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Introduction

Introduction

We study the shape differentiability of a given functional that depends on
the flow of an incompressible fluid. The fluid is contained in a bounded
domain Ω := B \ S ⊂ R2 which surrounds an obstacle S .

B

S
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Introduction

Equations of motion

Motion of the fluid is described by the following system:

∂tv + div (v ⊗ v)− divS(Dv) +∇p + Cv = f in Q, (1a)

div v = 0 in Q, (1b)

v = 0 on Σ, (1c)

v(0, ·) = v0 in Ω. (1d)

Q (0,T )× Ω
Σ (0,T )× ∂Ω
Ω bounded domain in R2

S traceless part of the Cauchy stress
Dv symmetric part of ∇v
C Coriolis force (constant skew symmetric matrix)
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Introduction

Shape functional

The shape of the obstacle S is to be optimized subject to the drag
functional

J(Ω) :=

∫ T

0

∫
∂S

(S(Dv)− pI)n · d,

where d is a given unit vector.
Our aim is to

show that J is differentiable;

find the shape gradient of J.
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Introduction

Deformation of the shape of S

We choose a vector field T ∈ C2(R2,R2) vanishing in the vicinity of ∂B
and define the mapping

y = x + εT(x),

which describes the perturbation of the boundary ∂S . For small ε > 0 the
mapping x 7→ y takes diffeomorphically the region Ω onto Ωε = B \ Sε
where Sε = y(S).

SSε

x

x+ εT (x)
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Introduction

Shape and material derivatives of solutions

On the perturbed domain we consider the problem

∂t v̄ε + div (v̄ε ⊗ v̄ε)− divS(Dv̄ε) +∇p̄ε + Cv̄ε = f in Qε,

div v̄ε = 0 in Qε,

v̄ε = 0 on Σε,

v̄ε(0, ·) = v0 in Ωε.

The shape and material derivatives are formally defined as follows:

v′ := lim
ε→0

v̄ε − v

ε
, v̇ := lim

ε→0

v̄ε ◦ y − v

ε
.

It will be usefull to work with a modified material derivative

ṽ := lim
ε→0

det(I + ε∇T)(I + ε∇T)−1(v̄ε ◦ y)− v

ε
,

which has the property div ṽ = 0.
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Formal results

Formal results for the shape and material derivatives

The shape derivative of J has the form:

dJ(Ω; T) :=
dJ

dε

∣∣∣∣
ε=0

=

∫ T

0

∫
∂S

(S′(Dv)Dv′ − p′I) : d⊗ n− (f · d)T · n

where the shape derivatives (v′, p′) are determined through the linearized
system

∂tv
′ + div (v′ ⊗ v + v ⊗ v′)− div (S′(Dv)Dv′)

+∇p′ + Cv′ = 0 in Q,

div v′ = 0 in Q,

v′ = −∂v

∂n
T · n on Σ,

v′(0, ·) = 0 in Ω.
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Formal results

Formal results involving adjoint states

To avoid the shape derivatives (which depend implicitly on the direction
T) we introduce the adjoint problem

−∂tw − 2(Dw)v − div (S′(Dv)>Dw) +∇s − Cw = 0 in Q,

div w = 0 in Q,

w = d on Σ,

w(T , ·) = 0 in Ω.

Consequently dJ has the form

dJ(Ω; T) = −
∫ T

0

∫
∂S

[(
S′(Dv)>Dw − sI

)
:
∂v

∂n
⊗ n + f · d

]
T · n.
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Formal results

Validity of formal results

Questions

Existence and uniqueness of state variables?
→ mathematical theory of non-Newtonian fluids

Existence and uniqueness of shape derivatives and adjoints?
→ existence theory of generalized Stokes system
→ regularity of non-Newtonian fluids

Regularity of adjoints and existence of shape gradient dJ?
→ Lp theory for generalized Stokes system
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Overview of mathematical theory for non-Newtonian fluids

Fluids with shear rate-dependent viscosity

Non-newtonian fluids have applications in many areas of sciences and
industry, e.g.:

hemodynamics, biomechanics, mechanics of geomaterials;

mechanical engineering, polymer chemistry, food industry. . .

Essentially, we deal with stress tensors of the type

S(Dv) ≈ (1 + |Dv|r−2)Dv, r > 1.

shear-thickening
(r > 2)

newtonian
(r = 2)

shear-thinning
(r < 2)

|D|

|S|
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Overview of mathematical theory for non-Newtonian fluids

Structural assumptions

We assume that there exist constants C1,C2,C3 > 0, and r ∈ [2, 4) s.t.

C1(1 + |A|r−2)|B|2 ≤ S′(A) :: (B⊗ B) ≤ C2(1 + |A|r−2)|B|2,

|S′′(A)| ≤ C3(1 + |A|r−3)

for any 0 6= A,B ∈ R2×2.
Consequently

S is strongly monotone;

The mapping D 7→ S(D) is continuous from Lr to Lr−1;

The mapping D 7→ S′(D) is continuous from Lr to Lr−2.
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Overview of mathematical theory for non-Newtonian fluids

Mathematical theory for non-Newtonian fluids in 2D

∂tv + div (v ⊗ v)− divS(Dv) +∇p = f in Q, (3a)

div v = 0 in Q, (3b)

v = 0 on Σ, (3c)

v(0, ·) = v0 in Ω. (3d)

Theorem (Ladyzhenskaya [1967], Lions [1969])

For r ≥ 2, f ∈ L2(0,T ; W1,2
0,div (Ω)∗) and v0 ∈W1,r

0,div (Ω) there is a unique
weak solution of (3) that satisfies the energy inequality

1

2
‖v(t)‖2

2,Ω+

∫ t

0

∫
Ω
S(Dv) : Dv =

∫ t

0

∫
Ω

f·v+
1

2
‖v0‖2

2,Ω, for a.a. t ∈ (0,T ).

Remark: Existence theory has been extended also to 3D and r < 2 e.g. by
Frehse et al. [2000], Buĺıček et al. [2007].
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Theorem (Kaplický [2005])

If r ∈ [2, 4) and additionally for some q̃ > 2

f ∈ L∞(0,T ; Lq̃(Ω)), ∂tf ∈ Lq̃(0,T ; W−1,q̃(Ω)) and v0 ∈W2,2(Ω)

then there exists q > 2 and α > 0 such that for arbitrary ε > 0

v ∈ L∞(ε,T ; W2,q(Ω)),

∇v ∈ C0,α([ε,T ]× Ω),

∂tv ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W1,2
0,div (Ω)).
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Overview of mathematical theory for non-Newtonian fluids

Well-posedness of the linearized system, Lp-estimates

∂tu− div (A∇u) +∇q = f in Q, (4a)

div u = 0 in Q, (4b)

u = 0 on Σ, (4c)

u(0, ·) = u0 in Ω (4d)

Let A ∈ L∞(Q,R24
) be symmetric and positive definite, f ∈ L2(Q),

u0 ∈ L2
0,div (Ω). Then the generalized Stokes system (4) has a unique

weak solution.

Theorem (Solonnikov [2001])

Let Ω ∈ C3, A ∈ C(Q,R24
) be symmetric and positive definite, f ∈ Lp(Q),

u0 ∈W1,p
0,div (Ω) ∩W2−2/p,p(Ω). Then the generalized Stokes problem

has a unique weak solution which satisfies:

u ∈ Lp(0,T ; W2,p(Ω)) ∩W 1,p(0,T ; Lp(Ω)),

q ∈ Lp(0,T ; W 1,p(Ω)).
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Overview of mathematical theory for non-Newtonian fluids

Boundedness of Dv

We will require the linearized problem with A ≈ S′(Dv) to have a unique
solution. For this reason we need

Dv ∈ L∞(Q),

however the result by Kaplický yields this only starting at t = ε > 0. To
overcome this technical issue, we follow Wachsmuth and Roub́ıček [2010]
and assume that

the process has started already at some time −ε < 0,

the initial condition at t = −ε and the body force satisfy assumptions
of the Theorem by Kaplický so that Dv ∈ C(Q),

the initial condition at time t = 0 is v0 := v(0, ·).
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Justification of the material and shape derivatives

Formulation in the fixed domain

Introducing the notation

M := I + ε∇T>, g := detM, N := gM−1,

vε := N>(v̄ε ◦ y), pε := p̄ε ◦ y, v0ε := N>(v0 ◦ y),

we formulate the problem for (v̄ε, p̄ε) on the fixed domain:

gN−1N−>∂tvε + div (vε ⊗ vε)− N−1div (N>S(Dεvε))

+∇pε + Cvε = f + A1
ε in Q,

div vε = 0 in Q,

vε = 0 on Σ,

vε(0, ·) = v0ε in Ω.

Here Dεvε := g−1(N∇(N−>vε))sym, and A1
ε ∈ L2(0,T ; W1,2

0,div (Ω)∗) is a
term of order ε, defined by

A1
ε = div (vε ⊗ vε)− N−1div (vε ⊗ N−>vε)

+ (C− gN−1CN−>)vε + gN−1(f ◦ y)− f.

Note: We do not require any additional regularity of vε.
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Justification of the material and shape derivatives

Uniform estimates and convergence of vε

Using the energy inequality we find that

{vε}ε>0 is bounded in L∞(0,T ; L2(Ω)) ∩ Lr (0,T ; W1,r
0,div (Ω)) ∩ L2r (Q),

{N−1div (N>S(Dεvε))}ε>0 is bounded in Lr (0,T ; W1,r
0,div (Ω))∗,

{gN−1N−>∂tvε}ε>0 is bounded in Lr (0,T ; W1,r
0,div (Ω))∗.

Hence there is a weak limit v̄ of the sequence {vε} in the above spaces.
Using the strong monotonicity of S we obtain:

Dvε → Dv strongly in Lr (Q),

which implies

N−1div (N>S(Dεvε))→ divS(Dv̄) in Lr (0,T ; W1,r
0,div (Ω))∗

and thus v̄ = v is the solution to (1).
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Justification of the material and shape derivatives

System for the differences

We are going to estimate the differences

(uε, qε) :=

(
vε − v

ε
,

pε − p

ε

)
.

which solve the problem:

gN−1N−>∂tuε + div (vε ⊗ uε + uε ⊗ v) +∇qε + Cuε

−N−1div

(
N>

S(Dεvε)− S(Dεv)

ε

)
=

1

ε
Aε in Q,

div uε = 0 in Q,

uε = 0 on Σ,

uε(0, ·) =
v0ε − v0

ε
in Ω.

The term Aε on the r.h.s. is given by

Aε = A1
ε + (I− gN−1N−>)∂tv + div S(Dv)− N−1div

(
N>S(Dεv)

)
.
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Justification of the material and shape derivatives

Uniform estimates of the differences uε

Due to the regularity of v, we have that{
1

ε
Aε

}
ε>0

is bounded in L2(0,T ; W1,2
0,div (Ω)∗).

Testing the momentum equation by uε we obtain:

‖uε(t)‖2
2+

∫ t

0
‖Duε‖2

2 ≤ C
(∫ T

0
‖∇vε‖2‖∇uε‖2‖uε‖2

2+‖v0‖2
2+

1

ε

∫ T

0
‖Aε‖2

)
for a.a. t ∈ (0,T ). The Gronwall inequality then yields:

{uε}ε>0 is bounded in L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W1,2
0,div (Ω)).

Since Dvε is uniformly bounded only in Lr , we obtain weaker estimates:{
S(Dεvε)− S(Dεv)

ε

}
ε>0

is bounded in L
2r

3r−4 (Q),

{gN−1N−>∂tuε}ε>0 is bounded in L
2r

4−r (0,T ; W
1, 2r

4−r

0,div (Ω))∗.
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Justification of the material and shape derivatives

Convergence to the material derivatives

Anyway, with help of the strong convergence of Dvε and the above
estimates we can show that

uε ⇀ ṽ,

1

ε
Aε ⇀ A′0, in some weak sense,

where ṽ is a solution of the linearized problem

∂t ṽ + div (ṽ ⊗ v + v ⊗ ṽ)− div (S′(Dv)Dṽ) +∇p̃ + Cṽ = A′0 in Q,

div ṽ = 0 in Q,

ṽ = 0 on Σ,

ṽ(0, ·) = ṽ0 in Ω,

where ṽ0 := N′>v0 + (∇v0)T. Since this problem has a unique weak
solution, we have justified the shape differentiability of the state equation.
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Justification of the material and shape derivatives

Shape derivative of J

The original definition

J(Ω) =

∫ T

0

∫
∂S

(S(Dv)− pI)n · d

is not suitable for weak solutions, hence we rewrite it integrating by parts
and using the state equation:

J(Ω) =

∫
Ω

(v(T )− v0) · ξ +

∫
Q

[(Cv − f) · ξ + (S(Dv)− v ⊗ v)] : ∇ξ.

Here ξ ∈ C∞(Ω,R2) is arbitrary function supported in the vicinity of S
such that ξ|∂S = d and div ξ = 0. Similarly, we obtain:

J(Ωε) =

∫
Ω
gN−1N−> (vε(T )− v0ε) · ξ

+

∫
Q

[
g
(
N−1CN−>vε − N−1(f ◦ y)

)
· ξ

+
(
N>S(Dεvε)− vε ⊗ (N−>vε)

)
: ∇(N−>ξ)

]
.
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Justification of the material and shape derivatives

Shape derivative of J

Using the available convergence of uε we can show that

dJ

dε

∣∣∣∣
ε=0

= JD(ṽ, p̃) + JG (T),

where JD and JG are linear functions of ṽ, p̃ and T, respectively. Since the
pair (ṽ, p̃) depends continuously on the C2 norm of T, we conclude that
the map

T 7→ dJ(Ω; T)

is a bounded linear functional on C2(R2,R2).
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Justification of the material and shape derivatives

Shape gradient of J

The initial and boundary condition for the adjoint problem

−∂tw − 2(Dw)v − div (S′(Dv)>Dw) +∇s − Cw = 0 in Q,

div w = 0 in Q,

w = d on Σ,

w(T , ·) = 0 in Ω.

are incompatible, hence we cannot expect Dw, s ∈ L1(Σ).
Nevertheless, on the time interval (0,T − δ) with any small δ we can
apply the Lp theory for the linearized system and obtain

dJ(Ω; T) = − lim
δ↘0

∫ T−δ

0

∫
∂S

[(
S′(Dv)>Dw − sI

)
:
∂v

∂n
⊗ n + f · d

]
T · n.
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Conclusion

Conclusion

Under appropriate regularity assumptions we have shown the existence
of material derivatives and differentiability of the shape functional.

Recent results in the regularity theory indicate that the differentiability
might be expected for r ≥ 4 (Beirão da Veiga et al. [2010]).

Unfortunately, the cases r < 2 as well as higher space dimensions
remain open as long as ∇v /∈ L∞.
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