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0. PRELIMINARIES

Let —o0 < a < b < oo. Let 4 be an m x m-matrix valued function essentially
bounded on [a, b]. Let F be a locally convex topological vector space and let H be
a linear continuous mapping of the Sobolev space W™ into F.

For u e W.'®, ¢u denotes the value of the differential expression

Cui=u + A)u.
This expression is defined a.e. on [a, b] and Zu € L, for any u € W,®. The symbol £
will be also used for the “maximal” operator
Ciue Wy* - tuel?.
Under our assumptions the graph
(0,1) G = G(¢) = {(u, fu)e Ly x Ly :ue Wy}
of ¢ is certainly closed in L, x L. Hence when endowed with the usual operations
and with the norm of L], x L,
(u, cu)e G — Jull, + [£u]., .

G becomes a Banach space.
We shall consider the linear differential operator L acting on L, defined on

D(L)={uelLy :ueWy,* and Hu = 0}
by :
Lu:={u.

We shall use the notation introduced in the first part [1] of the paper. Given

locally convex topological vector spaces X, Y and a linear operator T with the defini-
tion domain D(T) < X and the range R(T) = Y, N(T) denotes its null space and G(T)
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its graph. X* is the dual space to X and [., u]y denotes the linear continuous function-
al on X corresponding to u € X*. For M < X and N < X* the symbols M* and N
are defined by

M* = {ueX*:[x,ulx = 0 for all xe M}
and

N ={xeX:[x,u]y=0 forall ueN},

respectively. Furthermore, cl* (N) denotes the weak*-closure of N in X* (with respect
to the duality [., .]x). If X is normed, then the norm on X is denoted by ||.|x and M
is the corresponding norm closure of M < X. In such a case it is possible also to

equip X* with the norm ||u

x+ = Ssup ][x, u][ The corresponding norm closure of
lIxllx=1
N < X* is denoted by N.

Let S be a linear operator acting from Y* into X* (D(S) = Y*, R(S) = X*). We
say that the set G(*S) is the graph of the pre-adjoint relation *S to S if

G(*S) = {(x, y)e X x Y:[x, Sulx = [y, u]y forall ue D(S)},

ie. G(*S) = *G(—S), where the orthogonal complement of the graph G(—S) =
= {(—Su,u):ue D(S) = Y*} of —S is considered with respect to the duality
[, dxxyon (X x Y) x (X* x Y¥),

[(x, ) (0, 0)]xxy =[x ulx + [y, 0]y .

D(*S) = {xe X : (x, y) € G(*S) for some ye Y} is the definition domain of *S,
R(*S) = {y e Y:(x, y) € G(*S) for some x € X} its range, N(*S) = {xe X : (x, 0) e
e G(*S)} its null space and

*Sx = {ye Y:(x,y)e G(*S)} for xe D(*S).
*S is an operator if *Sx = 0 for x = 0.
0.1. Lemma (cf. [2], Theorem 2.3). Let X, Y be Banach spaces. If S: D(S) =

< Y* - X* is weakly*-closed in X* x Y* and R@ = R(S), then R(S) is weakly*-
closed in X*, (*S)* = S and

02) R(S) = N(*S)*, 'R(S) = NX($),
R(*S) = *N(S), R(*S)* = N(S).
C™ denotes the space of complex row m-vectors, [| is the norm on C™, x* denotes
the conjugate transposition of x e C"; LF, (1 < p < ) is the space of functions
x : [a, b] > C™ for which

b 1/p )
Il = (j [x(®)|” dt) <w if 1Sp<w
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or
|x]. = supess |x(f)] <o if p=o0;
tela,
W,? is the Sobolev space of functions x : [a, b] — C™ absolutely continuous on
[a, b] and such that their derivatives x’ belong to LZ,

Ixls.0 = x(a)] + %[,
Let (1/p) + (1/g) = 1if 1< p<oo, g = o0 if p = 1, then L, is the dual space to L%,
with respect to the duality

b
[x,u]L=fu*xdt for xeL! and uelL®

a

and W2+ is the dual space to W:? with respect to the duality

[x, v]lw = v¥(a) x(a) + [x',v'], for xeW,? and ve W,*.

1. NORMAL SOLVABILITY OF L

In the first part of the paper we proved that under our assumptions L has a closed
range in L, i.e. it is normally solvable in the usual sense. However, since we have
no proper analytic representation of the dual space to L], we cannot obtain an ana-
lytic form of the adjoint L* to the operator L. This means that the relations (Fredholm
Alternatives)

R(L) = *N(L¥), R(L)* = N(L¥)

which follow from the normal solvability give us no useful information. Nevertheless,
we have a chance to obtain similar but more useful Fredholm type relations using
the pre-adjoint *L of L. Since L2 is the dual space to L., the pre-adjoint *Lto Lis
a linear relation in L! x L! with the graph

(1L,1)  G(*L) = {(x, y)e L}, x L, : [x, fu], = [y, u], for all ue D(L)},

definition domain

(1,2) D(*L) = {x e L}, : (x, y) € G(*L) for some ye L},
null space

(1,3) N(*L) = {xe L, : [x, ¢u], = 0 for all ue D(L)}
and values

(1,49) *Lx = {ye Ll :(x,y)e G(*L)} for xe D(*L).

[

If we show that L is weakly*-closed in Lj; x L (with respect to the duality

[x, »), (u,0)] =[x, u]. + [y, v]. for x,yeL, and u,vel),
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then by Lemma 0.1 we obtain the formulas
(1.5) R(L) = N(*L)*, *R(L) = N(*L),
R(*L) = *N(L), R(*L)* = N(L).
After proving this we shall in the following section derive the analytic form of the

pre-adjoint relation *Lto L. The following assumptions will be kept.

1.1. Assumptions. A is an m X m-matrix valued function essentially bounded on
[a, 8], —0 < a < b < w; F is a locally convex topological vector space such that
F = (*F)* for some locally convex topological vector space *F; H is a linear contin-
uous mapping of the space W)'® into F such that H = (*H)* for some linear con-
tinuous mapping *H of *F into W.!.

1.2. Notation. We denote by J the linear operator (cf. (0,1))

Ji(u,fu)eG c Ly x Ly >ue W™ .
Obviously,

(1,6) J_y(N(H)) := {(u, fu) e G : Hu = 0} = G(L)
is the graph of L.

1.3. Lemma. cl* (N(H)) = N(H) (the weak*-closure in W,** with respect to the
duality [., . Jw).

Proof. Let uecl*(N(H)). Then for each finite set Z = {zy, z5, ..., z,} = W,'!
there exists a sequence {u$”}., = N(H) such that

[z, 4]y = [z, uly as j— o

holds for any z € Z. Let us choose an arbitrary ¢ € *F. Then there exists a sequence
{u$”}%2, = N(H) such that

[*Ho, u”ly - [*He,u]y as j— .
This means that
Lo, Hulse = [@, H(u — u{”)]sp = [*Ho, u — u$”], - 0.

Since ¢ € *F was arbitrary, this implies that Hu = 0, i.e. u € N(H). This completes
the proof.

1.4. Lemma. The mapping J defined in 1.2 is continuous with respect to the cor-
responding weak*-topologies.

Proof. Let ¢ > 0 be given and let Z be an arbitrary finite subset of W.'*. To prove
the lemma we have to show that there exist > 0 and a finite subset W of L}, x L},
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such that for every u € W' satisfying

|[x, ul, + [y, /u]Ll <é forall (x,y)eW
we have
|[z, u]w| <g¢ forall zeZ.

Recall that
b

[z, ulw = u*(a) z(a) + J' u'*z' dt

a

and

(17) [xu]e + [, fu], = j ’

a

b
u*x dt + J (' + Au)* ydr =

a

b b
= J. u*(x + A*y)dt + “ u*ydt =

b b b
= u*(a)J‘ (x + A*y)dr + j u'* [j. (x + A*y)dr + y] dt .
a a t

Now we shall prove

Auxiliary Assertion. For any z e W' there exist x, y € L}, such that
(1.8)

J‘b(x + A*y)dt = z(a) and (1) + jb(x + A*y)dt = z'(t) a.e.on [a,b].

t

Proof (of Auxiliary Assertion). We have to show that for any d e C™ and we L,
there exist x, y € L}, such that

(1,9) Jb(x L A%y di=d,

y(t) + Jb(x + A*y)dt = w(t) ae. on [a, b].

t

If x, y satisfy (1,9), then there certainly exists & € W' such that £ = w — y ae.
and

(1,10)
&) = j (x + A*(w — &) dr on [a,b], d= Jb(x + A¥(w — §))dr.

Notice that then &(a) = d and &(b) = 0.

On the other hand, if £e W,' and x e L;, fulfil (1,10), then the couple (x, y),
y =w — ¢, fulfils (1,9).
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Differentiating (1,10) we further obtain that our assertion holds if for any g € L,
and d e C™ there exists x € L}, such that the two-point boundary value problem

(1,11) =& + A¥(t) & = g(1) + x(r) ae. on [a,b],
&a)=4d and &b)=0

has a solution & e WL

Given ge L}, and d e C™, let us put
{)=2"1a for tefab]
" b—a

and
x(t) = —&(t) + A*(t) &(t) — g(t) for ae. te[a, b].

Then evidently & e W', &(a) = d, &(b) = 0 and ¢ is a solution to the system (1,11).
This completes the proof of Auxiliary Assertion.

Proof of Lemma 1.4 (continuation). Let Z be an arbitrary finite subset of W,,".
Then by Auxiliary Assertion for any z € Z there exist x,, y, € Lj, such that (1,8)
holds when the symbols x, y are replaced by x, and y_, respectively. Let us denote

Wi={(x,,y.):zeZ}.
Let ue W™ be such that
l[x, ul, + [, {’u]L] <¢ forall (x,y)eW.
Then for any z € Z we have in virtue of (1,7)
[z, ulw| = |[xo ule + [yar fu]e] <.

This completes the proof of Lemma 1.4.

Now we can prove the following assertion.

1.5. Theorem. Under Assumptions 1.1 the graph G(L) of L is weakly*-closed in
Ly x L.

Proof. By (1,6), G(L) = J_,(N(H)). Since N(H) is weakly*-closed in W, ® by
Lemma 1.3 and J : G = LY x L® - W™ is continuous with respect to the cor-
responding weak*-topologies by Lemma 1.4, it follows immediately that G(L) is
weakly*-closed in L;, x L.

Since R(L) is closed in L;; (cf. Theorem 4.3 of the first part [1] of this paper) and L
is weakly*-closed in L;j; x L, it follows from Lemma 0.1 that R(L) is weakly*-
closed in L.

1.6. Theorem. Under Assumptions 1.1, R(L) is weakly*-closed in Ly, (*L)* = L
and the relations (1,5) hold.
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1.7. Remark. The results of this section also hold if we only assume the operator
H : W}® - F to be continuous and such that its pre-adjoint relation *H is densely

defined in *F, i.e. D(*H) = *F. (The last condition is fulfilled e.g. if H is weakly*-

closed in W,;® x F. In fact, in this case we have D(*H) = *{0}, cf. [2], Theorem 2.3.)
The proof of Lemma 1.3 should be modified as follows:

Let u € cI*(N(H)). Then for each ¢ € D(*H) = *F and each value z € *Hop = Wy
there exists a sequence {u{”}72, < N(H) such that

[,y > [z, uly as j—o 0.

Consequently
[o, Hulp = [0, H(u — u®)]or = [z — uj?]y > 0,

ie. [¢, Hu].z = O for any ¢ € D(*H). Since D(*H) = *F, this implies-that Hu = 0
and u e N(H).
2. PRE-ADJOINT RELATION

We want to find an analytic description of the pre-adjoint relation *L to L.

Let us assume 1.1.

2.1. Theorem. The graph G(*L) of the pre-adjoint relation*L to L is the set of all
couples (y, v) € Ly, x Ly, for which there exists y € L}, such that

(2,1) y+yewyt ¥,

(2,2) v="C 0 Y) = —(y + ) + A%y,
(2.3) [y +¢](b)=0

and

(24 u*(a) [y + ¥] (a) + Jbu’*w dt =0 forall ueD = D(L).

a

Proof. a) Let (y, v) e L., x L}, belong to G(*L). Then

2.3) 0=y, tuls — [v, ]y = J‘b[(u' + Au)*y — wro]dt =

- u*(a)ﬁ(A*y —o)dr + Jbu’* [y + r(A*y — ) d‘r:l dr

a t

*) The functions y, y are supposed to be defined everywhere on [a, b].
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for all u € D(L). Let ¢ € L}, be such that
b
[y +¥](@) +f(A*y —v)dr =0 forany te[a,b].
t

Then y + ye W', [y + y](b) =0, v = —(y + ¥) + A*y ae. on [a, b]. Con-
sequently, the couple (u, v) fulfils (2,1)—(2,3). Furthermore, since

r(A*y _o)di = [y + ¥] (),

it follows from (2,5) that it fulfils also (2,4).

b) Let (y,v)e L., x L} and let y € L, be such that (2,1)—(2,4) hold. Then for
any u € D(L) we have

b b b
fu*vdt = — I u*(y + y) dr + J’ u*Ay dt =

a a a

b b
= —u*y + !//]|2 +J w¥[y + y]dr + J u*Ay dt =

b
=f(u’ + Au)* ydt.

Hence (y, v) € G(*L).

Let D; again denote the set of all derivatives u’ € L, of functions u from D, =
= {ue D :u(a) = u(b) = 0}. Analogously as we obtained in the first part of this
paper ([1]) the analytic description 4.6 of the adjoint relation L§ to the restriction
L, of L on D, for the case 1 < p < oo from Theorem 4.5, we also can obtain in our
present situation from Theorem 2.1 an analytic description of the pre-adjoint *L,
to L, '

Ly:ueDy— tueLy (D(Ly) = D).

2.2. Corollary. G(*L,) is the set of all (y,v)e Ly, x Ly, for which there exists
Y €D} (the set of all y e L}, such that [y, u"], = 0 for all ue D) such that (2,1)
and (2,2) hold.

The following assertion is analogous to Theorem 4.8 of the first part [1] of this

paper.

2.3. Theorem. Let us assume 1.1. G(*L) is the set of all (y,v) € L}, x L}, for which
there exist { € Wit and its derivative (' € L, such that

(2:6) y+ewyt,
(2,7) v=17¢*(y,0) ae on [a,b],
29) [y +¢1(a) =a), [y+1()=0
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and
(2,9 { e R(*H) (the closure in W,').
Proof. a) Let y,ve L), (e W,’' and (' e L;, be such that (2,6)—(2,9) hold. Ob-

viously y, v and ¢ := {’ fulfil (2,1)—(2,3). Since H is weakly*-closed in W,® x F,
R(*H) = *N(H) = *D (with respect to the pairing [.,.]y). Thus (2,9) implies that

b
u*(a) [y + ¢](a) + J. u*ydt =0 forall uebD,
i.e. (2,4) holds and (y, v) € G(*L) according to Theorem 2.1.

b) On the other hand, if (y, v) € G(*L), then by Theorem 2.1 there exists Y € L,
such that (2,1)—(2,4) hold. Let us put

t
2100 o) =[+v]@, ) =2a)+ J ydr on [ab].
Then the relations (2,6)—(2,8) follow directly from (2,1)—(2,3). Furthermore, we
have by (2,4) and (2,10)
b
u*(a) {(a) + J u*('dt =0 forall ueD.

It means that {e*D < W' (with respect to the pairing [.,.]y). Since *D =
= *N(H) = R(*H), the relation (2,9) follows immediately.

2.4. Remark. Notice that from the assumptions in 1.1 concerning H we have
exploited in this section only the weak*-closedness of H in W)'® x F.
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