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Introduction
Introduction

Goal: Sensitivity analysis of a functional which depends on the flow of
a non-Newtonian fluid.
Geometry: bounded domain Q := B\ S C R? containing an obstacle S.

We investigate the sensitivity of the drag functional
JQ) = [ (—pl+S)n-d, |d] =1,
as

with respect to smooth perturbations of the shape of S.
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Introduction
Flow equations

Fluid motion is described by the generalized Navier-Stokes equations:

div(v®v) —divS(Dv) + Vp+ Cv = f in Q, (1a)
divv =0 in Q, (1b)
v=g on 0%2. (1c)

Q  bounded domain in R?

S deviatoric part of Cauchy stress tensor

Dv  symmetric part of Vv

C  Coriolis force (constant skew-symmetric matrix)
g Dirichlet b.c., vanishing in the vicinity of S
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Introduction
Flow equations

Fluid motion is described by the generalized Navier-Stokes equations:

div(v®v) —divS(Dv) + Vp+ Cv = f in Q, (1a)
divv =0 in Q, (1b)
v=g on 0%2. (1c)

Q  bounded domain in R?

S deviatoric part of Cauchy stress tensor

Dv  symmetric part of Vv

C  Coriolis force (constant skew-symmetric matrix)

g Dirichlet b.c., vanishing in the vicinity of S
Constitutive law for the fluid:

S(Dv) = 2j0(1 + [Dv[?) Z°Dv, r € [2,4).
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Introduction
Shape derivative of a functional

Let {Q.}e~0 be a sequence of domains approaching Q. On Q. we consider
the problem

div (V. @ Vo) — divS(Dv.) + Vp. + Cu. = f v .,
divi. =0 in Q.
Vv.=g on 0%,

and the functional
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Introduction
Shape derivative of a functional

Let {Q.}e~0 be a sequence of domains approaching Q. On Q. we consider
the problem

div (V. @ Vo) — divS(Dv.) + Vp. + Cu. = f v .,
divi. =0 in Q.
Vv.=g on 0%,

and the functional

5Q) = /as (—p.I + S(D¥.))n - d.

Our aim is:
@ to show the existence of shape gradient of J:
o) = tim 28 = /@)
e—0 €

@ derive a formula to compute dJ.
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Introduction
Remarks on the shape sensitivity analysis

Why shape sensitivity analysis
@ numerical methods of shape optimization — gradient based
minimization, level-set method

@ stability of solutions with respect to geometry
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Introduction
Remarks on the shape sensitivity analysis

Why shape sensitivity analysis
@ numerical methods of shape optimization — gradient based
minimization, level-set method

@ stability of solutions with respect to geometry
Numerical methods of shape optimization

o discretize-then-differentiate
continuous problem — approximate problem — shape gradient

+ exact derivative of the approximate solution

o differentiate-then-discretize
continuous problem — shape gradient — approximation

+ independence of the approximation of the state problem
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Sensitivity analysis in shape optimization

Parameterization of the boundary perturbation S

Let T € C2(R?,R?) be a vector field vanishing in the vicinity of 9B. We
define the mapping
ye = x+eT(x),

describing the deviation of material points. For small € > 0 the map
x —y, is a diffemorphism of Q onto Q. = B\ S, where 5. =y_(S).
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Sensitivity analysis in shape optimization

Shape and material derivative of solutions

For differentiation of J we need the derivatives of solutions to (3) with
respect to shape.

For formal derivation of the formula for dJ one usually uses the shape
derivative

Ve — Vv

v := lim
e—0 IS

For the proof of existence of dJ the material derivative is useful.

. . Vzoy.—V
V.= I|m —_—
e—0 g

=v + (Vv)T.
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Sensitivity analysis in shape optimization

Shape and material derivative of solutions

For differentiation of J we need the derivatives of solutions to (3) with

respect to shape.
For formal derivation of the formula for dJ one usually uses the shape

derivative _
V. —V

v := lim
e—0 IS

For the proof of existence of dJ the material derivative is useful.
V.oy, —V

v:= |lim
e—0 g

=v + (Vv)T.

We will also need a modified material derivative

v = lim det(vya‘)vys_l(\_la ° y&) -V
e—0 £

i

which satisfies divv = 0.
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Sensitivity analysis in shape optimization

Calculus for the shape and material derivatives

Let f, f. be defined in Q and €2, respectively. Denote

f' = lim o= f, f:= lim m.
e—0 £ e—0 S
Then it holds:
d/fE :/f+/fd|vT
de Ja. l.=o Ja  Ja
:/f’+/ fT-n
Q 12,9}
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Sensitivity analysis in shape optimization

General theory of shape sensitivity analysis

@ under some assumptions, the shape gradient is a distribution
supported on the boundary

dJ(Q, T) = <G, T- I"I>35

@ linear elliptic problems are relatively easy to handle
@ nonlinear problems: non-trivial

o lipschitz estimates
o regularity
@ uniqueness
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Sensitivity analysis in shape optimization
Related results

Non-Newtonian fluids
e Slawig (2005): optimal control, stationary problem

e Wachsmuth and Roubitek (2010): optimal control, non-stationary
problem

e Abraham, Behr and Heinkenschloss (2005): numerical shape
optimization
Sensitivity analysis for Navier-Stokes and related systems
o Consiglieri, Netasova and Sokotowski (2010): N-S + Maxwell
@ Plotnikov and Sokotowski (2010): compressible N-S equations
General reference
o Sokotowski and Zolésio (1992)
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Existence of shape derivative of J
Main result

Theorem

Let f € WH2(B), ||f||l2 + ||gll3.26 < C. Then the shape gradient of J
exists and satisfies:

AR T) = —/

[(S/(DV)TDW _ 511) AP d} Ton,
aS

on

where (w, s) is the solution of the linearized adjoint problem

—2(Dw)v — div(S'(Dv) "'Dw) + Vs — Cw = 0 in €,
divw =0 in €,
w=d on 0f.
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Main steps of the proof

@ formal derivation of the result

@ well-posedness of the nonlinear and linearized problem
© existence of the material derivative of weak solutions
Q differentiability of J
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Proof Formal derivation of the results

Formal results: distributed representation of the functional

Let £ € (55, (B) satisfy £ 55 = d. Applying the Green theorem we get:

5(Q) = /8 (50— p)é - = /Q div ((S(Dv) — pI)¢)
— [ v - p)-€+ [ sOu): Ve (@)
Q Q
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Proof Formal derivation of the results

Formal results: distributed representation of the functional

Let £ € (55, (B) satisfy £ 55 = d. Applying the Green theorem we get:

5(Q) = /8 (50— p)é - = /Q div ((S(Dv) — pI)¢)
— [ v - p)-€+ [ sOu): Ve (@)
Q Q

First term on the right of (2) can be rewritten using (3);:

/div(S(]Dv)—p]I)-{:/(div(v®v)+(Cv—f)-§
Q Q

_—/Qv®v:V£+/Q((Cv—f)'£7
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Proof Formal derivation of the results

Formal results: distributed representation of the functional

Let £ € (55, (B) satisfy £ 55 = d. Applying the Green theorem we get:

5(Q) = /8 (50— p)é - = /Q div ((S(Dv) — pI)¢)
— [ v - p)-€+ [ sOu): Ve (@)
Q Q

First term on the right of (2) can be rewritten using (3);:

/div(S(]Dv)—p]I)-{:/(div(v®v)+(Cv—f)-§
Q Q

_—/Qv®v:V£+/Q((Cv—f)'£7

which together with (2) yields:

J(Q):/Q[((Cv—f)-ﬁJr(S(ID)v)—v®v):Vﬁ].
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Proof Formal derivation of the results

Formal results: shape gradient of J

Applying the rules for differentiation with respect to shape we get:

dJ(;T) = Z—i

= / (S'(Dv)DV' — pT) :d@n — (f-d)T - n.
e=0 as
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Proof Formal derivation of the results

Formal results: shape gradient of J

Applying the rules for differentiation with respect to shape we get:

dJ(;T) = Z—i

= / (S'(Dv)DV' — pT) :d@n — (f-d)T - n.
e=0 as

Shape derivatives (V/, p’) satisfy the linearized problem:

div(v' @ v+ v@v') —div(S(Dv)Dv') + Vp' + Cv' = 0 in Q,
divv' =0 in €,
v = —@T -n on 0R.
on

J. Stebel (IM AS CR & TUL) Sensitivity analysis for non-Newtonian fluids SNA’12 15 / 33



Proof Formal derivation of the results

Formal results: shape gradient of J

Applying the rules for differentiation with respect to shape we get:

dJ(;T) = Z—i

= / (S'(Dv)DV' — pT) :d@n — (f-d)T - n.
e=0 as

Shape derivatives (V/, p’) satisfy the linearized problem:

div(v' @ v+ v@v') —div(S(Dv)Dv') + Vp' + Cv' = 0 in Q,
divv' =0 in €,
v = —@T -n on 0R.
on

Remark: (v/, p’) depends implicitly on T. For this reason we introduce the
adjoint system.
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Proof Formal derivation of the results

Formal results: adjoint problem

Using the adjoint system we can eliminate the shape derivatives. Let
(w, s) be the solution to

—2(Dw)v — div (S'(Dv) 'Dw) + Vs — Cw = 0 in Q,
divw =0 in Q,
w=d on 0f).
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Proof Formal derivation of the results

Formal results: adjoint problem

Using the adjoint system we can eliminate the shape derivatives. Let
(w, s) be the solution to

—2(Dw)v — div (S'(Dv) 'Dw) + Vs — Cw = 0 in Q,
divw =0 in Q,
w=d on 0f).

Then dJ satisfies:

dJ(Q;T) = —/

oS

ov
/ T _ .20 X .
[(S (Dv)  Dw s]I> - ®n+f d} T -n.

SNA’12
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Proof Well-posedness of the nonlinear and linearized problem

Well-posedness of the nonlinear problem

We can assume more general S, satisfying for r € [2,4):
G(1+A"7?)[BI <S'(A) : (B B) < G(1+|A[?)[B[%,
S"(A) < G(1+ |A]"®) VO #A,BeR>?
from which it follows:
@ S is strongly monotone;

o D+ S(D) and D + S/(D) is continuous from L™ to L"~! and L2,
respectively.
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Proof Well-posedness of the nonlinear and linearized problem

Well-posedness of the nonlinear problem

div(vev) —divS(Dv) + Vp+ Cv =f in €, (3a)
divv =0 in €, (3b)
v=g on 0f2. (3¢)

Theorem (Kaplicky, Mélek, Stara, 1999)

Let Qe C? fe L2+‘5(Q) and ||g||3,2+5.0 be sufficiently small (for certain
§>0). Then (3) has a unique weak solution that satisfies v € W>9(Q),
qg> 2.
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Proof Well-posedness of the nonlinear and linearized problem

Well-posedness of the linearized problem

div(b®u+u®b)—div(AVu)+Vg=f in Q, (4a)
divu=20 in Q, (4b)
u=0 on 0Q  (4c)

Let A € L(Q,R?") be symmetric positive definite, f € [2(Q), b € W%,
and ||Vbl|2 < C. Then (4) has a unique weak solution.
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Proof Well-posedness of the nonlinear and linearized problem

Well-posedness of the linearized problem

div(b®u+u®b)—div(AVu)+Vg=f in Q, (4a)
divu=20 in Q, (4b)
u=0 on 0Q  (4c)

Let A € L(Q,R?") be symmetric positive definite, f € [2(Q), b € W%,
and ||Vbl|2 < C. Then (4) has a unique weak solution.

Smallness of b is required in the estimate of the convective term:

/div(b®u+u®b)-u:/Vb:u®u§ VbVl
Q Q
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Proof Existence of the material derivative

Transformation from €. to 2

Denote
M:=1+4eVT', g:=detM, N:=gM™,

Ve i= NT(‘_’s °Y:), Pe:=Pp:0Y,.
Then the new functions (v, p:), defined in €, satisfy:
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Proof Existence of the material derivative

Transformation from €. to 2

Denote
M:=1+4eVT', g:=detM, N:=gM™,

Ve i= NT(\_IE °Y:), Pe:=Pp:0Y,.
Then the new functions (v, p:), defined in €, satisfy:

Problem for (v, p:)

div (ve ® v.) — N~ 1div (NTS(D.v.)) + Vp. + Cv. = f + Al in Q,
divv. =0 in Q,
Ve =8 on 09).
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Proof Existence of the material derivative

Transformation from €. to 2

Denote
M:=1+4eVT', g:=detM, N:=gM™,

Ve i= NT(\_IE °Y:), Pe:=Pp:0Y,.
Then the new functions (v, p:), defined in €, satisfy:

Problem for (v, p:)

div (ve ® v.) — N~ 1div (NTS(D.v.)) + Vp. + Cv. = f + Al in Q,
divv. =0 in Q,
Ve =8 on 09).

Here D.v. := g *(NV(N~Tv.))sym, and Al € W(l)’iiv(Q)* is of order e:

Al = div(v. ®v.) — N 1div (v. ® N~ Tv,)
+(C—gNICN"")v. 4+ gN"(foy,) —f.
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Proof Existence of the material derivative

Uniform estimates and convergence of v,

Using the standard technique of the theory of Navier-Stokes equations we
get from the equation for v.:

{Ve}eso is bounded in Wyl (Q),

{N~1div (N"S(D.ve))}eso is bounded in Wg'h, (Q)*.
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Proof Existence of the material derivative

Uniform estimates and convergence of v,

Using the standard technique of the theory of Navier-Stokes equations we
get from the equation for v.:

{Ve}eso is bounded in Wyl (Q),

{N~1div (N"S(D.ve))}eso is bounded in Wg'h, (Q)*.

Thus, there exists a weak limit v of a subsequence of {v.} in the above
spaces.

J. Stebel (IM AS CR & TUL) Sensitivity analysis for non-Newtonian fluids SNA’12 20 / 33



Proof Existence of the material derivative

Uniform estimates and convergence of v,

Using the standard technique of the theory of Navier-Stokes equations we
get from the equation for v.:

{Ve}eso is bounded in Wyl (Q),

{N~1div (N"S(D.ve))}eso is bounded in Wg'h, (Q)*.

Thus, there exists a weak limit v of a subsequence of {v.} in the above
spaces. From strong monotonicity of S it follows:

Dv. — Dv strongly in L"(Q),
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Proof Existence of the material derivative

Uniform estimates and convergence of v,

Using the standard technique of the theory of Navier-Stokes equations we
get from the equation for v.:

{Ve}eso is bounded in Wyl (Q),

{N~1div (N"S(D.ve))}eso is bounded in Wg'h, (Q)*.

Thus, there exists a weak limit v of a subsequence of {v.} in the above
spaces. From strong monotonicity of S it follows:

Dv. — Dv strongly in L"(Q),

hence we can pass to the limit in the system for (v., p:). Consequently
V = v solves (3).
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Proof Existence of the material derivative

System for the differences

Next we want to estimate the differences

Ve —V p.—p
(u€7q€) :_< 86 I : )

3
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Proof Existence of the material derivative

System for the differences

Next we want to estimate the differences

V. —V —
(ug,qa):—(a P ”).

9 S

System for differences (u,,

div (v. ® u. + u, ®v) — N"div (NT S(D-v.) - S(DE"))

1
+Vg. + Cu, = EAE in Q,

divu. =0 in Q,
u- =0 on 0f).
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Proof

System for the differences

Existence of the material derivative

System for differences (ue, g:)

div (Vs ®uU: +u: ® v) — N ldiv (NT S(sts) 6— S(DEV)>
1
+Vq5 + (Cua = gA6
divu. =0
u: = 0

in Q,
in Q,
on 0f).

A. is defined by:

A. = Al + divS(Dv) — N~1div (NTS(]I))gv)) .

J. Stebel (IM AS CR & TUL)
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Proof Existence of the material derivative

Lipschitz estimates

Thanks to the regularity of v it holds:

1
{Ag} is bounded in W72, (Q)*.
€ e>0 7
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Proof Existence of the material derivative

Lipschitz estimates

Thanks to the regularity of v it holds:
1 . . 1,2 *
—-A. is bounded in Wy, (Q2)*.
€ e>0 7

Using standard technique we get from the equation for u:

{uc}e>0 is bounded in Wéfﬁv(Q),

{S(sts) -

- S(DEV)} is bounded in L%(Q)'

e>0

J. Stebel (IM AS CR & TUL) Sensitivity analysis for non-Newtonian fluids
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Proof Existence of the material derivative

Convergence to the material derivative

Using strong convergence of Dv. and the Lipschitz estimates we have:

u. — Vv,

1 .
—A. — Aj weakly in some sense,

SNA’12

Sensitivity analysis for non-Newtonian fluids
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Proof Existence of the material derivative

Convergence to the material derivative

Using strong convergence of Dv. and the Lipschitz estimates we have:
u. — v,
gAa — A weakly in some sense,
where V is a solution to the linearized problem:
div(V®@ v + v ®v) — div(S'(Dv)DV) + Vp + Cu = Aj in Q,

in Q,

divve =0
=0 on 0Q.

<2

J. Stebel (IM AS CR & TUL)
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Proof Existence of the material derivative

Convergence to the material derivative

Using strong convergence of Dv. and the Lipschitz estimates we have:

u. — Vv,

1 .
—A. — Aj weakly in some sense,

where V is a solution to the linearized problem:

div(V®@ v + v ®v) — div(S'(Dv)DV) + Vp + Cu = Aj in Q,
dive =0 in Q,
v=20 on 0Q.

This problem has for small |[Vv||2 a unique weak solution, we have
therefore proved the existence of the material and shape derivative of v.

SNA’12 23 /33
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Proof Differentiability of the functional J

Differentiability of the functional J

Volume representation of J(2) and J(.):

5(Q) = /Q [(Cv— ) - € + (S(Dv) — v @ v)] : VE.

J(Q) = /Q [g (I\I‘1<CN—T\/E ~N"(fo ya)) &

+ (NTS(Deve) ~ve @ (N Tve)) V(N T
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Proof Differentiability of the functional J

Differentiability of the functional J

Using the derived convergence of v, u. one can show that

) - 4Q)

- dJ(;T) = Jp(V) + Jg(T),

where Jp and Jg are bounded linear functions of v, resp. T. Since v
depends continuously on the C2-norm of T,

T dJ(T)

is a bounded linear functional on C?(R?,R?). This justifies the formal
calculation of dJ.
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Numerical computation of shape gradient
Numerical computation of shape gradient of J

© Computation of (v, p) and J

FEM, P2/P1 approximation on simplices

Linearization by Newton-Raphson method

Jacobian computed with help of automatic differentiation
J computed using volume representation
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Numerical computation of shape gradient
Numerical computation of shape gradient of J

© Computation of (v, p) and J

FEM, P2/P1 approximation on simplices

Linearization by Newton-Raphson method

Jacobian computed with help of automatic differentiation
J computed using volume representation

@ Computation of dJ: differences

o Compute (v, p) and J(Q)

e For each node on 9S: shift by § in X‘
the normal direction, on the new S
domain compute (v, p:), J(€:) °

o dJi ~ J(Qs)é—J(Q)
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Numerical computation of shape gradient
Numerical computation of shape gradient of J

© Computation of (v, p) and J

FEM, P2/P1 approximation on simplices

Linearization by Newton-Raphson method

Jacobian computed with help of automatic differentiation
J computed using volume representation

@ Computation of dJ: differences

o Compute (v, p) and J(Q)

o For each node on 9S: shift by ¢ in X‘
the normal direction, on the new S
domain compute (v, p:), J(€:) °

o dJi ~ J(Qs)é—J(Q)

© Computation of dJ: sensitivity analysis
e Compute (v, p)
o Compute adjoint variables (w, s)
o dJ~ (S'(Dv) 'Dw —sl) : X @n+f-d
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Numerical computation of shape gradient

Comparison of methods for computing the shape gradient

Differences
+ easy implementation
+ easy parallelization
— computationally expensive: n -+ 1 nonlinear problems
— limited accuracy, sensitivity w.r.t. the choice of §
Sensitivity analysis
+ efficient computation: 1 nonlinear and 1 linear problem
— difficult derivation of the formula and its proof

— possible discrepancy between continuous and approximate problem
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Numerical computation of shape gradient

Numerical computation of shape gradient

Flow around a cylinder
S(Dv) = po(1 + |]D)v\2)r;22]Dv, po=2x10"3

C=0

Inflow and outflow velocity given by the parabolic profile.

Velocity magnitude, r = 1.4.
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Numerical computation of shape gradient

Numerical computation of shape gradient

Adjoint velocity and pressure in the vicinity of the cylinder, r = 1.4.
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Numerical computation of shape gradient

Numerical computation of shape gradient

-
a0 / ]
N

02 Lt . . .
3 2 2 3
angle
differences sensitivity analysis differences sensitivity analysis
=2 =3
1 T T T T T T 1 T T T T T T
8\ \
08| / \ 4 08| 4
[ [\
06 [ / \ ‘ \ 4 06 - \ 4

.
o

02 L L L L L L 02 L L L L L L L

differences

differences

sensitivity analysis sensitivity analysis

Comparison of the results (differences vs. sensitivity analysis).

. Stebel (IM AS CR & TUL) itivity analysis for non-Newtonian fluids SNA’12



Numerical computation of shape gradient

Numerical computation of shape gradient

angle

r=1.4

r=1.6 r=2 r=3

Shape gradient of J around the cylinder.
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Numerical computation of shape gradient
Numerical computation of shape gradient
r=1.4 r=1.6
A= N T >
r=2 r=3
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Numerical computation of shape gradient

Thank you for attention!
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