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Introduction

Introduction

Goal: Sensitivity analysis of a functional which depends on the flow of
a non-Newtonian fluid.
Geometry: bounded domain Ω := B \ S ⊂ R2 containing an obstacle S .

B

S

d

We investigate the sensitivity of the drag functional

J(Ω) =

∫
∂S

(−pI + S)n · d, |d| = 1,

with respect to smooth perturbations of the shape of S .
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Introduction

Flow equations

Fluid motion is described by the generalized Navier-Stokes equations:

div (v ⊗ v)− divS(Dv) +∇p + Cv = f in Ω, (1a)

div v = 0 in Ω, (1b)

v = g on ∂Ω. (1c)

Ω bounded domain in R2

S deviatoric part of Cauchy stress tensor
Dv symmetric part of ∇v
C Coriolis force (constant skew-symmetric matrix)
g Dirichlet b.c., vanishing in the vicinity of S

Constitutive law for the fluid:

S(Dv) = 2µ0(1 + |Dv|2)
r−2

2 Dv, r ∈ [2, 4).
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Introduction

Shape derivative of a functional

Let {Ωε}ε>0 be a sequence of domains approaching Ω. On Ωε we consider
the problem

div (v̄ε ⊗ v̄ε)− divS(Dv̄ε) +∇p̄ε + Cv̄ε = f v Ωε,

div v̄ε = 0 in Ωε,

v̄ε = g on ∂Ωε

and the functional

J(Ωε) :=

∫
∂Sε

(−p̄εI + S(Dv̄ε))n · d.

Our aim is:

to show the existence of shape gradient of J:

dJ = lim
ε→0

J(Ωε)− J(Ω)

ε

derive a formula to compute dJ.
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Introduction

Remarks on the shape sensitivity analysis

Why shape sensitivity analysis

numerical methods of shape optimization – gradient based
minimization, level-set method

stability of solutions with respect to geometry

Numerical methods of shape optimization

discretize-then-differentiate

continuous problem → approximate problem → shape gradient

+ exact derivative of the approximate solution

differentiate-then-discretize

continuous problem → shape gradient → approximation

+ independence of the approximation of the state problem
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Sensitivity analysis in shape optimization

Parameterization of the boundary perturbation S

Let T ∈ C2(R2,R2) be a vector field vanishing in the vicinity of ∂B. We
define the mapping

yε = x + εT(x),

describing the deviation of material points. For small ε > 0 the map
x 7→ yε is a diffemorphism of Ω onto Ωε = B \ Sε, where Sε = yε(S).

SSε

x

x+ εT (x)
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Sensitivity analysis in shape optimization

Shape and material derivative of solutions

For differentiation of J we need the derivatives of solutions to (3) with
respect to shape.
For formal derivation of the formula for dJ one usually uses the shape
derivative

v′ := lim
ε→0

v̄ε − v

ε
.

For the proof of existence of dJ the material derivative is useful.

v̇ := lim
ε→0

v̄ε ◦ yε − v

ε
= v′ + (∇v)T.

We will also need a modified material derivative

ṽ := lim
ε→0

det(∇yε)∇y−1
ε (v̄ε ◦ yε)− v

ε
,

which satisfies div ṽ = 0.
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Sensitivity analysis in shape optimization

Calculus for the shape and material derivatives

Let f , fε be defined in Ω and Ωε, respectively. Denote

f ′ := lim
ε→0

fε − f

ε
, ḟ := lim

ε→0

fε ◦ yε − f

ε
.

Then it holds:

d

dε

∫
Ωε

fε

∣∣∣∣
ε=0

=

∫
Ω

ḟ +

∫
Ω

f div T

=

∫
Ω

f ′ +

∫
∂Ω

f T · n.
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Sensitivity analysis in shape optimization

General theory of shape sensitivity analysis

under some assumptions, the shape gradient is a distribution
supported on the boundary

dJ(Ω; T) = 〈G,T · n〉∂S

linear elliptic problems are relatively easy to handle

nonlinear problems: non-trivial

lipschitz estimates
regularity
uniqueness
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Sensitivity analysis in shape optimization

Related results

Non-Newtonian fluids

Slawig (2005): optimal control, stationary problem

Wachsmuth and Roub́ıček (2010): optimal control, non-stationary
problem

Abraham, Behr and Heinkenschloss (2005): numerical shape
optimization

Sensitivity analysis for Navier-Stokes and related systems

Consiglieri, Nečasová and Soko lowski (2010): N-S + Maxwell

Plotnikov and Soko lowski (2010): compressible N-S equations

General reference

Soko lowski and Zolésio (1992)
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Existence of shape derivative of J

Main result

Theorem

Let f ∈W1,2(B), ‖f‖2 + ‖g‖3,2+δ � C . Then the shape gradient of J
exists and satisfies:

dJ(Ω; T) = −
∫
∂S

[(
S′(Dv)>Dw − sI

)
:
∂v

∂n
⊗ n + f · d

]
T · n,

where (w, s) is the solution of the linearized adjoint problem

−2(Dw)v − div (S′(Dv)>Dw) +∇s − Cw = 0 in Ω,

div w = 0 in Ω,

w = d on ∂Ω.
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Proof

Main steps of the proof

1 formal derivation of the result

2 well-posedness of the nonlinear and linearized problem

3 existence of the material derivative of weak solutions

4 differentiability of J
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Proof Formal derivation of the results

Formal results: distributed representation of the functional

Let ξ ∈ C∞0,σ(B) satisfy ξ|∂S = d. Applying the Green theorem we get:

J(Ω) =

∫
∂Ω

(S(Dv)− pI)ξ · n =

∫
Ω

div ((S(Dv)− pI)ξ)

=

∫
Ω

div (S(Dv)− pI) · ξ +

∫
Ω
S(Dv) : ∇ξ. (2)

First term on the right of (2) can be rewritten using (3)1:∫
Ω

div (S(Dv)− pI) · ξ =

∫
Ω

(div (v ⊗ v) + Cv − f) · ξ

= −
∫

Ω
v ⊗ v : ∇ξ +

∫
Ω

(Cv − f) · ξ,

which together with (2) yields:

J(Ω) =

∫
Ω

[(Cv − f) · ξ + (S(Dv)− v ⊗ v) : ∇ξ] .
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Proof Formal derivation of the results

Formal results: shape gradient of J

Applying the rules for differentiation with respect to shape we get:

dJ(Ω; T) :=
dJ

dε

∣∣∣∣
ε=0

=

∫
∂S

(S′(Dv)Dv′ − p′I) : d⊗ n− (f · d)T · n.

Shape derivatives (v′, p′) satisfy the linearized problem:

div (v′ ⊗ v + v ⊗ v′)− div (S′(Dv)Dv′) +∇p′ + Cv′ = 0 in Ω,

div v′ = 0 in Ω,

v′ = −∂v

∂n
T · n on ∂Ω.

Remark: (v′, p′) depends implicitly on T. For this reason we introduce the
adjoint system.
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Proof Formal derivation of the results

Formal results: adjoint problem

Using the adjoint system we can eliminate the shape derivatives. Let
(w, s) be the solution to

−2(Dw)v − div (S′(Dv)>Dw) +∇s − Cw = 0 in Ω,

div w = 0 in Ω,

w = d on ∂Ω.

Then dJ satisfies:

dJ(Ω; T) = −
∫
∂S

[(
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)
:
∂v

∂n
⊗ n + f · d

]
T · n.
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Proof Well-posedness of the nonlinear and linearized problem

Well-posedness of the nonlinear problem

We can assume more general S, satisfying for r ∈ [2, 4):

C1(1 + |A|r−2)|B|2 ≤ S′(A) :: (B⊗ B) ≤ C2(1 + |A|r−2)|B|2,
|S′′(A)| ≤ C3(1 + |A|r−3) ∀0 6= A,B ∈ R2×2,

from which it follows:

S is strongly monotone;
D 7→ S(D) and D 7→ S′(D) is continuous from Lr to Lr−1 and Lr−2,
respectively.

div (v ⊗ v)− divS(Dv) +∇p + Cv = f in Ω, (3a)

div v = 0 in Ω, (3b)

v = g on ∂Ω. (3c)

Theorem (Kaplický, Málek, Stará, 1999)

Let Ω ∈ C2, f ∈ L2+δ(Ω) and ‖g‖3,2+δ,Ω be sufficiently small (for certain
δ > 0). Then (3) has a unique weak solution that satisfies v ∈W2,q(Ω),
q > 2.
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Proof Well-posedness of the nonlinear and linearized problem

Well-posedness of the linearized problem

div (b⊗ u + u⊗ b)− div (A∇u) +∇q = f in Ω, (4a)

div u = 0 in Ω, (4b)

u = 0 on ∂Ω (4c)

Theorem

Let A ∈ L∞(Ω,R24
) be symmetric positive definite, f ∈ L2(Ω), b ∈W1,2

0,div
and ‖∇b‖2 � C . Then (4) has a unique weak solution.

Smallness of b is required in the estimate of the convective term:∫
Ω

div (b⊗ u + u⊗ b) · u =

∫
Ω
∇b : u⊗ u ≤ ‖∇b‖2‖∇u‖2

2.
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Proof Existence of the material derivative

Transformation from Ωε to Ω

Denote
M := I + ε∇T>, g := detM, N := gM−1,

vε := N>(v̄ε ◦ yε), pε := p̄ε ◦ yε.

Then the new functions (vε, pε), defined in Ω, satisfy:

Problem for (vε, pε)

div (vε ⊗ vε)− N−1div (N>S(Dεvε)) +∇pε + Cvε = f + A1
ε in Ω,

div vε = 0 in Ω,

vε = g on ∂Ω.

Here Dεvε := g−1(N∇(N−>vε))sym, and A1
ε ∈W1,2

0,div (Ω)∗ is of order ε:

A1
ε = div (vε ⊗ vε)− N−1div (vε ⊗ N−>vε)

+ (C− gN−1CN−>)vε + gN−1(f ◦ yε)− f.
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Proof Existence of the material derivative

Uniform estimates and convergence of vε

Using the standard technique of the theory of Navier-Stokes equations we
get from the equation for vε:

{vε}ε>0 is bounded in W1,r
0,div (Ω),

{N−1div (N>S(Dεvε))}ε>0 is bounded in W1,r
0,div (Ω)∗.

Thus, there exists a weak limit v̄ of a subsequence of {vε} in the above
spaces. From strong monotonicity of S it follows:

Dvε → Dv strongly in Lr (Ω),

hence we can pass to the limit in the system for (vε, pε). Consequently
v̄ = v solves (3).
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v̄ = v solves (3).
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Proof Existence of the material derivative

System for the differences

Next we want to estimate the differences

(uε, qε) :=

(
vε − v

ε
,

pε − p

ε

)
.

System for differences (uε, qε)

div (vε ⊗ uε + uε ⊗ v)− N−1div

(
N>

S(Dεvε)− S(Dεv)

ε

)
+∇qε + Cuε =

1

ε
Aε in Ω,

div uε = 0 in Ω,

uε = 0 on ∂Ω.

Aε is defined by:

Aε = A1
ε + div S(Dv)− N−1div

(
N>S(Dεv)

)
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Proof Existence of the material derivative

Lipschitz estimates

Thanks to the regularity of v it holds:{
1

ε
Aε

}
ε>0

is bounded in W1,2
0,div (Ω)∗.

Using standard technique we get from the equation for uε:

{uε}ε>0 is bounded in W1,2
0,div (Ω),{

S(Dεvε)− S(Dεv)

ε

}
ε>0

is bounded in L
2r

3r−4 (Ω).
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Proof Existence of the material derivative

Convergence to the material derivative

Using strong convergence of Dvε and the Lipschitz estimates we have:

uε ⇀ ṽ,

1

ε
Aε ⇀ A′0 weakly in some sense,

where ṽ is a solution to the linearized problem:

div (ṽ ⊗ v + v ⊗ ṽ)− div (S′(Dv)Dṽ) +∇p̃ + Cṽ = A′0 in Ω,

div ṽ = 0 in Ω,

ṽ = 0 on ∂Ω.

This problem has for small ‖∇v‖2 a unique weak solution, we have
therefore proved the existence of the material and shape derivative of v.
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1

ε
Aε ⇀ A′0 weakly in some sense,
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Proof Differentiability of the functional J

Differentiability of the functional J

Volume representation of J(Ω) and J(Ωε):

J(Ω) =

∫
Ω

[(Cv − f) · ξ + (S(Dv)− v ⊗ v)] : ∇ξ.

J(Ωε) =

∫
Ω

[
g
(
N−1CN−>vε − N−1(f ◦ yε)

)
· ξ

+
(
N>S(Dεvε)− vε ⊗ (N−>vε)

)
: ∇(N−>ξ)

]
.
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Proof Differentiability of the functional J

Differentiability of the functional J

Using the derived convergence of vε, uε one can show that

J(Ωε)− J(Ω)

ε
→ dJ(Ω; T) = JD(ṽ) + JG (T),

where JD and JG are bounded linear functions of ṽ, resp. T. Since ṽ
depends continuously on the C2-norm of T,

T 7→ dJ(Ω; T)

is a bounded linear functional on C2(R2,R2). This justifies the formal
calculation of dJ.
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Numerical computation of shape gradient

Numerical computation of shape gradient of J

1 Computation of (v, p) and J
FEM, P2/P1 approximation on simplices
Linearization by Newton-Raphson method
Jacobian computed with help of automatic differentiation
J computed using volume representation

2 Computation of dJ: differences

Compute (v, p) and J(Ω)

For each node on ∂S : shift by δ in
the normal direction, on the new
domain compute (vε, pε), J(Ωε)

dJi ≈ J(Ωε)−J(Ω)
δ

3 Computation of dJ: sensitivity analysis
Compute (v, p)
Compute adjoint variables (w, s)
dJ ≈

(
S′(Dv)>Dw − sI

)
: ∂v
∂n ⊗ n + f · d
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Numerical computation of shape gradient

Comparison of methods for computing the shape gradient

Differences

+ easy implementation

+ easy parallelization

– computationally expensive: n + 1 nonlinear problems

– limited accuracy, sensitivity w.r.t. the choice of δ

Sensitivity analysis

+ efficient computation: 1 nonlinear and 1 linear problem

– difficult derivation of the formula and its proof

– possible discrepancy between continuous and approximate problem
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Numerical computation of shape gradient

Numerical computation of shape gradient

Flow around a cylinder

S(Dv) = µ0(1 + |Dv|2)
r−2

2 Dv, µ0 = 2× 10−3

C = 0

Inflow and outflow velocity given by the parabolic profile.

Velocity magnitude, r = 1.4.
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Numerical computation of shape gradient

Numerical computation of shape gradient

Adjoint velocity and pressure in the vicinity of the cylinder, r = 1.4.
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Numerical computation of shape gradient

Numerical computation of shape gradient

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

angle

r=1.6

differences sensitivity analysis

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-3 -2 -1  0  1  2  3

angle

r=1.8

differences sensitivity analysis

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

angle

r=2

differences sensitivity analysis

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

angle

r=3

differences sensitivity analysis

Comparison of the results (differences vs. sensitivity analysis).
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Numerical computation of shape gradient

Numerical computation of shape gradient
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Shape gradient of J around the cylinder.
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Numerical computation of shape gradient

Numerical computation of shape gradient

r=1.4 r=1.6

r=2 r=3
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Numerical computation of shape gradient

Thank you for attention!
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