto |Z|, which is
definable by a PV -function, hence encoded by a number. Thus

w(j) := c−1
|a|rY

(
min

{
card(|a|r Y )− 1, c|a|rX(j)

})
is an encoded surjection of |a|rX onto |a|r Y . For any u < %, we define

D(u) =


C(u), C(u) < P,

C(%+ w(C(u)− P )), C(u) ≥ P,C(u)− P /∈ X,
0, otherwise.

It is easy to see that D : % � P . �

Theorem 3.9 Let π, Π, %, P be PV -functions, and c > 0 a constant such that PV1 proves:
Π(b) > π(b), P (a) > %(a), and for every a ≥ c such that %(a) ≥ |a|c, there exists b such that

π(b) ≥ %(a)− |a|c ∧
(
P (a)
%(a)

)c

≥ Π(b)
π(b)

.

Then PV1(α) + ∀b sPHPπ(b)
Π(b)(PV (α)) proves ∀a sPHP%(a)

P (a)(PV (α)).
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Proof: Work in PV1(α), and fix a. If a < c or %(a) ≤ |a|c, there exists x such that %(a) = |x|,
thus sPHP%(a)

P (a)(PV (α)) holds by Lemma 3.8 (iv). Otherwise fix b as in the statement, put
π = π(b), Π = Π(b), % = %(a), P = P (a), and assume that C : % � P , we will construct
D : π � Π. By Lemma 3.8 (iv) we may assume π ≥ %. We distinguish two cases.

Case 1: P ≥ 2%. We have

π

%
≤ 2

⌊
π

%

⌋
,

(
P

%

)c

≤ 2c

⌊
P

%

⌋c

,

thus

Π ≤ 2c+1%

⌊
π

%

⌋⌊
P

%

⌋c

≤ %

⌊
π

%

⌋⌊
P

%

⌋2c+1

.

By Lemma 3.8 (ii) and (i), we may construct surjections

%

⌊
P

%

⌋i

� P

⌊
P

%

⌋i

≥ %

⌊
P

%

⌋i+1

for every i ≤ 2c, thus by Lemma 3.8 (iii), there exists a surjection

% � %

⌊
P

%

⌋2c+1

.

By Lemma 3.8 (ii) and (i), there exists a surjection

π ≥ %

⌊
π

%

⌋
� %

⌊
π

%

⌋⌊
P

%

⌋2c+1

≥ Π.

Case 2: P ≤ 2%. We have (
P

%

)c

≤ 1 + 2c

(
P

%
− 1

)
,

thus

Π ≤ π + 2cπ

(
P

%
− 1

)
≤ π + 2c+1

⌊
π

%

⌋
(P − %).

By Lemma 3.8 (ii) there exists a surjection

%

⌊
π

%

⌋
� P

⌊
π

%

⌋
,

thus by Lemma 3.8 (ii) there exist surjections

π + i

⌊
π

%

⌋
(P − %) =

(
i

⌊
π

%

⌋
(P − %) + (π mod %)

)
+ %

⌊
π

%

⌋
�

�

(
i

⌊
π

%

⌋
(P − %) + (π mod %)

)
+ P

⌊
π

%

⌋
= π + (i+ 1)

⌊
π

%

⌋
(P − %)

for every i < 2c+1, thus by Lemma 3.8 (iii) and (i), there exists a surjection

π � π + 2c+1

⌊
π

%

⌋
(P − %) ≥ Π. �
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The main discrepancy between the bounds provided by Theorems 3.4 and 3.9 is in the
second disjunct of (∗). It has the following explanation. In the proof of Theorem 3.9, we only
use the assumption sPHPπ(b)

Π(b) once: given a surjection C : %(a) � P (a), we construct a single
circuit which is a surjection D : π(b) � P (b). In terms of the proof of Theorem 3.4, we have
a student-teacher protocol in which S is allowed only one query of type (2). We do not know
which of the two bounds is closer to truth. On the one hand, it is hard to imagine why the
restriction to one query of type (2) should be justified in general; on the other hand, we have
no idea how to fruitfully use more queries.

Question 3.10 PV1(α) + ∀a > 0 sPHPa||a||
a(||a||+1)(PV (α))

?
` ∀a > 0 sPHPa||a||2

a(||a||2+1)
(PV (α))

4 Surjective vs. injective WPHP

We now turn to the question whether S1
2 +sWPHP(PV ) proves iWPHP(PV ). The relativized

case was solved by Thapen [17], who proved that S1
2(α)+sWPHP(PV (α)) 0 iWPHP(PV (α)).

In the unrelativized case, similar results were obtained under cryptographic assumptions.
Kraj́ıček and Pudlák [10] have shown that S1

2 0 iWPHP(PV ), if the RSA cryptosystem
is secure against polynomial-time attacks. Thapen [16] subsequently extended the result to
S1

2+sWPHP(PV ) 0 iWPHP(PV ), assuming security of RSA against randomized polynomial-
time attacks. Cook and Thapen [6] derive other independences involving PV1 on this basis.

It is well-known that RSA can be cracked if we can factorize integers efficiently. We
will show that the weaker assumption of hardness of integer factoring for polynomial-time
probabilistic algorithms is sufficient to obtain S1

2 + sWPHP(PV ) 0 iWPHP(PV ).
Let p be an odd prime, and a an integer. The Legendre symbol is defined by

(
a

p

)
=


0, p | a,
1, a is a quadratic residue mod p,

−1, a is not a quadratic residue mod p.

The following classical theorem was formalized in I∆0 + iWPHP(∆0) by Berarducci and
Intrigila; we observe that the proof goes through in PV1 + iWPHP(PV ).

Theorem 4.1 ([1]) PV1 + iWPHP(PV ) proves multiplicativity of the Legendre symbol:

p odd prime →
(
a

p

)(
b

p

)
=

(
ab

p

)
.

Proof: Put a0 = a, a1 = b, a2 = ab. It is easy to see that PV1 proves the identity whenever(
ai
p

)
= 0, 1 for some i, thus assume that all ai are quadratic non-residues. Then

f(i, u) := aiu
2 mod p

defines an injection
f : 3× [1, (p− 1)/2] ↪→ [1, p− 1],

contradicting iPHP3n
2n(PV ). �
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Theorem 4.2 If S1
2 + sWPHP(PV ) proves multiplicativity of the Legendre symbol, there

exists a probabilistic polynomial-time algorithm for factoring of integers.

Proof: The nontrivial part of the assumption can be written as a Σb
1-formula

p > 0 → ∃u, v < puv = p ∨ ∃u < p (u2 ≡ a ∨ u2 ≡ b ∨ u2 ≡ ab (mod p)).

By Wilkie’s witnessing theorem [9], there exists a probabilistic poly-time algorithm A(p, a, b)
which computes either a nontrivial factor of p, or a square root of a, b, or ab modulo p with
probability 1− ε.

Let n be an odd composite number which is not a prime power. Let G be the group of
units in Zn, and H its subgroup of squares. As n has at least two distinct odd prime divisors,
[G : H] ≥ 4 by the Chinese remainder theorem. If we choose uniformly random a, b ∈ G, then
ab is also a uniformly distributed element of G, thus a, b, and ab are quadratic non-residues
modulo n with probability at least 1− 3/4 = 1/4.

It follows that the following algorithm finds a factor of n with probability at least 1/4− ε:
if n is even, or a perfect power, construct a factor in an obvious way. Otherwise choose
random a, b ∈ [1, n− 1], compute u := A(n, a, b), and check whether gcd(n, a), gcd(n, b), or u
is a nontrivial divisor of n. �

Remark 4.3 With a bit of care, Theorem 4.2 can be formalized in PV1 + sWPHP(PV ).
That is, if S1

2 + sWPHP(PV ) proves multiplicativity of the Legendre symbol, then PV1 +
sWPHP(PV ) proves that integers can be factored by a probabilistic poly-time algorithm.

Corollary 4.4 Assume that integer factoring is impossible in probabilistic polynomial time.

(i) S1
2 + sWPHP(PV ) 0 iWPHP(PV ),

(ii) PV1 does not prove the unique choice schema

∀i < |a| ∃!x < bϕ(i, x) → ∃w ∀i < |a|ϕ(i, (w)i)

for a Σb
0-formula ϕ,

(iii) PV1 does not prove the ∆b
1-comprehension schema

∀x (ϕ(x) ≡ ¬ψ(x)) → ∃w ∀i < |a| (ϕ(i) ≡ (w)i = 1),

where ϕ,ψ ∈ Σb
1.

Proof: (i) follows from Theorems 4.1 and 4.2, and (i) implies (ii) and (iii) by Cook and
Thapen [6]. �

For the sake of completeness, we also mention the converse problem: whether the injective
variant of the weak pigeonhole principle implies the surjective variant. First notice that
S1

2(α) + iWPHP(PV (α)) ` sWPHP(PV (α)) is “almost true”, due to Theorem 2.4.

Corollary 4.5
S1

2(α) + sWPHP(PV (α)) is Σb
1(α)-conservative over S1

2(α) + iWPHP(PV (α)).
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On the other hand, iWPHP(PV (α)) is a Σb
1(α)-statement, so we would not expect it to prove

a genuinely Σb
2(α)-principle such as sWPHP(PV (α)). This intuition indeed proves correct,

essentially due to Kraj́ıček [8].

Definition 4.6 Let Γ be a set of L(α)-formulas. ThΓ(N) is the set of all ϕ(α) ∈ Γ such that
the second-order formula ∀αϕ(α) holds in the standard model of arithmetic.

Theorem 4.7 S2
2(α) + ThΠb

2(α)(N) 0 sWPHP(PV (α)).

Proof: Kraj́ıček [8] (cf. [9, Thm. 11.2.5]) has shown that sWPHP(α) is unprovable in S2
2(α).

The only property of S2
2(α) used in his argument is Buss’ witnessing theorem, and by a

well-known observation, addition of true Πb
2(α) axioms does not change witnessing of Σb

2(α)-
formulas. �

Corollary 4.8 S2
2(α) + iWPHP(PV (α)) 0 sWPHP(PV (α)).
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