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Equations of motion

Navier-Stokes system for compressible fluid

∂t%+ div (%u) = 0,

∂t(%u) + div (%u⊗ u) +∇p(%) = div S + %f,

Newton’s rheological law (µ > 0, η ≥ 0)

S = µ

(
∇u + (∇u)> − 2

3
div uI

)
+ ηdiv uI,

Isentropic equation of state (a > 0, γ > 1)

p(%) = a%γ .
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Time-dependent domain
Let Ω0 ⊂ R3 be a given domain occupied by the fluid at t = 0
and a vector field vs defined in [0,T ]× R3.

For t > 0 we define

Ωt := {X(t, x0); x0 ∈ Ω0}

where X solves the problem

∂tX(t, x0) = vs(t,X(t, x0)),

X(0, x0) = x0.

The space-time domain occupied by
the fluid is denoted

Q f := {(t, x); t ∈ (0,T ); x ∈ Ωt}.

Ω0

Ωt

x0

X(t, x0)

Qf
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Boundary and initial conditions

On the lateral boundary of Q f we assume no-slip:

u(t, ·) = vs(t, ·) on ∂Ωt .

Initial conditions:

%(0, ·) = %0,

(%u)(0, ·) = (%u)0.
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Penalized problem
We fix a reference domain D containing Ω0 and such that

vs |∂D = 0.

Qf

D

We fix a reference domain D containing Ω0 and
such that

vs |∂D = 0.

Qf

D

The original system is replaced by a penalized problem (Pε)

∂t%+ div (%u) = 0,

∂t(%u) + div (%u⊗ u) +∇p(%) = div S + %f − 1

ε
χ(u− vs),

considered in (0,T )× D where

χ(t, x) =

{
0 if (t, x) ∈ Q f ,

1 if (t, x) ∈ Qs := ((0,T )× D) \ Q f .

Boundary and initial conditions

u|∂D = 0, %(0, ·) = %0,ε, (%u)(0, ·) = (%u)0,ε.
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Remarks

I The aim is to prove for ε→ 0 convergence to solutions of NS
in a general time-dependent domain.

I Physical motivation: In the penalized problem, Qs represents
a porous media with permeability ε (Brinkman’s method).
It has been used for incompressible fluids e.g. by
Angot et al. (1999).

I Applications: Easy numerical implementation of complicated
geometries, possible extension to fluid-structure interaction
problems.

I Existence of solutions to penalized problem is covered by the
results of Lions (1998) and Feireisl (2001).
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Finite energy weak solutions

We say that (%,u) is a finite energy weak solution to (Pε) if

I % ∈ L∞(0,T ; Lγ(D)), u ∈ L2(0,T ; W 1,2
0 (D,R3)),

I for any ϕ ∈ C∞c ([0,T )× D):∫ T

0

∫
D

(
b(%)∂tϕ+ b(%)u · ∇ϕ+ (b(%)− b′(%)%)div uϕ

)
= −

∫
D

b(%0,ε)ϕ(0, ·)

I for any ϕ ∈ C∞c ([0,T )× D; R3):∫ T

0

∫
D

(
%u · ∂tϕ+ %(u⊗ u) : ∇ϕ+ pdivϕ

)
=

∫ T

0

∫
D

(
S : ∇ϕ−%f ·ϕ+

χ

ε
(u−vs)·ϕ

)
−
∫

D
(%u)0,ε·ϕ(0, ·)
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Finite energy weak solutions II.

I the energy inequality holds for a.a. τ ∈ (0,T ):∫
D

(1

2
%|u|2 + P(%)

)
(τ, ·) +

∫ τ

0

∫
D

S : ∇u

≤
∫ τ

0

∫
D

(
%f · u− χ

ε
(u− vs) · u

)
+

∫
D

( 1

2%0,ε
|(%u)0,ε|2 + P(%0,ε)

)
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Modified energy inequality

If vs is sufficiently regular then one can test by ψ(t)vs , where
ψ ∈ C∞c [0,T ). The resulting expression gives rise to the following
modified energy inequality:∫

D

(1

2
%|u|2 + P(%)

)
(τ, ·) +

∫ τ

0

∫
D

S : ∇u +

∫ τ

0

∫
D

χ

ε
|u− vs |2

≤
∫

D

( 1

2%0,ε
|(%u)0,ε|2 + P(%0,ε) + (%u · vs)(τ, ·)− (%u)0,ε · vs(0, ·)

)
+

∫ τ

0

∫
D

(
%f·(u−vs)+S : ∇vs−%u·∂tvs−%(u⊗u) : ∇vs−pdiv vs

)
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Main result

Assumptions:

(A1) Ω0 ⊂ Ω0 ⊂ D are bounded domains of class C 2+ν ;

(A2) γ > 3/2, f ∈ L∞((0,T )× D; R3);

(A3) vs ∈ C2+ν([0,T ]× D; R3), vs |∂D = 0;

(A4) the initial data satisfy

%0,ε → %0 in Lγ(D), %0|Ω0 ≥ 0, %0|D\Ω0
= 0,

(%u)0,ε → (%u)0 in L1(D; R3), (%u)0|D\Ω0
= 0,∫

D

|(%u)0,ε|2

%0,ε
< c ,

where c is independent of ε→ 0.
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Main result II.

Theorem
Let the assumptions (A1)–(A4) be satisfied.
Then any sequence {%ε,uε}ε>0 of finite energy weak solutions of
problem (Pε) contains a subsequence such that

%ε → % in Cweak([0,T ]; Lγ(D)) ∩ Lγ(Q f ),

uε → u in L2(0,T ; W 1,2
0 (D; R3)), u = vs in Qs ,

where the limit functions %, u are distributional solutions of the
equation of continuity in (0,T )×D and of the original momentum
equation in Q f .
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Idea of the proof

I Uniform bounds following from the energy inequality
I Estimates of the pressure in Q f :

I local
I up to the boundary

I Strong convergence of %ε in Qs

I Renormalized continuity equation:
I Weak continuity of effective viscous flux
I Bounds on oscillations defect measure

I Strong convergence of %ε in Q f
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Uniform bounds

From the energy inequality we obtain:

{%ε}ε>0 bounded in L∞(0,T ; Lγ(D));

{√%εuε}ε>0 bounded in L∞(0,T ; L2(D,R3));{
∇uε + (∇uε)

> − 2

3
div uI

}
ε>0

bounded in L2(0,T ; L2(D,R3×3)).

Korn’s inequality yields:

{uε}ε>0 bounded in L2(0,T ; W 1,2
0 (D,R3))

and finally {
uε − vs√

ε

}
ε>0

bounded in L2(Qs).
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Uniform bounds II.

From the uniform bounds we infer that

%ε → % in Cweak([0,T ]; Lγ(D)),

uε → u weakly in L2(0,T ; W 1,2
0 (D,R3)),

uε → vs strongly in L2(Qs).
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Pressure estimates
Local estimates in Q f

Taking a test function

ϕ(t, x) := ψ(t, x)∇∆−1[1D%
ν
ε ],

where ν > 0 is a small positive number and ψ is a smooth cut-off
function with suppψ ⊂ Q f , we obtain from the momentum
equation that

a

∫
K
%γ+ν
ε =

∫
K

p(%ε)%
ν
ε ≤ c(K )

for any compact K ⊂ Q f .
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Pressure estimates II.
Estimates up to the boundary

Assume that there exists a test function ϕ with the following
properties:

I ∂tϕ, ∇ϕ ∈ Lq(Q f ) for a given q � 1;

I ϕ(t, ·) ∈W 1,q
0 (Ωt ,R3) for any t ∈ (0,T );

I ϕ(T , ·) = 0;

I divϕ(t, x)→∞ for x→ ∂Ωt uniformly for t in compact
subsets of (0,T ).

Then for any τ < T ,∫
Q f ∩([0,τ ]×D)

p(%ε)divϕ ≤ c(τ)

and consequently {p(%ε)}ε>0 is equi-integrable in L1(Q f ).
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Pressure estimates III.
Estimates up to the boundary

In order to construct the test function ϕ, we denote

d(t, x) = dist (x, ∂Ωt).

Since the boundary of Q f is of class C2, there exists a
neighborhood U of ∂Q f ∩ ((τ1, τ2)× D), τ1, τ2 ∈ (0,T ), such that

d ∈ C2(U).

Let us choose h ∈ C ([0,∞)) ∩ C∞((0,∞)) s.t.

h(z) :=

{
zα for z ∈ ([0, δ/2),

0 for z ≥ δ,

ψ ∈ C∞c (0,T ), ψ ≥ 0, ψ = 1 in [τ1, τ2], and define

ϕ(t, x) := ψ(t)h(d(t, x))∇d(t, x).

For δ > 0 and α ∈ (0, 1) small enough, ϕ meets the requirements:

divϕ = ψh′(d)|∇d |2 + ψh(d)∆d .
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Convergence of %ε in Qs

The available convergence information allows to check that

∂t%+ div (%u) = 0

in the sense of distributions in (0,T )× D and, since u = vs in Qs ,
also in (0,T )× R3.

From the fact that the motion of ∂Ωt is
governed by vs and that %0 = 0 outside Ω0

we conclude that

% = 0 in Qs .

Consequently, for any q ∈ [1, γ),

%ε → % in Lq(Qs).

E. Feireisl, J. Neustupa, J. Stebel: Compressible fluids in time-dependent domains 18/22



Convergence of %ε in Qs

The available convergence information allows to check that

∂t%+ div (%u) = 0

in the sense of distributions in (0,T )× D and, since u = vs in Qs ,
also in (0,T )× R3.
From the fact that the motion of ∂Ωt is
governed by vs and that %0 = 0 outside Ω0

we conclude that

% = 0 in Qs .

Consequently, for any q ∈ [1, γ),

%ε → % in Lq(Qs).

E. Feireisl, J. Neustupa, J. Stebel: Compressible fluids in time-dependent domains 18/22



Renormalized continuity equation
Effective viscous flux

We are able to pass in the momentum equation:

∂t(%u) + div (ρu⊗ u) +∇p(%) = div S in Q f

in the sense of distributions.

Next, introducing the operator Tk(f ) := min{f , k}, it is possible
to show that the identity

(4/3µ+ η)
(

Tk(%)div u− Tk(%)div u
)

= p(%)Tk(%)− p(%) Tk(%)

holds locally in Q f . In particular, as p is a monotone function of %,
the expression on the left is non-negative.
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Renormalized continuity equation
Oscillations defect measure

Using the property of the effective viscous flux we can prove that

osc γ+1[%ε → %](O) := sup
k≥1

lim sup
ε→0

∫
O
|Tk(%ε)−Tk(%)|γ+1 ≤ c(|O|)

for every compact O ⊂ (0,T )× D

, and consequently

osc γ+1[%ε → %]((0,T )× D) ≤ c .

This, together with the uniform bounds, implies that %, u satisfy
the renormalized equation of continuity in (0,T )× D.

E. Feireisl, J. Neustupa, J. Stebel: Compressible fluids in time-dependent domains 20/22



Renormalized continuity equation
Oscillations defect measure

Using the property of the effective viscous flux we can prove that

osc γ+1[%ε → %](O) := sup
k≥1

lim sup
ε→0

∫
O
|Tk(%ε)−Tk(%)|γ+1 ≤ c(|O|)

for every compact O ⊂ (0,T )× D, and consequently

osc γ+1[%ε → %]((0,T )× D) ≤ c .

This, together with the uniform bounds, implies that %, u satisfy
the renormalized equation of continuity in (0,T )× D.

E. Feireisl, J. Neustupa, J. Stebel: Compressible fluids in time-dependent domains 20/22



Convergence of %ε in Q f

From the renormalized equation of continuity we can derive that∫
D

(
Lk(%)− Lk(%)

)
(τ) +

∫ τ

0

∫
D

(
Tk(%)div u− Tk(%)div u

)
=

∫
D

(
Lk(%0)− Lk(%0)

)
+

∫ τ

0

∫
D

(
Tk(%)div u− Tk(%)div u

)
,

for any τ ∈ (0,T ), where

Lk(%) := %

∫ %

1

Tk(z)

z2
dz .

Letting k →∞ we conclude that∫
D

(
% log %− % log %

)
(τ) = 0

for any τ ≥ 0, which implies for any q ∈ [1, γ):

%ε → % in Lq((0,T )× D).
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Tk(z)

z2
dz .

Letting k →∞ we conclude that∫
D

(
% log %− % log %

)
(τ) = 0

for any τ ≥ 0, which implies for any q ∈ [1, γ):

%ε → % in Lq((0,T )× D).
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Conclusion

I We proved:
I Convergence of the Brinkman penalization for compressible

isentropic fluids
I Existence of solutions to NSE in time-dependent domains

I The limit passage requires only local pressure estimates

I The assumptions on smoothness of vs were not optimal
and can be possibly relaxed
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