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Abstract. This contribution deals with systems of generalized linear differential equations
of the form

xk(t) = x̃k +
∫ t

a

d[Ak(s)] xk(s) + fk(t)− fk(a), t∈ [a, b] k∈N,

where −∞< a< b <∞, X is a Banach space, L(X) is the Banach space of linear bounded
operators on X, x̃k ∈X, Ak: [a, b]→L(X) have bounded variation on [a, b], fk: [a, b]→X
are regulated on [a, b] and the integrals are understood in the Kurzweil-Stieltjes sense.

Our aim is to present new results on continuous dependence of solutions to generalized
linear differential equations on the parameter k. We continue our research from [18], where
we were assuming that Ak tends uniformly to A and fk tends uniformly to f on [a, b].
Here we are interested in the cases when this assumption is violated.

Furthermore, we introduce a notion of a sequential solution to generalized linear differ-
ential equations as the limit of solutions of a properly chosen sequence of ODE’s obtained
by piecewise linear approximations of functions A and f. Theorems on the existence and
uniqueness of sequential solutions are proved and a comparison of solutions and sequential
solutions is given, as well.

The convergence effects occurring in our contribution are, in some sense, very close to
those described by Kurzweil and called by him emphatic convergence.
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1 . Introduction

Generalized differential equations were introduced in 1957 by J. Kurzweil in
[14]. Since then they were studied by many authors. See e.g. the mono-
graphs by Schwabik, Tvrdý and Vejvoda [29], [25], [32] or the papers by
Ashordia [2], [3] or Fraňková [7] and the references therein. Closely related
and fundamental is also the contribution by Hildebrandt [10]. Furthermore,
during the recent decades, the interest in their special cases like equations
with impulses or discrete systems increased considerably, cf. e.g. the mono-
graphs [21], [33], [4], [24] or [1].

Concerning integral equations in a general Banach space, it is worth to
highlight the monograph by Hönig [11] having as a background the interior
(Dushnik) integral. On the other hand, dealing with the Kurzweil-Stieltjes
integral, the contributions by Schwabik in [27] and [28] are essential for this
paper. It is well-known that theory of generalized differential equations in
Banach spaces enables the investigation of continuous and discrete systems,
including the equations on time scales and the functional differential equa-
tions with impulses, from the common standpoint. This fact can be observed
in several papers related to special kinds of equations, such as e.g. those by
Imaz and Vorel [12], Oliva and Vorel [19], Federson and Schwabik [6].

In this paper we consider linear generalized differential equations of the
form

xk(t) = x̃k +

∫ t

a

d[Ak(s)] xk(s) + fk(t)− fk(a), t∈ [a, b], k ∈N (1.1)

and

x(t) = x̃ +

∫ t

a

d[A(s)] x(s) + f(t)− f(a), t∈ [a, b] . (1.2)

In particular, we are interested in finding further conditions ensuring the con-
vergence of the solutions xk of (1.1) to the solution x of (1.2). We continue
our research from [9] and [18], where we supposed a.o. that Ak tends uni-
formly to A and fk tends uniformly to f on [a, b]. Here we will deal, similarly
to [31] and [8], with the situation when this assumption is not satisfied.

In the paper we keep the following notation:

N= {1, 2, . . . } is the set of natural numbers and R stands for the space
of real numbers. If −∞<a < b<∞, then [a, b] and (a, b) denote the cor-
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responding closed and open intervals, respectively. Furthermore, [a, b) and
(a, b] are the corresponding half-open intervals.

X is a Banach space equipped with the norm ‖.‖X and L(X) is the Banach
space of linear bounded operators on X equipped with the usual operator
norm. For an arbitrary function f : [a, b]→X, we set

‖f‖∞ = sup{‖f(t)‖X ; t∈ [a, b]} .

If fk: [a, b]→X for k ∈N, and f : [a, b]→X are such that

lim
k→∞

‖fk− f‖∞ = 0,

we say that fk tends to f uniformly on [a, b] and write fk ⇒ f on [a, b]. If
J ⊂ R and fk ⇒ f on [a, b] for each [a, b]⊂ J, we say that fk tends to f
locally uniformly on J and write fk ⇒ f locally on J.

If, for each t∈ [a, b) and s∈ (a, b], the function f : [a, b]→X possesses the
limits

f(t+) := lim
τ→t+

f(τ), f(s−) := lim
τ→s−

f(τ),

we say that f is regulated on [a, b]. The set of all functions with values in X
that are regulated on [a, b] is denoted by G([a, b], X). Furthermore,

∆+f(t) = f(t+)− f(t) for t∈ [a, b), ∆+f(b) = 0,

∆−f(s) = f(s)− f(s−) for s∈ (a, b], ∆−f(a) = 0

and

∆f(t) = f(t+)− f(t−) for t∈ (a, b).

Clearly, each function regulated on [a, b] is bounded on [a, b].
The set D = {α0, α1, . . . , αm} ⊂ [a, b], where m∈N, is called a division

of the interval [a, b], if a = α0 <α1 < . . . < αm = b. The set of all divisions
of the interval [a, b] is denoted by D[a, b]. For a function f : [a, b]→X and
a division D = {α0, α1, . . . , αm}∈D[a, b], we put

ν(D) := m, |D|= max{αi−αi−1 ; i = 1, 2, . . . , m},

v(f, D) :=
m∑

j=1

‖f(αj)− f(αj−1)‖X

and
varb

a f := sup
{
v(f, D); D∈D[a, b]

}
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is the variation of f over [a, b]. We say that f has a bounded variation on [a, b]
if varb

a f <∞. The set of X- valued functions of bounded variation on [a, b] is
denoted by BV ([a, b], X) and ‖f‖BV = ‖f(a)‖X + varb

a f. Finally, C([a, b], X)
is the set of functions f : [a, b]→X that are continuous on [a, b]. Obviously,

BV ([a, b], X)⊂G([a, b], X) and C([a, b], X)⊂G([a, b], X).

The integral which occurs in this paper is the abstract Kurzweil-Stieltjes
integral (in short the KS-integral) as defined by Schwabik in [26]. For its fur-
ther properties see also our previous paper [17]. For the reader’s convenience,
let us recall the definition of the KS-integral.

Let −∞<a < b<∞, m∈N,

D = {α0, α1, . . . , αm}∈D[a, b] and ξ = (ξ1, ξ2, . . . , ξm)∈ [a, b]m.

Then the couple P = (D, ξ) is called a partition of [a, b] if

αj−1 ≤ ξj ≤ αj for j = 1, 2, . . . , m.

The set of all partitions of the interval [a, b] is denoted by P [a, b]. An arbitrary
function δ : [a, b]→ (0,∞) is called a gauge on [a, b]. Given a gauge δ on [a, b],
the partition

P = (D, ξ) =
({α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)

)∈P [a, b]

is said to be δ-fine, if

[αj−1, αj] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . , m.

The set of all δ-fine partitions of [a, b] is denoted by A (δ; [a, b]).
For functions f : [a, b]→X, G : [a, b]→L(X) and a partition P ∈P [a, b],

P = ({α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)) ,

we define

Σ(∆Gf ; P ) =
m∑

j=1

[G(αj)−G(αj−1)] f(ξj).

We say that q ∈X is the KS-integral of f with respect to G from a to b if




for each ε> 0 there is a gauge δ on [a, b] such that

‖q−Σ(∆Gf ; P )‖X < ε for all P ∈A (δ; [a, b]).
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In such a case we write

q =

∫ b

a

d[G(t)] f(t) or, more briefly, q =

∫ b

a

d[G] f.

Analogously we define the integral

∫ b

a

F d[g] for F : [a, b]→L(X) and

g : [a, b]→X.
The following assertion summarizes the properties of the KS-integral

needed later. For the proofs, see [26] and [17].

1.1 . Theorem. Let f ∈G([a, b], X), G∈G([a, b], L(X)) and let at least one
of the functions f, G has a bounded variation on [a, b]. Then the integral∫ b

a

d[G] f exists. Furthermore,

∥∥∥
∫ b

a

d[G] f
∥∥∥

X
≤ 2 ‖G‖∞

(‖f(a)‖X+ varb
a f

)
if f ∈BV ([a, b], X) , (1.3)

∥∥∥
∫ b

a

d[G] f
∥∥∥

X
≤ (varb

a G) ‖f‖∞ if G∈BV ([a, b], L(X)) , (1.4)

∫ t

a

d[G] fk⇒
∫ t

a

d[G] f on [a, b]

if G∈BV ([a, b], L(X)), fk ∈G([a, b], X) for k ∈N and fk⇒ f ,





(1.5)

∫ t

a

d[Gk] f⇒
∫ t

a

d[G] f on [a, b]

if f ∈BV ([a, b], X), Gk ∈G([a, b], L(X)) for k ∈N and gk⇒ g ,





(1.6)

∫ t

a

d[Gk] fk⇒
∫ t

a

d[G] f

if Gk ∈BV ([a, b], L(X)), fk ∈G([a, b], X) for k∈N,

sup {varb
a Gk; k ∈N}<∞ and fk⇒ f, Gk⇒ G on [a, b] .





(1.7)

1.2. Remark. An assertion analogous to that of Theorem 1.1 holds also for
the integrals

∫ b

a

F d[g],

∫ b

a

Fk d[g],

∫ b

a

F d[gk],

∫ b

a

Fk d[gk], k ∈N,
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where F, Fk : [a, b]→L(X) and g, fk : [a, b]→X.

2 . Generalized differential equations

Let A∈BV ([a, b], L(X)), f ∈G([a, b], X) and x̃∈X. Consider the generalized
linear differential equation (1.2). We say that a function x : [a, b]→X is

a solution of (1.2) on the interval [a, b] if the integral

∫ b

a

d[A] x has a sense

and equality (1.2) is satisfied for all t∈ [a, b].

Obviously, generalized differential equation (1.2) is equivalent with the
equation

x(t) = x̃ +

∫ t

a

d[B] x + g(t)− g(a)

whenever B−A and g− f are constant on [a, b]. Therefore, without any loss
of generality we can assume that

A(a) = Ak(a) = 0 and f(a) = fk(a) = 0 for k∈N.

For our purposes the following property is crucial:

[
I −∆−A(t)

]−1 ∈L(X) for each t∈ (a, b]. (2.1)

Its importance is well illustrated by the next assertion which summarizes
some of the basic properties of generalized linear differential equations in
abstract spaces. For the proof, see [18, Lemma 3.2].

2.1. Theorem. Let A∈BV ([a, b], L(X)) satisfy (2.1). Then, for each x̃∈X
and each f ∈G([a, b], X) equation (1.2) has a unique solution x on [a, b] and
x∈G([a, b], X). Moreover, x−f ∈BV ([a, b], X)

0 < cA := sup
{∥∥[I −∆−A(t)]−1

∥∥
L(X)

; t∈ (a, b ]
}

< ∞ , (2.2)

‖x(t)‖X ≤ cA (‖x̃‖X+‖f(a)‖X+‖f‖∞) exp (cA vart
a A) for t∈ [a, b] (2.3)

and

varb
a(x−f) ≤ cA (varb

a A) (‖x̃‖X+2 ‖f‖∞) exp(cA varb
a A) . (2.4)

The next result was proved in [18, Theorem 3.4].
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2.2 . Theorem. Let A,Ak ∈BV ([a, b], L(X)) f, fk ∈G([a, b], X), x̃, x̃k ∈X
for k ∈N. Assume (2.1),

α∗ := sup{varb
a Ak; k ∈N} < ∞ , (2.5)

Ak ⇒ A on [a, b] , (2.6)

fk ⇒ f on [a, b] (2.7)

and

lim
k→∞

x̃k = x̃ . (2.8)

Then equation (1.2) has a unique solution x on [a, b]. Furthermore, for each
k ∈N sufficiently large there exists a unique solution xk on [a, b] to the equa-
tion (1.1) and

xk ⇒ x on [a, b] . (2.9)

2.3. Remark. If (2.5) is not true, but (2.6) is replaced by a stronger notion
of convergence in the sense of Opial ([20, Theorem 1]) (cf. [13, Theorem
1.4.1] for extension to functional differential equations), the conclusion of
Theorem 2.2 remains true (see [18, Theorem 4.2]). If (2.6) or (2.7) does not
hold, the situation becomes rather more difficult, see [7], [8] and [31]. The
next section deals with such a case.

3 . Emphatic convergence

The proofs of the next two lemmas follow the ideas of the proof of [8, Theorem
2.2].

3.1. Lemma. Let A,Ak ∈BV ([a, b], L(X)), f, fk ∈G([a, b], X), x̃, x̃k ∈X for
k ∈N. Assume (2.1), (2.8),

[I −∆−Ak(t)]
−1 ∈L(X)

for all t∈ (a, b] and k ∈N sufficiently large ,

}
(3.1)

Ak ⇒ A and fk ⇒ f locally on (a, b] . (3.2)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈N
sufficiently large, there exists a unique solution xk on [a, b] to the equation
(1.1).
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Moreover, let (2.5) and

∀ ε > 0 ∃ δ > 0 such that ∀ t∈ (a, a+δ)∃ k0 = k0(t)∈N such that

‖xk(t)−x̃k−∆+A(a) x̃−∆+f(a)‖X < ε

for all k≥ k0





(3.3)

hold. Then
lim
k→∞

xk(t) = x(t) (3.4)

is true for t∈ [a, b], while xk ⇒ x locally on (a, b].

Proof. By (3.1), the solutions xk of (1.1) exists on [a, b] for all k sufficiently
large. Let ε> 0 be given and let δ > 0 and k1 ∈N be such that

‖x(t)−x(a+)‖X < ε for t∈ (a, a + δ) and ‖x̃k− x̃‖X < ε for k≥ k1.

We may choose δ in such way that (3.3) holds. In view of this, for t∈ (a, a + δ),
let k0 ∈N, k0≥ k1, be such that

‖xk(t)−x̃k−∆+A(a) x̃−∆+f(a)‖X < ε for k≥ k0.

Then, taking into account the relations

x(a+) = x(a) + ∆+A(a) x(a) + ∆+f(a) and x(a) = x̃,

we get

‖xk(t)−x(t)‖X

= ‖(xk(t)−x̃k) + (x̃k−x̃) + (x̃−x(a+)) + (x(a+)−x(t))‖X

≤ ‖xk(t)−x̃k−x(a+)+x̃‖X + ‖x̃−x̃k‖X + ‖x(t)−x(a+)‖X

= ‖xk(t)−x̃k−∆+A(a) x̃−∆−f(a)‖X + ‖x̃−x̃k‖X + ‖x(t)−x(a+)‖X

< 3 ε .

This means that (3.4) holds for t∈ [a, a+δ).
Now, let an arbitrary c∈ (a, a + δ) be given. We can use Theorem 2.2 to

show that the solutions xk to

xk(t) = xk(c) +

∫ t

c

d[Ak] xk + fk(t)− f(t)

exists on [c, b] and xk ⇒ x on [c, b]. The assertion of the lemma follows easily.
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3.2. Lemma. Let A,Ak ∈BV ([a, b], L(X)), f, fk ∈G([a, b], X), x̃, x̃k ∈X for
k ∈N. Assume (2.1), (2.8), (3.1) and

Ak ⇒ A and fk ⇒ f locally on [a, b) . (3.5)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈N
sufficiently large, there exists a unique solution xk on [a, b] to the equation
(1.1).

Moreover, let (2.5) and

∀ ε> 0, δ > 0 ∃ τ ∈ (b− δ, b), k0 ∈N such that

|xk(b)−xk(τ)−∆−A(b) [I−∆−A(b)]
−1

x(b−)

− [I−∆−A(b)]
−1

∆−f(b)| < ε

for all k≥ k0





(3.6)

hold. Then (3.4) is true, while xk ⇒ x locally on [a, b).

Proof. Due to (2.1) and (3.1), there exists a unique solution x of (1.2) on
[a, b], there exists k1 ∈N such that (1.1) has a unique solution xk on [a, b] for
each k≥ k1. Furthermore, by Theorem 2.2, xk ⇒ x locally on [a, b). It remains
to show that

lim
k→∞

xk(b) = x(b) (3.7)

is true, as well. Let ε> 0, δ ∈ (0, b−a) be given and let τ ∈ (b−δ, b) and k0≥ k1

be such that (3.6) is true. We have

‖xk(b)−x(b)‖X

= ‖(xk(b)−xk(τ)) + (xk(τ)−x(τ)) + (x(τ)−x(b−)) + (x(b−)− x(b))‖X

≤ ‖xk(b)−xk(τ)−x(b)+x(b−)‖X + ‖x(τ)−x(b−)‖X + ‖xk(τ)−x(τ)‖X ,

wherefrom, having in mind that x(b) = x(b−) + ∆−A(b) x(b) + ∆−f(b), i.e.

x(b) = [I−∆−A(b)]−1 x(b−) + [I−∆−A(b)]−1 ∆−f(b)

and

x(b)−x(b−) = ∆−A(b) [I−∆−A(b)]−1 x(b−)

+
[
I + ∆−A(b) [I−∆−A(b)]−1

]
∆−f(b) ,
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we deduce that

‖xk(b)− x(b)‖X

≤ ‖xk(b)−x(τ)−∆−A(b) [I−∆−A(b)]−1 x(b−)

− [
I + ∆−A(b) [I−∆−A(b)]−1

]
∆−f(b)‖X

+ ‖x(τ)−x(b−)‖X + ‖xk(τ)−x(τ)‖X .

We can choose δ and k0 in such a way that ‖x(t)−x(b−)‖X <ε for each
t∈ (b−δ, b) and ‖xk(τ)−x(τ)‖X <ε for k≥ k0, as well. Furthermore, notice
that if B ∈L(X) is such that [I−B]−1 ∈L(X), then [I−B]−1 = I+B [I−B]−1.
Thus, using (3.6), we get

‖xk(b)− x(b)‖X

≤ ‖xk(b)−x(τ)−∆−A(b) [I−∆−A(b)]−1 x(b−)− [I−∆−A(b)]−1 ∆−f(b)‖X

+ ‖x(τ)−x(b−)‖X + ‖xk(τ)−x(τ)‖X

< 3 ε .

It follows that (3.7) is true and this completes the proof.

The next assertion may be deduced from Lemmas 3.1 and 3.2

3.3 . Theorem. Let A, Ak ∈BV ([a, b], L(X)), f, fk ∈G([a, b], X), x̃, x̃k ∈X
for k ∈N. Assume (2.1), (2.8) and (3.1). Furthermore, let there exists a di-
vision D = {s0, s2, . . . , sm} of the interval [a, b] such that

Ak ⇒ A, fk ⇒ f locally on each (si−1, si), i = 1, 2, . . . , m . (3.8)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈N
sufficiently large, there exists a unique solution xk on [a, b] to the equation
(1.1).

Moreover, assume (2.5) and let

∀ ε > 0 ∃ δi ∈ (0, si−si−1) such that ∀ t∈ (si−1, si−1+δi)

∃ ki = ki(t)∈N such that

‖xk(t)−xk(si−1)−∆+A(si−1) x(si−1)−∆+f(si−1)‖X < ε

for all k≥ ki





(3.9)
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and

∀ ε> 0, δ ∈ (0, si−si−1) ∃ τi ∈ (si−δ, si), `i ∈N such that

‖xk(si)−xk(τi)−∆−A(si) [I−∆−A(si)]
−1

x(si−)

− [I−∆−A(si)]
−1

∆−f(si)‖X < ε

for all k≥ `i





(3.10)

hold for each i = 1, 2, . . . ,m.

Then (3.4) is true for all t∈ [a, b], while xk ⇒ x locally on each (si−1, si),
i = 1, 2, . . . , m.

Proof. Obviously, there is a division D = {α0, α1, . . . , αr} of [a, b] such that
for each subinterval [αj−1, αj], j=1, 2, . . ., r, either the assumptions of Lem-
ma 3.1 or the assumptions of Lemma 3.2 are satisfied with with αj−1 in place
of a and αk in place of b. Hence the proof follows by Lemmas 3.1 and 3.2.

4 . Sequential solutions

The aim of this section is to disclose the relationship between solutions of
generalized linear differential equation and limits of solutions of approximat-
ing sequences of linear ordinary differential equations generated by piecewise
linear approximations of the coefficients A, f.

Let us introduce the following notations.

4.1 .Notation. For A∈BV ([a, b], L(X)), f ∈G([a, b], X) and

D = {α0, α1, . . ., αm}∈D[a, b] ,

we define

AD(t) =





A(t) if t ∈ D,

A(αi−1) +
A(αi)−A(αi−1)

αi−αi−1

(t−αi−1)

if t∈ (αi−1, αi) for some i∈{1, 2, . . . , m} ,

(4.1)

and
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fD(t) =





f(t) if t∈D,

f(αi−1) +
f(αi)− f(αi−1)

αi−αi−1

(t−αi−1)

if t∈ (αi−1, αi) for some i∈{1, 2, . . . , m} .

(4.2)

The following lemma presents some direct properties for the functions
defined in (4.1) and (4.2).

4.2 . Lemma. Assume that A∈BV ([a, b], L(X)), f ∈G([a, b], X). Further-
more, let D∈D[a, b], D = {α0, α1, . . . , αm}, and let AD and fD be defined
by (4.1) and (4.2), respectively. Then AD and fD are strongly absolutely
continuous on [a, b] and

varb
a AD ≤ varb

a A and ‖fD‖∞ ≤ ‖f‖∞ .

Proof. It is clear that AD and fD are strongly absolutely continuous on
(αi−1, αi), for each i = 1, . . . , m. Since both functions are continuous on [a, b],
the absolute continuity holds on the closed intervals [αi−1, αi], i = 1, . . . , m
(cf. [30, Theorem 7.1.10]).

Let ε > 0 be given. For each i = 1, . . . , m, there exists ηi > 0 such that

p∑
j=1

‖AD(bj)− AD(aj)‖L(X) <
ε

m
, whenever

p∑
j=1

(bj − aj) < ηi,

where [aj, bj], j = 1, . . . , p, are non-overlapping subintervals of [αi−1, αi].
Let η < min{ηi ; i = 1, . . . , m}. Consider F = {[cj, dj] ; j = 1, . . . , p}, a

colection of non-overlapping subintervals of [a, b], such that

p∑
j=1

(dj − cj) < η.

Without loss of generality we may assume that, for each j = 1, . . . , p,
[cj, dj] ⊂ [αkj−1, αkj

], for some kj ∈ {1, . . . , m}. Thus,

F =
m⋃

i=1

Fi, with Fi =
{
[c, d] ∈ F ; [c, d] ∩ [αi−1, αi] 6= ∅},
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and
∑

[c,d]∈Fi

(d− c) < ηi, i = 1, . . . ,m. In view of this, we get

p∑
j=1

‖AD(dj)− AD(cj)‖L(X) ≤
m∑

i=1

∑

[c,d]∈Fi

‖AD(d)− AD(c)‖L(X) <

m∑
i=1

ε

m
= ε,

which shows that AD is strongly absolutely continuous on [a, b]. Similarly we
prove for fD.

Furthermore, for each ` = 1, 2, . . . , m and each t∈ [α`−1, α`] we have

varα`
α`−1

AD = ‖A(α`)−A(α`−1)‖L(X) ≤ varα`
α`−1

A

and

‖fD(t)‖X =
∥∥∥f(α`−1) +

f(α`)−f(α`−1)

α`−α`−1

(t−α`−1)
∥∥∥

X

=
∥∥∥f(α`−1)

α`−t

α`−α`−1

+ f(α`)
t−α`−1

α` − α`−1

∥∥∥
X
≤ ‖f‖∞ .

Therefore,

varb
a AD =

m∑

`=1

varα`
α`−1

AD ≤
m∑

`=1

varα`
α`−1

A = varb
a A and ‖fD‖∞≤‖f‖∞ .

4.3 . Remark. Notice that the functions AD, fD, defined in (4.1) and (4.2),
respectively, are differentiable on (αi−1, αi) , i = 1, . . . , m, and their deriva-
tives are given by

A′
D(t) =

A(αi)−A(αi−1)

αi−αi−1

if t∈ (αi−1, αi) for some i∈{1, 2, . . . , m} ,

f ′D(t) =
f(αi)− f(αi−1)

αi−αi−1

if t∈ (αi−1, αi) for some i∈{1, 2, . . . , m} .

Recalling that, by Lemma 4.2, AD and fD are strongly absolutely continuous
on [a, b], the Bochner integral (cf. [30, Definition 7.4.16]) exist and hence
also the strong McShane and the strong Kurzweil-Henstock integrals (cf.
[30, Theorem 5.1.4] and [30, Proposition 3.6.3]). Moreover,

AD(t) =

∫ t

a

A′
D(s) ds, fD(t) =

∫ t

a

f ′D(s) ds for t∈ [a, b],
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(cf. [30, Theorem 7.3.10]). Consequently,
∫ t

a

d[AD(s)] x(s) =

∫ t

a

A′
D(s) x(s) ds

holds for each x∈G([a, b], X) and t∈ [a, b]. Hence, the generalized differential
equation

x(t) = x̃ +

∫ t

a

d[AD(s)] x(s) + fD(t)− fD(a)

is equivalent to the initial value problem for the ordinary differential equation
(in a Banach space X)

x′(t) = A′
D(t) x + f ′D(t), x(a) = x̃ .

4.4 . Theorem. Let A∈BV ([a, b], L(X))∩C([a, b], L(X)), f ∈C([a, b], X)
and x̃ ∈ X. Furthermore, let {Dk} be a sequence of divisions of the interval
[a, b] such that

Dk+1 ⊃ Dk for k ∈N and lim
k→∞

|Dk| = 0 . (4.3)

Finally, let the sequences {Ak} and {fk} be given by

Ak = ADk
and fk = fDk

for k ∈N , (4.4)

where ADk
and fDk

are defined as in (4.1) and (4.2).
Then equation (1.2) has a unique solution x on [a, b]. Furthermore, for

each k ∈N, equation (1.1) has a solution xk on [a, b] and (2.9) holds.

Proof. Step 1. Since A is uniformly continuous on [a, b], we have:

for each ε> 0 there is a δ > 0 such that

‖A(t)−A(s)‖L(X) < ε
2

holds for all t, s∈ [a, b] such that |t− s|<δ .





(4.5)

By (4.3), we can choose k0 ∈ N in such way that |Dk|<δ, for every k ≥ k0.
Given t∈ [a, b] and k ≥ k0, let α`−1, α` ∈Dk be such that t∈ [α`−1, α`) .

Notice that |α`−α`−1| < δ. So, according to (4.1), (4.4) and (4.5), we get

‖Ak(t)−A(t)‖L(X) ≤ ‖A(α`)−A(α`−1)‖L(X)

[
t−α`−1

α`−α`−1

]
+‖A(α`−1)−A(t)‖L(X)

≤ ε

2
+

ε

2
= ε .
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As k0 was chosen independently of t, we can conclude that (2.6) is true.

Step 2. Analogously we can show that (2.7) is true, as well.

Step 3. By Lemma 4.2, (2.5) holds. Moreover, as A and Ak, k ∈N, are
continuous, the equations (1.2) and (1.1) have unique solutions by Theorem
2.1 and we can complete the proof using Theorem 2.2.

4.5 .Notation. For given f ∈ G([a, b], X) and k ∈N, we denote

U+
k (f) = {t∈ [a, b]:‖∆+f(t)‖X ≥ 1

k
} , U−k (f) = {t∈ [a, b]:‖∆−f(t)‖X ≥ 1

k
} ,

Uk(f) = U+
k (f) ∪ U−k (f) and U (f) =

∞⋃

k=1

Uk(f) .

(Thus, U (f) is the set of points of discontinuity of the function f in [a, b].)
Analogous symbols are used also for operator valued function.

4.6 .Definition. Let A∈BV ([a, b], L(X)), f ∈G([a, b], X) and let {Pk} be
a sequence of divisions of [a, b] such that

|Pk| = (1/2)k for k ∈N . (4.6)

We say that the sequence {Ak, fk} is a piecewise linear approximation (PL-
approximation) of (A, f) if there exists a sequence {Dk} ⊂ D[a, b] of divisions
of the interval [a, b] such that

Dk ⊃ Pk ∪U k(A)∪U k(f) for k ∈N (4.7)

and Ak, fk are for k ∈N defined by (4.1), (4.2) and (4.4).

4.7. Remark. Consider the case that dim X < ∞ and let {Ak, fk} be a PL-
approximation of (A, f). Then, by Lemma 4.2,

varb
a Ak ≤ varb

a A and ‖fk‖∞ ≤ ‖f‖∞ .

Furthermore, as Ak are continuous, due to (2.2), we have cAk
= 1 for all k ∈N.

Hence, (2.4) yields

varb
a(xk−fk) ≤ varb

a A (‖x̃‖X + 2 ‖f‖∞) exp(varb
a A) < ∞ for all k ∈N
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and, by Helly’s Theorem, there is a subsequence {k`} of N and w∈G([a, b], X)
and such that

lim
`→∞

(xk`
(t)− fk`

(t)) = w(t)− f(t) for t∈ [a, b] .

In particular, lim
`→∞

xk`
(t) = w(t) for all t∈ [a, b] such that lim

`→∞
fk`

(t) = f(t).

In this context, it is worth mentioning that if the set U (f) has at most
a finite number of elements, then

lim
k→∞

fk(t) = f(t) for all t∈ [a, b] .

4.8 .Definition. Let A∈BV ([a, b], L(X)), f ∈G([a, b], X) and x̃∈X. We
say that x∗: [a, b] → X is a sequential solution to equation (1.2) on the interval
[a, b] if there is a PL-approximation {Ak, fk} of (A, f) such that

lim
k→∞

xk(t) = x∗(t) for t∈ [a, b] (4.8)

holds for solutions xk, k ∈N, of the corresponding approximating initial value
problems

x′k = A′
k(t) xk + f ′k(t), xk(a) = x̃, k ∈N . (4.9)

4.9. Remark. Notice that, using the language of Definitions 4.6 and 4.8, we
can translate Theorem 4.4 into the following form:

Let A∈BV ([a, b], L(X))∩C([a, b], L(X)), f ∈C([a, b], X) and x̃ ∈ X. Then,
equation (1.2) has a unique sequential solution x∗ on [a, b] and x∗ coincides
on [a, b] with the solution of (1.2).

In the rest of this paper we consider the case when the set U (A) ∪ U (f)
of discontinuities of A, f is non empty. We will start with the simplest case
U (A) ∪ U (f) = {b}.

The next natural assertion will be useful for our purposes and, in our
opinion, it is not available in literature.

4.10 . Lemma. Let A∈BV ([a, b], L(X)). Then

lim
s→t−

1

t−s

(∫ t

s

exp

(
[A(t)−A(s)]

t−r

t−s

)
dr

)

=

∫ 1

0

exp
(
∆−A(t) (1−σ)

)
dσ if t∈ (a, b]





(4.10)

and
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lim
s→t+

1

s−t

(∫ s

t

exp

(
[A(s)−A(t)]

s− r

s− t

)
dr

)

=

∫ 1

0

exp
(
∆+A(t) (1− σ)

)
dσ if t∈ [a, b) .





(4.11)

where the integrals are the Bochner one.

Proof. (i) Let t∈ (a, b] and ε∈ (0, 1) be given. Then there is a δ > 0 such
that

‖A(t−)−A(s)‖L(X) < ε whenever t− δ < s< t .

Now, taking into account that

‖ exp(C τ)− exp(D τ)‖L(X) ≤ ‖C−D‖L(X) exp
(
(‖C‖L(X)+‖D‖L(X)) τ

)

holds for all C,D∈L(X), τ ∈ R, (cf. [22, Corollary 3.1.3]), we get

∥∥∥∥
1

t−s

∫ t

s

[
exp

(
[A(t)−A(s)]

t−r

t−s

)
− exp

(
∆−A(t)

t−r

t−s

)]
dr

∥∥∥∥
X

≤ 1

t−s
‖A(t−)−A(s)‖L(X)

∫ t

s

exp
(
ε + 2 ‖∆−A(t)‖L(X)

)
dr

= ‖A(t−)−A(s)‖L(X) exp
(
ε + 2 ‖∆−A(t)‖L(X)

)

≤ ε exp
(
1 + 2 ‖∆−A(t)‖L(X)

)
for t− δ < s < t .

Therefore,

lim
s→t−

1

t−s

(∫ t

s

exp

(
[A(t)−A(s)]

t−r

t−s

)
dr

)

= lim
s→t−

1

t−s

(∫ t

s

exp

(
∆−A(t)

t−r

t−s

)
dr

)
for t∈ (a, b] .

Now, it is easy to see that the substitution σ = 1− t−r
t−s

in the second integral
yields (4.10).

(ii) Similarly we would justify the relation (4.11).

4.11 . Lemma. Let A∈BV ([a, b], L(X)) and f ∈G([a, b], X) be continuous
on [a, b). Let x̃∈X and let x be a solution of (1.2) on [a, b).

Then equation (1.2) has a unique sequential solution x∗ on [a, b].
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Moreover, x∗ is continuous on [a, b), x∗ = x on [a, b) and x∗(b) = v(1),
where v is a solution on [0, 1] of the initial value problem

v′ = [∆−A(b)] v + [∆−f(b)], v(0) = x(b−) . (4.12)

Proof. Let {Ak, fk} be an arbitrary PL-approximation of (A, f) and let {Dk}
be the corresponding sequence of divisions of [a, b] fulfilling (4.6) and (4.7).
Notice that, under our assumptions, Dk = Pk for k ∈N. For k ∈N, put

τk = max{t∈Pk; t < b} .

By (4.3) we have b− b−a
2k ≤ τk <b for k ∈N, and hence

lim
k→∞

τk = b . (4.13)

Now, for k ∈N and t∈ [a, b], let us define

Ãk(t) =





Ak(t) if t∈ [a, τk] ,

A(τk) +
A(b−)−A(τk)

b−τk

(t−τk) if t∈ (τk, b] ,

f̃k(t) =





fk(t) if t∈ [a, τk] ,

f(τk) +
f(b−)−f(τk)

b−τk

(t−τk) if t∈ (τk, b] .

Furthermore, let

Ã(t) =





A(t) if t∈ [a, b) ,

A(b−) if t = b ,
f̃(t) =





f(t) if t∈ [a, b) ,

f(b−) if t = b .
(4.14)

It is easy to see that, for k ∈N, Ãk f̃k are strongly absolutely continuous
and differentiable a.e. on [a, b], Ã∈BV ([a, b], L(X))∩C([a, b], L(X)) and

f̃ ∈C([a, b], X).
Step 1. Consider problems

y′k = Ã′
k(t) yk + f̃ ′k(t), yk(a) = x̃, k ∈N , (4.15)

and
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y(t) = x̃ +

∫ t

a

d[Ã] y + f̃(t)− f̃(a) . (4.16)

Taking into account Theorem 4.4 and Remark 4.9, we get that the equation
(4.16) possesses a unique solution y on [a, b] and

lim
k→∞

‖yk− y‖∞ = 0 . (4.17)

where, for each k ∈N, yk is the solution on [a, b] of (4.15).
Note that y is continuous on [a, b] and y = x on [a, b). Let {xk} be the

sequence of solutions of problems (4.9) on [a, b]. We can see that xk = yk on
[a, τk] for each k ∈N, and, due to (4.13), we have

lim
k→∞

xk(t) = lim
k→∞

yk(t) = y(t) = x(t) for t∈ [a, b) . (4.18)

Step 2. Next we will prove that

lim
k→∞

xk(τk) = y(b) . (4.19)

Indeed, let ε> 0 be given and let δ > 0 be such that

‖y(t)− y(b)‖X <
ε

2
for t∈ [b−δ, b] .

Further, by (4.17), there is a k0 ∈N such that

τk ∈ [b−δ, b) and ‖yk− y‖∞ <
ε

2
whenever k≥ k0 .

Consequently,

‖xk(τk)− y(b)‖X ≤ ‖xk(τk)− y(τk)‖X + ‖y(τk)− y(b)‖X

= ‖yk(τk)− y(τk)‖X + ‖y(τk)− y(b)‖X <
ε

2
+

ε

2
= ε .

holds for k ≥ k0. This completes the proof of (4.19).

Step 3. On the intervals [τk, b], the equations from (4.9) reduce to the
equations with constant coefficients

x′k = Bk xk + ek , (4.20)

where
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Bk =
A(b)−A(τk)

b−τk

and ek =
f(b)−f(τk)

b−τk

.

Their solutions xk are on [τk, b] given by

xk(t) = exp (Bk (t−τk)) xk(τk) +

(∫ t

τk

exp (Bk (t−r)) dr

)
ek ,

(cf. [5, Chapter II]). In particular,

xk(b) = exp (A(b)−A(τk)) xk(τk)

+
1

b−τk

(∫ b

τk

exp

(
[A(b)−A(τk)]

b−r

b−τk

)
dr

)
[fk(b)−fk(τk)] .

By Lemma 4.10, we have

lim
k→∞

1

b−τk

(∫ b

τk

exp

(
[A(b)−A(τk)]

b−r

b−τk

)
dr

)
[f(b)−f(τk)]

= lim
k→∞

1

b−τk

(∫ b

τk

exp

(
∆−A(b)

b−r

b−τk

)
dr

)
[f(b)−f(τk)]

=

(∫ 1

0

exp
(
∆−A(b) (1−s)

)
ds

)
∆−f(b) .

To summarize,

lim
k→∞

xk(b) = exp
(
∆−A(b)

)
y(b)+

(∫ 1

0

exp
(
∆−A(b) (1−s)

)
ds

)
∆−f(b) ,

i.e.
lim
k→∞

xk(b) = v(1) , (4.21)

where v is a solution to (4.12) on [0, 1].

Step 4. Define

x∗(t) =





y(t) if t∈ [a, b) ,

v(1) if t = b .

Then x∗(t) = lim
k→∞

xk(t) for t∈ [a, b] due to (4.19) and (4.21). Therefore, x∗

is a sequential solution of (1.2). Since it does not depend on the choice of
the approximating sequence {Ak, fk}, we can see that x∗ is also the unique
sequential solution of (1.2). This completes the proof.
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The following assertion concerns a situation symmetric to that treated by
Lemma 4.11. Similarly, to the proof of Lemma 4.11, we will deal with the
modified equation

y(t) = ỹ +

∫ t

a

d[Ã] y + f̃(t)− f̃(a) , (4.22)

where ỹ ∈X and

Ã(t) =





A(a+) if t = a ,

A(t) if t∈ (a, b ]
and f̃(t) =





f(a+) if t = a ,

f(t) if t∈ (a, b ] .
(4.23)

4.12 . Lemma. Let A∈BV ([a, b], L(X)) and f ∈G([a, b], X) be continuous
on (a, b]. Then, for each x̃∈X, equation (1.2) has a unique sequential solution
x∗ on [a, b] and this sequential solution is continuous on (a, b].

Furthermore, let w be a solution of the initial value problem

w′ = [∆+A(a)] w + [∆+f(a)], w(0) = x̃ (4.24)

and let y be a solution on [a, b] of equation (4.22), where ỹ = w(1). Then x∗

coincides with y on (a, b].

Proof. Let {Ak, fk} be an arbitrary PL-approximation of (A, f) and let {Dk}
be the corresponding sequence of divisions of [a, b] fulfilling (4.1) and (4.2).
As in the previous proof, Dk = Pk for k ∈N.

For k ∈N, put
τk = min{t ∈ Pk: t > a} .

By (4.3) we have a + b−a
2k ≥ τk > a for k ∈N, and hence

lim
k→∞

τk = a .

Let {xk} be a sequence of solutions of the approximating initial value prob-
lems (4.9) on [a, b].

Step 1. On the intervals [a, τk], the equations from (4.9) reduce to equations
(4.20) with the coefficients

Bk =
A(τk)−A(a)

τk−a
, ek =

f(τk)− f(a)

τk−a
.
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Their solutions xk are on [a, τk] given by

xk(t) = exp(Bk (t−a)) x̃ +

(∫ t

a

exp (Bk (t−r)) dr

)
ek ,

(cf. [5, Chapter II]). In particular,

xk(τk) = exp (A(τk)−A(a)) x̃

+
1

τk−a

(∫ τk

a

exp

(
[A(τk)−A(a)]

τk−r

τk−a

)
dr

)
[f(τk)−f(τk)] .

By Lemma 4.10, we have

lim
k→∞

1

τk−a

(∫ τk

a

exp

(
[A(τk)−A(a)]

τk−r

τk−a

)
dr

)
[f(τk)−f(a)]

=

(∫ 1

0

exp(∆+A(a) (1−s)) ds

)
∆+f(a) .

Thus, lim
k→∞

xk(τk) = w(1), where w is the solution of (4.24) on [0, 1].

Step 2. Consider equation (4.22) with ỹ = w(1). By Theorem 2.1, it has
a unique solution y on [a, b], y is continuous on [a, b] and, by an argument
analogous to that used in Step 1 of the proof of Lemma 4.11, we can show
that the relation

lim
k→∞

xk(t) = y(t) for t∈ (a, b]

is true.

Step 3. Analogously to Step 4 of the proof of lemma 4.11, we can complete
the proof by showing that the function

x∗(t) =

{
x̃ if t = a ,

y(t) if t∈ (a, b],

is the unique sequential solution of (1.2).

4.13 .Remark. Let us notice that if a< c< b and the functions x∗1 and x∗2
are respectively sequential solutions to

x(t) = x̃1 +

∫ t

a

d[A] x + f(t)− f(a), t∈ [a, c]

and
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x(t) = x̃2 +

∫ t

c

d[A] x + f(t)− f(c), t∈ [c, b] ,

where x̃2 = x∗1(c), then the function

x∗(t) =

{
x∗1(t) if t∈ [a, c] ,

x∗2(t) if t∈ (c, b]

is a sequential solution to (1.2).

4.14 . Theorem. Assume that A∈BV ([a, b], L(X)), f ∈G([a, b], X) and

U (A)∪U (f) = {s1, s2, . . . , sm} ⊂ [a, b] .

Then, for each x̃∈X, there is exactly one sequential solution x∗ of equation
(1.2) on [a, b].

Moreover,

x∗(t) = w`(1) +

∫ t

s`

d[Ã`] x
∗ + f̃`(t)− f̃`(s`) for t∈ [s`, s`+1), `∈N∩ [0,m] ,

x∗(t) = v`(1) for t = s`, `∈N∩ [1,m+1] ,

where s0 = a, sm+1 = b, w0(1) = x̃ and, for `∈N∩ [0,m],

Ã`(t) =

{
A(s`+) if t = s` ,

A(t) if t∈ (s`, s`+1] ,
f̃`(t) =

{
f(s`+) if t = s` ,

f(t) if t∈ (s`, s`+1]

and v` and w` respectively denote the solutions on [0, 1] of initial value prob-
lems

v′` = [∆−A(s`)] v` + [∆−f(s`)], v`(0) = x∗(s`−)

and

w′
` = [∆+A(s`)] w` + [∆+f(s`)], w`(0) = x∗(s`) .

Proof. Having in mind Remark 4.13, we deduce the assertion of Theorem 4.14
by a successive use of Lemmas 4.11 and 4.12. To this aim it is sufficient to
choose a division D = {α0, α1, . . . , αr} of [a, b] such that for each subinter-
val [αk−1, αk], k = 1, 2, . . . , r, either the assumptions of Lemma 4.11 or the
assumptions of Lemma 4.12 are satisfied with αk−1 in place of a and αk in
place of b.
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