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Introduction

We consider the time evolution of an incompressible fluid with
shear-rate–dependent viscosity:

div~v = 0, (1a)

∂t~v + div (~v ⊗ ~v) = −∇p + div
[
ν(|D(~v)|2)D(~v)

]
+ ~f , (1b)

in a bounded 3D domain, completed by the Navier slip boundary
condition

(T~n)τ = −a~vτ , ~v · ~n = 0. (1c)

Our primary aim is to study the domain dependence of solutions
(~v , p).
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What is shape stability

Problem is shape-stable, if small change in the geometry of the
domain leads to small change in the solution(s).

In other words: If Ωn → Ω, do solutions (~vn, pn) converge to a
solution of the same problem on Ω?

Indicator of model robustness

Keystone for existence of optimal shapes
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Slip vs. no slip

In general it is not clear what is the right boundary condition for
walls.

Often it is reasonable to prescribe no slip: ~v|∂Ω = 0. This
condition is known to be stable under quite general boundary
perturbations (e.g. equi-Lipschitz setting).

In case of e.g. rough or chemically patterned surfaces some
kind of slip condition is more suitable.

(a) (b) (c)

Velocity profiles: (a) no-slip, (b) partial slip, (c) complete slip.

We study the shape stability problem for Navier’s slip condition

(T~n)τ = −a~vτ , ~v · ~n = 0, a ≥ 0.
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Examples of instability of Navier’s slip (1/2)

Equi-Lipschitz domains, stationary problem

~vn · ~nn = 0
(T~nn)τn = −a(~vn)τn

~v · ~n = 0

T~n · ~t2 = −ã~v · ~t2, ã > a
~v · ~t1 = 0

~t1

~t2

1
n

1
n

n→∞

(Bucur, Feireisl, and Nečasová [2008])
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Examples of instability of Navier’s slip (2/2)

Domains in C1,α−1, α < 2r
r+1

arbitrary {~vn} s.t. ~vn ⇀ ~v in W 1,r

~vn · ~nn = 0 ~v = ~0

1
nα

1
n

n→∞

(Březina [2009])
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Convergence of domains

Let D ⊂ R3 be bounded and O := {Ω ∈ C1,1; Ω ⊂ D}.
Definition

We say that Ωn → Ω in O if there exist C1,1-diffeomorphisms
~Tn : D → D such that

~Tn(Ω) = Ωn,
~Tn → ~Id and ~T−1

n → ~Id in C1,1(D,D),

|∇2~Tn| and |∇2~T−1
n | are bounded independently of n.

Ω
Ωn

~Tn

~T−1
n
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Convergence of functions

Let

W 1,q
N (Ω) := {~ϕ ∈W 1,q(Ω); ~ϕ · ~n = 0 on ∂Ω},

~X q := Lq(D,R3)× Lq(D,R3×3).

For Ω ∈ O we define

EΩ : W 1,q(Ω,R3)→ ~X q; ~ϕ 7→ (χΩ~ϕ, χΩ∇~ϕ).

Definition

Let Ωn → Ω in O. We say that

~ϕn → ~ϕ in ~X q iff EΩn ~ϕn → EΩ~ϕ;

~ϕn ⇀ ~ϕ in ~X q iff EΩn ~ϕn ⇀ EΩ~ϕ.

If ~ϕn ∈W 1,q
0 (Ωn) then

~ϕn → ~ϕ in ~X q ⇔ χΩn ~ϕn → χΩ~ϕ in W 1,q
0 (D).
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Structural assumptions

Assumptions on the extra stress S(D(~v)) := ν(|D(~v)|2)D(~v):

1 S ∈ C1(R3×3,R3×3), S(0) = 0;

2 There exist constants C1,C2 > 0, κ ∈ {0, 1} and r > 1 s.t.

C1(κ+ |A|r−2)|B|2 ≤ ∂S(A)

∂A
:: (B⊗ B) ≤ C2(κ+ |A|r−2)|B|2

for any 0 6= A,B ∈ R3×3.

Assumptions on the body force and initial datum:

3 ~f ∈ Lr ′
(0,T ; ~X r ′

);

4 ~v0 ∈ L2(D)3, div~v0 = 0.
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Definition of weak solution

We say that (~v , p) is a weak solution of problem (P(Ω)), iff

~v ∈ L∞(0,T ; L2(Ω)) ∩ Lr (0,T ; W 1,r
N,div (Ω));

∂t~v ∈ Lσ(0,T ; W−1,σ
N (Ω)) and p ∈ Lσ(0,T ; Lσ0 (Ω));

for every ~ϕ ∈ Lσ
′
(0,T ; W 1,σ′

N (Ω)), σ =

{
r ′ if r ≥ 11

5
5r
6 if r < 11

5

:

∫ T

0

[
〈∂t~v , ~ϕ〉 − (~v ⊗ ~v ,∇~ϕ) + (S(D(~v)),D(~ϕ))

− (p, div ~ϕ) + a

∫
∂Ω
~v · ~ϕ

]
=

∫ T

0
〈~f , ~ϕ〉;

for a.a. t ∈ (0,T ) the energy inequality holds:

1

2
‖~v(t)‖2

2+

∫ t

0
(S(D(~v)),D(~v))+a

∫ t

0
‖~v‖2

2,∂Ω ≤
1

2
‖~v0‖2

2+

∫ t

0
〈~f , ~v〉;

limt→0+ ‖~v(t)− ~v0‖2
2 = 0.
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Existence of solutions

Theorem (Buĺıček, Málek, and Rajagopal [2007])

Let T > 0, Ω ∈ C1,1, Ω ⊂ R3 and r > 8
5 . Then

there exists a weak solution (~v , p) to (P(Ω));

if moreover r > 5
2 , then the weak solution is unique.
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Shape stability

Theorem (Main result)

Let r > 8
5 , Ωn → Ω and (~vn, pn) be solutions to (P(Ωn)).

Then

~vn ⇀ ~v in Lr (0,T ; ~X r ),

χΩn~vn ⇀
∗ χΩ~v in L∞(0,T ; L2(D)),

χΩnpn ⇀ χΩp in Lσ(0,T ; Lσ0 (D)).

where (~v , p) is a solution to (P(Ω)).
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Outline of the proof

1 Uniform estimate:
Korn’s inequality for Ω ∈ C0,1

Lq-regularity for Laplace eq. with Neumann b.c. (Ω ∈ C1,1)
2 Limit passage Ωn → Ω:

Mosco’s conditions:

~ϕn · ~n = 0 and ~ϕn ⇀ ~ϕ ⇒ ~ϕ · ~n = 0

∃{~ϕn}, ~ϕn · ~n = 0 and ~ϕn → ~ϕ ⇐ ~ϕ · ~n = 0

Weak convergence of (~vn, pn) satisfies to pass in the terms∫ T

0

[
〈∂t~vn, ~ϕn〉Ωn − (pn, div ~ϕn)Ωn + a

∫
∂Ωn

~vn · ~ϕn

]
;

Aubin-Lions lemma gives strong convergence enabling limit in
convective term;
Nonlinear term S(D(~vn)) handled by strong monotonicity and
Vitali’s lemma (r > 11

5 ) or by L∞-truncation method (r < 11
5 ).
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Mosco’s conditions (1/4)

Lemma (Mosco’s conditions)

Let Ωn → Ω.

1 For every {~ϕn} s.t. ~ϕn ∈ Lq(0,T ; W 1,s
N (Ωn)) and

~ϕn ⇀ ~ϕ in Lq(0,T ; ~X s)

it holds that ~ϕ ∈ Lq(0,T ; W 1,s
N (Ω));

2 For any ~ϕ ∈ Lq(0,T ; W 1,s
N (Ω)) there exists a sequence {~ϕn},

~ϕn ∈ Lq(0,T ; W 1,s
N (Ωn)) such that

~ϕn → ~ϕ in Lq(0,T ; ~X s).
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Mosco’s conditions (2/4)

Proof of (i): We rewrite the impermeability condition as follows:∫
Ωn

(~ϕn(t) · ∇ψ − ψdiv ~ϕn(t)) = 0 ∀ψ ∈ C∞(D)

and pass to the limit with n→∞ to conclude that∫
Ω

(~ϕ · ∇ψ − ψdiv ~ϕ) = 0

a.a. in (0,T ), thus ~ϕ · ~nΩ = 0.
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Mosco’s conditions (3/4)

Proof of (ii): (idea)
Let ~Tn be the transformation which maps Ω onto Ωn and assume
first that ~Tn, ~T

−1
n → ~Id in C2. If we define

~ϕn :=
[
(∇Tn)~ϕ

] ◦ T−1
n

then ~ϕn · ~nΩn = ~ϕ · ~nΩ = 0, so that ~ϕn ∈ Lq(0,T ; W 1,s
N (Ωn)).

The convergence of ~Tn and ~T−1
n is then sufficient to prove

EΩn ~ϕn → EΩ~ϕ in Lq(0,T ; ~X s).

Roughly speaking,

∇[(∇~Tn)~ϕ
] ≈ (∇~Tn)︸ ︷︷ ︸

→I

∇~ϕ + (∇2~Tn)︸ ︷︷ ︸
→0

~ϕ.
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Mosco’s conditions (4/4)

Proof of (ii): (continued)
If ~Tn, ~T

−1
n converge in C1,1 only, then we modify the construction

using a cut-off function ηε =

{
1 near ∂Ω

0 if dist ∂Ω > ε
:

~ϕn :=

{[
ηε(∇Tn)+(1−ηε)I

]
~ϕ

}
◦T−1

n .

∂Ω

[
(∇~Tn)~ϕ

] ◦ ~T−1
n

~ϕ ◦ ~T−1
n

Then

∇[ηε(∇~Tn − I)~ϕ + ~ϕ
]

≈ (∇2~Tn)︸ ︷︷ ︸
bdd.

ηε~ϕ︸︷︷︸
small

+ (∇~Tn − I)︸ ︷︷ ︸
→0

(ηε∇~ϕ+∇ηε~ϕ) +∇~ϕ.
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Numerical example

Stationary Stokes problem in a chanel with curved top:
in

flo
w

:
~v

=
(1
,0

)

no-stick: ~v · ~n = 0, (T~n)τ = 0

no-stick: ~v · ~n = 0, (T~n)τ = 0

ou
tfl

ow
:
~v

=
(1
,0

)

1
nα

1
n
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Numerical example - results
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Limit boundary condition: no-slip
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Conclusion

C1, r−1
r+1 C1,1Boundary perturbation

Navier’s slip is unstable. Navier’s slip is stable.

Numerical and rigorous arguments show that Navier’s slip
condition is unstable under boundary perturbations of low
regularity, while for smooth deformations it remains stable.

The minimal regularity of boundary that preserves slip is
optimal for unsteady flows of power law fluids.
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