
Integer factoring and modular square roots

Emil Jeřábek∗

Institute of Mathematics of the Academy of Sciences

Žitná 25, 115 67 Praha 1, Czech Republic, email: jerabek@math.cas.cz

August 24, 2012

Abstract

Buresh-Oppenheim proved that the NP search problem to find nontrivial factors of
integers of a special form belongs to Papadimitriou’s class PPA, and is probabilisti-
cally reducible to a problem in PPP. In this paper, we use ideas from bounded arith-
metic to extend these results to arbitrary integers. We show that general integer factor-
ing is reducible in randomized polynomial time to a PPA problem and to the problem
WeakPigeon ∈ PPP. Both reductions can be derandomized under the assumption of
the generalized Riemann hypothesis. We also show (unconditionally) that PPA contains
some related problems, such as square root computation modulo n, and finding quadratic
nonresidues modulo n.

1 Introduction

Integer factoring is one of the best-known problems in complexity theory which is in NP,
but is not known to be polynomial-time computable. In particular, the assumed hardness
of factoring has various applications in cryptography. Papadimitriou [13] introduced several
classes of search problems based on parity arguments and related combinatorial principles.
He showed that many natural search problems from diverse areas of mathematics belong to
one of these classes, and he posed as an open problem whether the same holds for integer
factoring.

The first step to answer Papadimitriou’s question was undertaken by Buresh-Oppen-
heim [6]. He proved that factoring of “good” integers (odd integers n such that −1 is not
a quadratic residue modulo n) such that n ≡ 1 (4) belongs to the search class PPA, and
factoring of good integers is probabilistically poly-time reducible to a PPP problem. (Note
that an odd integer is good iff it has a prime divisor p ≡ −1 (4).)

The purpose of this paper is to exhibit similar reductions for factoring of arbitrary integers.
We show that factoring is probabilistically poly-time reducible to a PPA problem, as well as

∗Supported by grant IAA100190902 of GA AV ČR, Center of Excellence CE-ITI under the grant

P202/12/G061 of GA ČR, and RVO: 67985840. Part of the research was done while visiting the Isaac Newton

Institute in Cambridge.

1

to WeakPigeon, which is a PPP problem. (A similar probabilistic reduction of factoring
to PPP was also independently found by Buresh-Oppenheim [5].) We isolate a convenient
intermediate problem, which we call FacRoot: given integers n and a such that the Jacobi
symbol (a|n) = 1, find either a proper divisor of n, or a square root of a modulo n. It is not
hard to show that factoring is probabilistically poly-time reducible to FacRoot.

The main technical ingredient of our work is to demonstrate that FacRoot ∈ PPA.
The high-level idea of the proof comes from bounded arithmetic. Jeřábek [11] introduced an
arithmetical theory S1

2 + Count2(PV) related to PPA, and established that this theory can
prove the quadratic reciprocity theorem and other properties of the Jacobi symbol, which
together imply the soundness of the usual poly-time algorithm for the Jacobi symbol. In
particular, S1

2 + Count2(PV) proves the totality of FacRoot, and then an application of
a garden-variety witnessing theorem yields FacRoot ∈ PPA. However, since this paper is
intended for a general computational complexity audience, we include a self-contained direct
proof of this result, we do not assume any prior knowledge (or posterior, for that matter) of
bounded arithmetic on the part of the reader.

All probabilistic reductions in this paper can be derandomized if we assume the generalized
Riemann hypothesis (GRH). In particular, GRH implies that factoring is in PPA ∩ PPP
(and moreover, it is poly-time reducible to WeakPigeon). We also show unconditionally
that several problems concerning quadratic residues have deterministic Turing reductions to
FacRoot, and as such are in PPA: for one, given n and a, we can find either a square root
of a modulo n, or a suitable witness that a is a quadratic nonresidue. For another, given an
odd n which is not a perfect square, we can find an a such that (a|n) = −1 (in particular, a

is a quadratic nonresidue modulo n).
The paper is organized as follows. In Section 2, we review basic concepts used in the paper

to fix the notation. Section 3 presents our main results, except for the somewhat complex
proof of FacRoot ∈ PPA, which is given separately in Section 4. Some concluding remarks
follow in Section 5.

2 Preliminaries

An NP search problem is given by a poly-time computable relation R(x, y) such that R(x, y)
implies ‖y‖ ≤ ‖x‖c for some constant c, the problem is to find a y satisfying R(x, y) given x.
(We use ‖x‖ to denote the length of x; most of our algorithms work with integers, and we
reserve |x| for the absolute value of x. We also warn the reader that we will often call our
binary integers n, we will not use the convention that n implicitly denotes the length of the
input.) For brevity, we may use R to denote the search problem itself. A search problem R

is total if for every x there exists a y such that R(x, y). Unless indicated otherwise, all search
problems below will be assumed to be total NP search problems.

We will often specify NP search problems in the form “given an x such that P (x), find
a y satisfying R(x, y)”, where P is a poly-time condition. In order to make it formally a total
search problem, this formulation will be understood to denote the problem associated with
the relation (¬P (x) ∧ y = 0) ∨ (P (x) ∧R(x, y)).

2

A search problem R is many-one reducible to a search problem S, written as R ≤m S,
if there are poly-time functions f, g such that S(f(x), y) implies R(x, g(x, y)). R is Turing-
reducible to S, written as R ≤T S, if there exists a poly-time oracle Turing machine M (where
the oracle returns strings rather than yes/no answers) such that on input x, M computes a y

solving R(x, y) whenever all answers of the oracle are correct solutions of S. The class of all
search problems R such that R ≤T S will be denoted FPS . If C is a class of search problems,
we write R ≤m C if R ≤m S for some S ∈ C, and similarly for R ≤T C, FPC , as well as other
reduction notions mentioned below.

Let a circuit C : 2n → 2n (here, 2 = {0, 1}) encode an undirected graph G = 〈V,E〉,
where V = 2n r {0n}, and {u, v} ∈ E iff u, v ∈ V , u 6= v, C(u) = v, and C(v) = u. Notice
that G is a partial matching. Lonely is the following search problem: given C, find u ∈ V

unmatched by G. The class PPA (for “polynomial parity argument”) consists of all search
problems many-one reducible to Lonely. (This is not Papadimitriou’s definition of PPA, it
comes from [3], where it is shown to be equivalent to the original one.) By abuse of notation,
we will also use Lonely to denote the following variant of the problem. Let f(a, x), g(a) be
poly-time functions such that for every a, g(a) is an odd natural number, and the function
fa(x) := f(a, x) is an involution (i.e., fa(fa(x)) = x) on the integer interval [0, g(a)). Then
the problem is, given a to find an x < g(a) which is a fixpoint of fa (i.e., fa(x) = x). We will
often use the fact that PPA is closed under Turing reductions:

Theorem 2.1 (Buss and Johnson [8]) FPPPA = PPA. �

The class PPP (for “polynomial pigeonhole principle”) consists of problems many-one
reducible to Pigeon, which is the following problem: given a circuit C : 2n → 2n, find either
a pair u 6= v such that C(u) = C(v), or a u such that C(u) = 0n. If p(n) is any polynomial
such that p(n) > n for every n, let WeakPigeon2p(n)

2n denote the following problem: given
a circuit C : 2p(n) → 2n, find u 6= v such that C(u) = C(v). We define WeakPigeon :=
WeakPigeon2n+1

2n ; the choice of n + 1 here does not matter:

Lemma 2.2 For any polynomial p as above, WeakPigeon ≡m WeakPigeon2p(n)

2n .

Proof: Given a circuit C(~x, u) : 2n×2→ 2n, we put m = p(n)−n, and we construct a circuit
D : 2n×2m → 2n by D(~x, u0, . . . , um−1) = C(· · · (C(C(~x), u0), u1) . . . , um−1). Given 〈~x, ~u〉 6=
〈~x′, ~u′〉 such that D(~x, ~u) = D(~x′, ~u′), we find the largest i < m such that 〈~y, ui〉 6= 〈~y′, u′i〉,
where ~y(′) = C(· · · (C(C(~x(′)), u(′)

0), u(′)
1) . . . , u

(′)
i−1). Then C(~y, ui) = C(~y′, u′i). �

The class of all search problems many-one reducible to WeakPigeon does not seem to have
an established name in the literature, although it clearly deserves one. In analogy with PPP,
we can call it PWPP for “polynomial weak pigeonhole principle”. Note that neither PPP
nor PWPP is known to be closed under Turing reductions. The proof of Lemma 2.2 also
implies that problems of the following kind belong to PWPP; we will denote them all as
WeakPigeon by abuse of notation. Let ε > 0 be a constant, and f, g poly-time function
such that for any a, g(a) > 0, and fa(x) := f(a, x) maps the interval

[
0, d(1 + ε)g(a)e

)
into[

0, g(a)
)
. Then the problem is, given a, to find u < v < d(1+ε)g(a)e such that fa(u) = fa(v).

3

Apart from ≤m and ≤T , we will also need randomized reductions. We will use several dif-
ferent versions to be able to state our results precisely; the definitions below are not standard,
but we believe they are quite natural.

For any constant 0 < ε < 1, we say that R is probabilistically many-one reducible to S

with error ε, written as R ≤RP,ε
m S, if there is a polynomial p and poly-time functions f(x, r)

and g(x, r, y) such that for every x,

Pr‖r‖=p(‖x‖)[∀y [S(f(x, r), y)⇒ R(x, g(x, r, y))]] ≥ 1− ε.

We say that R is probabilistically many-one reducible to S with controlled error, written
as R ≤RP

m S, if there is a polynomial p and poly-time functions f(x, 1k, r) and g(x, 1k, r, y)
such that for every x and k,

Pr‖r‖=p(‖x‖,k)[∀y [S(f(x, 1k, r), y)⇒ R(x, g(x, 1k, r, y))]] ≥ 1− 2−k.

R is probabilistically Turing-reducible to S, written as R ≤RP
T S, if there exists a polynomial p

and a poly-time oracle Turing machine M such that

Pr‖r‖=p(‖x‖)[every sound run of M(x, r) solves R(x, y)] ≥ 1/2,

where a run is sound if all oracle answers are correct solutions of S. Note that the constant 1/2
here is arbitrary, as we can decrease the error from any constant ε > 0 to any other constant
(or to controlled error as above) in the usual way: we can check solutions of R, hence we
can run the machine several times with independent choices of r, and return the first correct
solution to the search problem. We denote by TFRPS the class of all R such that R ≤RP

T S.
We observe that we can split a randomized Turing reduction as a randomized many-one
reduction followed by a deterministic Turing reduction; this is particularly useful when S is
from a Turing-closed class such as PPA.

Lemma 2.3 TFRPS ≤RP
m FPS.

Proof: Let T be the following search problem: given x and r, find a sound run of MS(x, r).
It is easy to see that T is a total NP search problem, and R ≤RP

m T ≤T S. �

Lemma 2.4 TFRPTFRPS
= TFRPS.

Proof: In view of Lemma 2.3 and the obvious transitivity of ≤RP
m , it suffices to show that

TFRPS is closed under deterministic Turing reductions. Let thus T ∈ TFRPS , and MT be a
poly-time oracle machine solving R(x, y). Since answers of the oracle have polynomial length,
the total number of sound runs of M on input x is bounded by 2‖x‖

c
for some constant c.

Using the above-mentioned amplification of success rate, we can find a randomized poly-time
machine NS solving T with error 2−‖x‖

c+1
. If we then use N to answer M ’s oracle queries while

reusing the same pool of random bits for every call, all but a fraction of 2‖x‖
c
2−‖x‖

c+1 � 1 of
the random choices will be good for every possible run of the combined machine. �

4

A many-one reduction of R to S is supposed to construct a valid instance of S from whose
solution it can recover a solution to the original problem. In the case of ≤RP

m , the reduction
algorithm succeeds in doing this only with some bounded probability. It will be also useful to
consider stronger notions of reduction where we can check before consulting the oracle whether
the particular choice of random bits leads to the desired result. The reduction function may
abandon the computation with some bounded probability, but if it does not, then any valid
solution of S gives a solution of R. Alternatively, we could repeat the computation until we
find a “good” instance of S, and only then pass the query to the oracle; in this way, the
reduction always succeeds, but only its expected running time is polynomial.

Formally, R is probabilistically zero-error many-one reducible to S, written as R ≤ZPP
m S,

if there is a polynomial p, poly-time functions f(x, r) and g(x, r, y), and a poly-time predicate
h(x, r), such that

(i) Pr‖r‖=p(‖x‖)[h(x, r)] ≥ 1/2,

(ii) if h(x, r) and S(f(x, r), y), then R(x, g(x, r, y)).

Similarly, R is probabilistically zero-error Turing-reducible to S, written as R ≤ZPP
T S, if there

is a polynomial p, a poly-time predicate h(x, r), and a poly-time oracle Turing machine M ,
such that (i), and if h(x, r), then every sound run of MS(x, r) solves R(x, y). Again, the
constant 1/2 is arbitrary, we can amplify the success rate from any constant ε > 0 to 1− 2−k

(even for many-one reductions). Let TFZPPS denote the class of all problems R such that
R ≤ZPP

T S. Note that if there is no oracle, TFZPP = TFRP.
Factoring is the following search problem: given a composite integer n, find a nontrivial

divisor of n. We define FullFac to be the following problem: given an integer n > 0, find
a sequence 〈pi : i < k〉 of primes such that n =

∏
i<k pi (here and below, the empty product

is defined to be 1). Note that Factoring and FullFac are total NP search problems as
primality testing is poly-time (Agrawal, Kayal, and Saxena [1]). Clearly, Factoring ≤m

FullFac ≤T Factoring.
We will denote the divisibility relation by d | n, modular congruences by a ≡ b (n), and

greatest common divisors by (a, b). An integer a is a quadratic residue modulo n if a ≡ b2

(n) for some b. The Legendre symbol is defined for any integer a and an odd prime p by

(
a

p

)
=

0 p | a,

1 p - a and a is a quadratic residue mod p,

−1 p - a and a is a quadratic nonresidue mod p.

More generally, the Jacobi symbol is defined for any odd n > 0 by(
a

n

)
=

∏
i<k

(
a

pi

)
,

where n =
∏

i<k pi is the prime factorization of n. We will also write (a|n) instead of
(

a
n

)
for

typographical convenience. A Dirichlet character of modulus n is a group homomorphism
χ : (Z/nZ)∗ → C∗. A character is principal if it only assumes the value 1, and real if it takes

5

r ← 1
while a 6= 0 do:

if a < 0 then:
a← −a

r ← −r if n ≡ −1 (4)
while a is even do:

a← a/2
r ← −r if n ≡ ±3 (8)

swap a and n

r ← −r if a ≡ n ≡ −1 (4)
reduce a modulo n so that |a| < n/2

if n > 1 then output 0 else output r

Figure 1: An algorithm for the Jacobi symbol (a|n)

values in {1,−1}. Characters can be lifted to mappings Z → C by putting χ(a) = 0 when
(a, n) 6= 1. Note that for any odd positive n, χn(x) = (x|n) is a real character of modulus n

(in particular, (a|n)(b|n) = (ab|n)), and it is principal iff n is a perfect square. The characters
χn are called quadratic. The quadratic reciprocity theorem states that for any coprime odd
n, m > 0, (

n

m

)(
m

n

)
=

{
−1 if n ≡ m ≡ −1 (4)

1 otherwise.

Together with the supplementary laws(
−1
n

)
=

{
1 n ≡ 1 (4)

−1 n ≡ −1 (4)

(
2
n

)
=

{
1 n ≡ ±1 (8)

−1 n ≡ ±3 (8)

it implies that the Jacobi symbol is poly-time computable (see Figure 1).
The generalized Riemann hypothesis1 (GRH) states that for every Dirichlet character χ,

all zeros of its associated L-function L(χ, s) with 0 < Re(s) < 1 have in fact Re(s) = 1/2.
Let GRHq denote the the special case of GRH for quadratic characters χ. We will use the
following result of Bach [2].

Theorem 2.5 Assume GRHq . If χ is a nonprincipal quadratic character with modulus n,
there exists 0 < a < 2(lnn)2 such that χ(a) 6= 1. �

1Also called the extended Riemann hypothesis (ERH). The nomenclature of various extensions of RH

varies wildly in the literature. We chose to denote the RH for Dirichlet L-functions by GRH as this name

seems to be more specific, whereas ERH is often used for other generalizations of RH , such as the RH for

Dedekind ζ-functions, or L-functions of Hecke characters.

6

3 Search complexity of factoring

In this section, we are going to describe our main result (Theorem 3.7) on the relation-
ship of factoring to the classes PPA and PPP (PWPP). Rather than working directly with
Factoring, it will be convenient to consider other related problems.

Definition 3.1 Let FacRoot denote the following problem: given an odd integer n > 0 and
an integer a such that (a|n) = 1, find either a nontrivial divisor of n, or a square root of a

modulo n.
We also give names to some special cases of FacRoot. FacRootMul denotes the prob-

lem, given odd n > 0 and integers a and b, to find a nontrivial divisor of n or a square root
of one of a, b, or ab modulo n.

WeakFacRoot is the following problem: given an odd n > 0 and a, b such that (a|n) = 1
and (b|n) = −1, find a nontrivial divisor of n, or a square root of a modulo n.

We start with basic dependencies between these problems.

Lemma 3.2

(i) WeakFacRoot ≤m FacRootMul ≤m FacRoot,

(ii) WeakFacRoot ≤m Factoring.

Proof: (i): WeakFacRoot is a special case of FacRootMul, since (a|n) = 1 and (b|n) =
−1 imply that neither b nor ab is a quadratic residue modulo n. Given an instance of
FacRootMul, the multiplicativity of the Jacobi symbol implies that (x|n) = 1 for some
x ∈ {a, b, ab}. We can choose such an x as the Jacobi symbol is poly-time computable, and
then we pass it to FacRoot.

(ii): If n is prime, we can compute a square root of a modulo n in polynomial time
using the Shanks–Tonelli algorithm. This algorithm is deterministic if we provide it with a
quadratic nonresidue, which we can: b. If n is composite, we pass it to Factoring. �

Lemma 3.3

(i) FacRoot ≤ZPP
m WeakFacRoot,

(ii) Factoring ≤RP,1/2
m FacRoot,

(iii) Factoring ≤RP,1/2
m WeakFacRoot.

Proof: (i): If n is a perfect square, we can return
√

n as its nontrivial divisor (unless it is 1,
in which case we can return 0 as the square root of a). Otherwise χn is a nonprincipal real
character, hence with probability at least 1/2, a randomly chosen 0 < b < n either shares a
factor with n (in which case we can return (n, b) as a nontrivial divisor) or satisfies (b|n) = −1,
and we can pass it to WeakFacRoot.

(ii): If n is even or a perfect power, we can factor it directly, hence we may assume n is
odd and it has k ≥ 2 distinct prime divisors. We consider the following reduction. We choose

7

a random 0 < a < n. If (a, n) 6= 1, we can return it as a nontrivial divisor of n, otherwise we
pass n, a to a FacRoot oracle.

Since χn is a nonprincipal real character, we have (a|n) = 1 for a half of all residues
from (Z/nZ)∗. On the other hand, if n =

∏
i<k pei

i , where the pi are distinct primes, then a

coprime to n is a quadratic residue modulo n iff (a|pi) = 1 for every i < k. Using the Chinese
remainder theorem, a fraction 2−k of (Z/nZ)∗ are quadratic residues. Thus, with probability
at least 1/2− 2−k ≥ 1/4, the chosen a either shares a factor with n, or it satisfies (a|n) = 1
while not being a quadratic residue, hence the FacRoot oracle must give us a factor of n.

We can amplify the success probability to 1/2 by observing that residues a such that
(a|n) = 1 are poly-time samplable. We assume w.l.o.g. that n is not a perfect square. The
reduction works as follows. We choose random 0 < a, b < n. If (n, a) 6= 1 or (n, b) 6= 1, we
can factorize n. Otherwise, we let c be the first residue from the list a, b, ab which satisfies
(c|n) = 1, and we call FacRoot(n, c). It is easy to see that the induced distribution of c is
the uniform distribution over {c < n : (c|n) = 1}, hence conditioned on (a, n) = (b, n) = 1,
c is a quadratic nonresidue with probability 1− 21−k ≥ 1/2.

(iii): FacRoot ≤RP
m WeakFacRoot by (i) and amplification of the success rate of ≤ZPP

m ,
hence Factoring ≤RP,1/2+ε

m WeakFacRoot for any ε > 0 by (ii). We can get rid of the ε by
observing that the proof of (ii) actually shows Factoring ≤RP,1/2−1/

√
n

m FacRoot, taking
into account residues that share a factor with n. We can reduce the error of the ≤ZPP

m

reduction in (i) to 1/
√

n, hence Factoring ≤RP,1/2
m WeakFacRoot. �

We remark that there is another well-known randomized reduction of factoring to square
root computation modulo n by Rabin [14]. Adapted to our situation, the basic idea is that
we choose a random 1 < a < n, and if coprime to n, we pass n, a2 to the FacRoot oracle.
If the oracle were implemented as a (deterministic or randomized) algorithm, we would have
a 1/2 chance that the root b of a2 returned by the oracle satisfies a 6≡ ±b (n), allowing us to
factor n. However, this does not work in general. According to the definition of search problem
reduction, the reduction function must be able to cope with any valid answer to the oracle
query, there is no implied guarantee that the oracle answers are computed independently of
the environment. In particular, we may assume the oracle is devious enough to always return
the root b = a we already know.

What we need now is to show that FacRoot or some of its variants belongs to PPA and
PWPP.

Theorem 3.4 FacRoot ∈ PPA.

We will prove Theorem 3.4 in the next section, as the argument is a bit involved.
For the pigeonhole principle, we have the following reduction, whose idea comes from the

proof of the multiplicativity of the Legendre symbol in I∆0 +WPHP(∆0) by Berarducci and
Intrigila [4].

Theorem 3.5 FacRootMul ∈ PWPP.

Proof: Assume we are given an odd n > 1, and integers a, b. If a or b shares a factor with n, we
can return (n, a) or (n, b), resp., as a nontrivial divisor of n, we thus assume both are coprime

8

to n. Consider the following poly-time function f : {0, 1, 2} × [1, (n− 1)/2]→ [1, n− 1]:

f(i, x) =

{
aix

2 mod n if (n, x) = 1,

x otherwise,

where a0 = 1, a1 = a, a2 = b. Since the domain of f is 3/2 times larger than its range, we
can use WeakPigeon to find a collision f(i, x) = f(j, y), 〈i, x〉 6= 〈j, y〉. We may assume
(n, x) = (n, y) = 1, as otherwise we can factor n. If i = j, then x2 ≡ y2 (n), but x 6≡ ±y (n),
hence (n, x − y) is a nontrivial divisor of n. If i < j, then aja

−1
i ≡ (xy−1)2 (n) (where the

inverses are also modulo n), hence xy−1 is a square root of a, b, or ba−1 modulo n. In the
last case, axy−1 is a square root of ab. �

We mention that essentially the same reduction of Factoring to WeakPigeon by means
of FacRootMul was used in a different context in [10, Thms. 4.1–2], and a similar reduction
was independently discovered by Buresh-Oppenheim [5].

While we do not know whether PWPP is closed under general Turing reductions, the next
lemma shows that it is closed under nonadaptive Turing reductions.

Lemma 3.6 The following problem, denoted WeakPigeon‖, is in PWPP: given a sequence
〈Ci : i < m〉 of circuits Ci : 2ni+1 → 2ni, find sequences 〈ui : i < m〉 and 〈vi : i < m〉 such
that ui, vi ∈ 2ni, ui 6= vi, and Ci(ui) = Ci(vi) for each i < m.

Proof: Put n = maxi ni. We can pad each Ci to n output bits by considering the circuit
C ′

i : 2n−ni × 2ni+1 → 2n−ni × 2ni defined by C ′
i(x, u) = 〈x,Ci(u)〉, hence we may assume

n = ni without loss of generality. By Lemma 2.2, we can amplify each Ci to a circuit
Di : 2mn+1 → 2n, and we define a circuit D : 2mn+1 → (2n)m by D(u) = 〈Di(u) : i < m〉.
Using a call to WeakPigeon, we find u 6= v such that D(u) = D(v). Then Di(u) = Di(v)
for each i, and we can compute ui 6= vi such that Ci(ui) = Ci(vi). �

We obtain the main result of this paper by putting everything together:

Theorem 3.7

(i) Factoring,FullFac ≤RP
m PPA,

(ii) Factoring ≤RP
m PWPP ⊆ PPP and FullFac ≤RP

m FPPWPP ⊆ FPPPP.

Proof: (i): FullFac is in TFRPFacRoot by Lemmas 3.3 and 2.4, hence in TFRPPPA by The-
orem 3.4. This implies FullFac ≤RP

m FPPPA = PPA by Lemma 2.3 and Theorem 2.1.
(ii): We have Factoring ≤RP,1/2

m PWPP by Lemma 3.3 and Theorem 3.5. Given k

in unary, we can reduce the error to 2−k with k parallel calls to a WeakPigeon oracle,
which implies Factoring ≤RP

m WeakPigeon‖ ∈ PWPP by Lemma 3.6. As in (i), we have
FullFac ≤RP

T PWPP, hence FullFac ≤RP
m FPPWPP by Lemma 2.3. �

It would be desirable to derandomize the results in Theorem 3.7. We are only able to do it
under an extra assumption.

9

Theorem 3.8 Assume GRHq .

(i) Factoring ≡m FacRoot ≡m WeakFacRoot ≡m FacRootMul,

(ii) Factoring,FullFac ∈ PPA,

(iii) Factoring ∈ PWPP, FullFac ∈ FPPWPP.

Proof: It suffices to derandomize the reductions in Lemma 3.3 (i,ii). For FacRoot ≤m

WeakFacRoot, note that Theorem 2.5 guarantees that we can find a suitable b < 2(lnn)2 =
O(‖n‖2).

For Factoring ≤m FacRoot, it suffices to show that for any odd n which is not a prime
power, there exists an 0 < a < (lnn)O(1) such that either (a, n) > 1, or (a|n) = 1 and a is a
quadratic nonresidue modulo n; the latter means that (a|p) = −1 for some prime p | n.

We can assume that (a, n) = 1 for every 0 < a < 2(lnn)2, otherwise we are done. Let
p be a prime divisor of n such that, if possible, the exponent of p in the prime factorization
of n is even, so that n/p is not a perfect square. Then χn/p is a nonprincipal quadratic
character, and there is 0 < u < 2(ln(n/p))2 such that (u|n/p) = −1 by Theorem 2.5. This
implies (u|n) = −(u|p). If (u|n) = 1, we can take a = u. Otherwise, we have (u|n) = −1 and
(u|p) = 1. Since χp is also a nonprincipal quadratic character, there is 0 < v < 2(ln p)2 such
that (v|p) = −1. If (v|n) = 1, we can take a = v, otherwise we take a = uv. Either way,
a < 4(ln p)2(ln(n/p))2 < 1

4(lnn)4. �

We can use FacRoot with constant a to obtain special cases of factoring that are uncon-
ditionally in deterministic PPA, see Example 4.6. In fact, we can factor n as long as there
exists a quadratic nonresidue a = (log n)O(1) such that (a|n) = 1. We can express this more
perspicuously as follows.

Definition 3.9 Let s > 0. An integer n is s-strongly composite, if we can write n = n0n1 so
that neither n0 nor n1 is a quadratic residue modulo s.

Notice that an odd integer is 4good in the sense of [6] iff it is 4-strongly composite.

Theorem 3.10 For any constant c, the following problem is in PPA: given an n > 0 which
is s-strongly composite for s = b(log n)cc!, find a nontrivial divisor of n.

Proof: We can assume w.l.o.g. that n is coprime to b(log n)cc! (hence odd). It suffices to
show that there exists an a with |a| ≤ (log n)2c such that (a|n0) = (a|n1) = −1. Since ni is a
quadratic nonresidue modulo s, it is also a quadratic nonresidue modulo si, where si = 8, or
si is an odd prime divisor of s, i.e., si ≤ (log n)c.

Assume first that both n0, n1 are quadratic nonresidues modulo s0. If s0 is odd, we put
a = s∗0 := (−1)(s0−1)/2s0. Then (a|ni) = (ni|s0) = −1 by quadratic reciprocity. If s0 = 8, i.e.,
n0, n1 6≡ 1 (8), we choose m ∈ {3, 5, 7} such that m 6≡ n0, n1 (8), and we put

a =

−2 m = 3,

−1 m = 5,

2 m = 7.

10

Then (a|n0) = (a|n1) = −1.
If both n0, n1 are quadratic nonresidues modulo s1, we proceed similarly.
Assume that ni is a quadratic residue modulo s1−i for i = 0, 1. Put

ai =

s∗i si is odd,

−1 si = 8, ni ≡ 3, 7 (8),

2 si = 8, ni ≡ 5 (8),

and a = a0a1. Then (ai|ni) = −1 and (a1−i|ni) = 1, hence (a|ni) = −1. �

Conversely, one can show that if a is a quadratic nonresidue such that (a|n) = 1, then n is
s-strongly composite for any s divisible by 4a.

In Theorem 3.10, we do not need s to have the exact form given there: it is only essential
that the prime factorization of s is known.

It is not clear whether one can fully unconditionally derandomize Theorem 3.7. While
no deterministic polynomial-time algorithm to find quadratic nonresidues is known without
GRH , in PPA we can do better:

Lemma 3.11 The following problem is in FPFacRoot ⊆ PPA: given an odd n > 1, find an a

such that (a|n) = −1, or a nontrivial divisor of n.

Proof: Consider the following algorithm. Put a = −1. While (a|n) = 1, repeat the following
steps: call the FacRoot oracle, if it provides a factor of n, we are done, otherwise we replace
a with its square root modulo n.

The algorithm must halt within log2 n iterations: if a is a 2kth root of −1, its order in
(Z/nZ)∗ is 2k+1 < n. �

Notice that, conversely, FacRoot is Turing-reducible to WeakFacRoot together with the
problem from Lemma 3.11.

In fact, FacRoot does the dual job of factoring and computing square roots. In Theo-
rem 3.7 we have exploited its factoring capacity by supplying it with quadratic nonresidues,
but we can also use it the other way round to obtain algorithms for finding square roots and
quadratic nonresidues modulo arbitrary integers. We start with the latter.

Theorem 3.12 The following problem is in FPFacRoot ⊆ PPA: given an odd n which is not
a perfect square, find an a such that (a|n) = −1.

Proof: The algorithm maintains a sequence 〈ni : i < k〉 of integers ni > 1 such that n =∏
i<k ni, and a sequence 〈ai : i < k〉, where some of the ai may be undefined, but if ai is

defined, then (ai|ni) = −1. We initialize it with k = 1, n0 = n, a0 undefined, and we repeat
in arbitrary order the following steps until neither is applicable any more:

• If ni 6= nj are such that (ni, nj) > 1, we delete ni, nj from the sequence and replace
them with (ni, nj) (two copies), ni/(ni, nj), and nj/(ni, nj), omitting those equal to 1
(this can happen only for one of the four numbers, hence the length of the sequence
always increases). The ai entries corresponding to the new numbers are undefined.

11

• If ai is undefined, we call as an oracle the search problem from Lemma 3.11 on ni. If
it returns a nontrivial divisor of ni, we expand the nj sequence as in the previous step.
Otherwise, it provides a value for ai.

Since k ≤ log n, the algorithm must halt in O(‖n‖) steps. When it does, all ai are defined,
and the ni entries are pairwise equal or coprime, hence we can write n =

∏
i∈I nei

i for some
I ⊆ {0, . . . , k − 1} and ei > 0, where ni, i ∈ I, are pairwise coprime. Since n is not a perfect
square, we can pick i ∈ I such that ei is odd. By the Chinese remainder theorem, we can
compute an a such that a ≡ ai (nei

i) and a ≡ 1 (n/nei
i). Then(

a

n

)
=

∏
j∈I

(
a

nj

)ej

= (−1)ei = −1. �

Corollary 3.13 The following problem is in FPFacRoot ⊆ PPA: given n > 2, find an a

coprime to n which is a quadratic nonresidue modulo n.

Proof: If n is a power of 2, we can return 3. Otherwise, we can write n = 2em2k
, where m

is odd and not a perfect square. By Theorem 3.12, we can find a such that (a|m) = −1. By
adding m to a if necessary, we can make sure a is odd, hence (n, a) = 1. Since a is a quadratic
nonresidue modulo m | n, it is also a nonresidue modulo n. �

Another problem we are going to reduce to FacRoot is the computation of square roots
modulo n. A priori it is not clear how to formulate it as a total NP search problem, as the
quadratic residuosity problem is neither known nor assumed to be poly-time decidable. We
can remedy this by requiring the search problem to find something sensible also for quadratic
nonresidues.

Definition 3.14 Let n be a positive integer. If (a, n) = 1, a divisor m | n is a coprime
nonsquare witness for a modulo n if

• m is odd and
(

a
m

)
= −1, or

• m = 4 and a ≡ 3 (4), or

• m = 8 and a ≡ 5 (8).

If a is an arbitrary integer, an m is a nonsquare witness for a modulo n, if m is not a perfect
square, m is odd or 2, and there are e, b, and j < e such that me | n, a = mjb, (m, b) = 1, and
if j is even, m (if odd) or 4 or 8 (if m = 2) is a coprime nonsquare witness for b modulo me−j .

It is easy to see that the property of being a nonsquare witness is poly-time decidable.
Let Root denote the following search problem: given n > 0 and a, find either a square

root of a modulo n, or a nonsquare witness for a modulo n.

Lemma 3.15 If there exists a nonsquare witness for a modulo n, then a is a quadratic
nonresidue modulo n.

12

Proof: If m is a coprime nonsquare witness for a, then a is a quadratic nonresidue modulo m,
and a fortiori modulo n.

Let m be a nonsquare witness for a, and let e, b, and j be as in Definition 3.14. Assume
for contradiction a ≡ (uc)2 (n), where (m, c) = 1, and u | mk for some k. We have mj | (uc)2,
hence mj | u2. Moreover, if we write u2 = mjv, then b ≡ vc2 (me−j), hence (m, v) = 1, i.e.,
v = 1 and mj = u2. Since m is not a perfect square, this implies j is even. However, b ≡ c2

(me−j) contradicts the fact that b has a coprime nonsquare witness modulo me−j . �

Notice that Root is a generalization of FacRoot: a nonsquare witness for a modulo n is a
nontrivial divisor of n, unless n is odd and (a|n) = −1.

Theorem 3.16 Root ∈ FPFacRoot ⊆ PPA.

Proof: Write n = 2em with m odd. In the first stage of our algorithm, we keep a sequence
〈ni : i < k〉 of integers ni > 1 such that m =

∏
i<k ni, and a sequence of integers 〈ui : i < k〉

where some ui may be undefined. We maintain the property that whenever ui is defined, we
can write a = nji

i ai for some ji so that (ai, ni) = 1, and we have ai ≡ u2
i (ni). We start

with k = 1, n0 = m and u0 undefined, and we repeat the following steps until none of them
applicable any more:

• If ni 6= nj are such that (ni, nj) > 1, we delete ni, nj from the sequence and replace them
with two copies of (ni, nj), ni/(ni, nj), and nj/(ni, nj) as in the proof of Theorem 3.12.

• If ni is a perfect square, we replace ni with two copies of
√

ni.

• If a = nji
i ai where ni - ai, but (ni, ai) > 1, we replace ni with (ni, ai) and ni/(ni, ai).

• If a = nji
i ai where (ai|ni) = 1, but ui is undefined, we call a FacRoot oracle on ni, ai.

If it returns a nontrivial divisor d | ni, we replace ni with d and ni/d. Otherwise, it
returns a square root of ai modulo ni, which we store as ui.

This stage terminates after O(‖n‖) steps. When it does, we can write m =
∏

i∈I nei
i for some

ei > 0, I ⊆ {0, . . . , k − 1}, where ni, i ∈ I, are pairwise coprime, none of them is a perfect
square, and we have a = nji

i ai for some ji and (ai, ni) = 1. For each i, we try to compute a
square root zi of a modulo nei

i as follows:

• If ji ≥ ei, we put zi = 0.

• If ji < ei, and ji is odd or (ai|ni) = −1, we return ni as a nonsquare witness for a.

• If ji < ei is even and (ai|ni) = 1, then ui is defined, and u2
i ≡ ai (ni). We put

zi = n
ji/2
i vi, where v2

i ≡ ai (nei
i) is computed using Hensel’s lifting, which is an iteration

of the following procedure: if we have u such that u2 ≡ ai (nc
i), we compute w ≡ (2u)−1

(nc
i), and we put u′ = (u2 + ai)w. Then u′2 ≡ ai (n2c

i).

We also try to find a square root z of a modulo 2e. We write a = 2jb with b odd, and then:

• If j ≥ e, we put z = 0.

13

• If j < e, we return 2 as a nonsquare witness for a whenever one of the following cases
happens: j is odd, or e− j ≥ 2 and b ≡ 3 (4), or e− j ≥ 3 and b ≡ 5 (8).

• Otherwise, j < e is even, and 12 ≡ b (2min{e−j,3}). We put z = 2j/2v, where v2 ≡ b

(2e−j); if e−j > 3, we compute v using the following variant of Hensel’s lifting. If we have
u such that u2 ≡ b (2c), we compute w ≡ u−1 (2c−2), and we put u′ = ((u2 + b)/2)w.
Then u′2 ≡ b (22c−2).

Finally, using the Chinese remainder theorem, we compute x such that x ≡ z (2e) and x ≡ zi

(nei
i) for every i, then x2 ≡ a (n). �

4 FacRoot is in PPA

The purpose of this section is to prove Theorem 3.4. As already mentioned in the introduction,
the original idea of the proof comes from previous work of the author on the provability of
the quadratic reciprocity theorem in variants of bounded arithmetic, and in fact, FacRoot ∈
PPA is a simple corollary of these results. This connection is described in detail in Section 4.1.
In order to make this paper more self-contained, we give a direct combinatorial proof of
Theorem 3.4 in Section 4.2. Readers uncomfortable with bounded arithmetic may safely skip
straight there.

4.1 Bounded arithmetic

We assume familiarity with basic facts about subsystems of bounded arithmetic, in particular
Buss’ theory S1

2 . We refer the reader to [7, 12] for more background.
Jeřábek [11] introduced a theory S1

2 +Count2(PV), axiomatized over S1
2 by the following

principle: for every number a and circuit C, C does not define an involution on {0, . . . , 2a}
without fixpoints. Notice that the axiom is Σb

1, and the corresponding search problem is a
minor variant of Lonely.

Lemma 4.1 If S1
2 + Count2(PV) ` ∀x∃y ϕ(x, y), where ϕ ∈ Σb

1, then the search problem to
find a y satisfying ϕ(x, y) given x is in PPA.

Proof: By the assumption, S1
2 proves

∃a,C ∀u ≤ 2a (C(C(u)) = u 6= C(u) ≤ 2a) ∨ ∃y ϕ(x, y),

hence S1
2(h) proves its Herbrandization

∃a,C (h(a,C) ≤ 2a→ C(C(h(a,C))) = h(a,C) 6= C(h(a,C)) ≤ 2a) ∨ ∃y ϕ(x, y).

This is an ∃Σb
1(h) formula, hence using Parikh’s theorem and Buss’ witnessing theorem, there

exists a polynomial-time oracle function fh such that

(∗) ∃a,C (h(a,C) ≤ 2a→ C(C(h(a,C))) = h(a,C) 6= C(h(a,C)) ≤ 2a) ∨ ϕ(x, fh(x))

14

holds in N for any choice of h. Let us run f on an input x with an oracle solving the PPA-
problem corresponding to Count2 in place of h, and let y be its output. We may assume that
f never asks the same question more than once, hence the oracle answers in any particular
run can be extended to a function h which satisfies

h(a,C) ≤ 2a ∧ (C(C(h(a,C))) 6= h(a,C) ∨ h(a,C) = C(h(a,C)) ∨ C(h(a,C)) > 2a).

Then (∗) implies ϕ(x, y). Thus, the search problem associated to ϕ is in FPPPA = PPA using
Theorem 2.1. �

Let J(a, n) denote a PV -function formalizing the algorithm in Figure 1. As shown in [11],
S1

2 +Count2(PV) proves that J(a, n) agrees with the definition of the Jacobi symbol in terms
of factorization of n and quadratic residues. In particular, the theory proves that for prime n,
J(a, n) = 1 implies that a is a quadratic residue, which can be expressed as the following Σb

1

formula:

Theorem 4.2 (Jeřábek [11]) S1
2 + Count2(PV) proves

J(a, n) = 1→ ∃x (x2 ≡ a (n)) ∨ ∃u, v < n (uv = n). �

Theorem 3.4 readily follows.

4.2 Explicit algorithm

Before turning to FacRoot proper, we will describe PPA algorithms for some of its special
cases which we will need as ingredients in the main construction.

We introduce some notation for conciseness. If n is a fixed odd integer n > 1, we consider

N = {x : |x| < n/2, (n, x) = 1}

as a set of unique representatives of (Z/nZ)∗. We also write N+ = {x ∈ N : x > 0},
N− = {x ∈ N : x < 0}, N0 = N ∪ {0}, and similarly for N+

0 , N−
0 . We assume operations

on residues are computed modulo n with a result in N , so that, e.g., ab−1 ∈ N+ means that
a ≡ bx (n) for some x ∈ N+.

Lemma 4.3 There is a poly-time function f(n, a, x) such that for any odd n > 1 and an
integer a coprime to n, the function fn,a(x) = f(n, a, x) defines an involution on

{x ∈ N− : ax ∈ N−} ∪N+
0

whose fixpoints are of the form x−1, where

(i) x ∈ N+ r {1} and x2 = 1, or

(ii) x ∈ N− and x2 = a.

15

Proof: We define f ′n,a on {x ∈ N− : ax ∈ N−} ∪N+ by

f ′n,a(x) =

x−1 x, x−1 ∈ N+,

a−1x−1 ax, x−1 ∈ N−,

−x (x, ax ∈ N+ ∧ x−1 ∈ N−) ∨ (x, ax ∈ N− ∧ x−1 ∈ N+).

It is easy to see that the three conditions define a partition of {x ∈ N− : ax ∈ N−} ∪ N+,
and f ′n,a is an involution on each part. The fixpoints of f ′n,a in the first two parts have the
forms (i) (without the restriction x 6= 1) and (ii), respectively, and there are no fixpoints in
the third part. Finally, we put

fn,a(x) =

1 x = 0,

0 x = 1,

f ′n,a(x) x 6= 0, 1.

�

Definition 4.4 For any constant a, let FacRoota denote the following special case of
FacRoot: given an odd positive n such that (a|n) = 1, find either a nontrivial divisor
of n, or a square root of a modulo n.

Lemma 4.5 FacRoot−1 and FacRoot2 are in PPA.

Proof: Given n ≡ ±1 (8), observe that

{x ∈ N− : 2x ∈ N−} = N ∩ [−(n− 2± 1)/4,−1].

We define an involution r on [−(n− 2± 1)/4, (n− 1)/2] by

r(x) =

{
x x 6= 0, (x, n) 6= 1,

fn,2(x) otherwise.

The domain of r is an interval of size (3n± 1)/4, which is odd, hence we can use Lonely to
find a fixpoint x of r. Using Lemma 4.3, we see that either x−1 is a square root of 2, or it is
a square root of 1 distinct from ±1, or (x, n) 6= 1. In the last two cases, we can factorize n.

For FacRoot−1, we define similarly an involution on [0, (n− 1)/2] using fn,−1. �

Using a similar construction, it is possible to show FacRoota ∈ PPA for every constant a.
We skip the details, as we will not directly need this fact, and Theorem 3.4 is more general.
However, notice that FacRoot−1 ∈ PPA restates Buresh-Oppenheim’s original result, and
any constant a yields a similar special case of factoring:

Example 4.6 The following search problems are in PPA.
Given n ≡ ±1 (8) such that 2 is a quadratic nonresidue modulo n (i.e., n has a divisor

p ≡ ±3 (8)), find a nontrivial divisor of n.
Given n ≡ 1 (3) such that −3 is a quadratic nonresidue modulo n (i.e., n has a divisor

p ≡ 2 (3)), find a nontrivial divisor of n.

16

Lemma 4.7 FacRootMul (and thus WeakFacRoot) is in PPA.

Proof: Let n > 1 be odd, and a, b coprime to n. Define

g(x) =

〈0,−x〉 x ∈ N+

0 ,

〈1,−x〉 x, ax, b−1x ∈ N−,

〈2,−x〉 x, ax ∈ N−, b−1x ∈ N+.

Then g is a poly-time bijection from {x ∈ N− : ax ∈ N−} ∪N+
0 onto

A = ({0} ×N−
0) ∪ ({1} × {x : x, ax, b−1x ∈ N+})
∪ ({2} × {x ∈ N+ : ax ∈ N+, b−1x ∈ N−})

with a poly-time inverse. Similarly,

h(x) =

〈0, x〉 x ∈ N+,

〈1, x〉 x = 0 or x, b−1x, ax ∈ N−,

〈2, x〉 x, b−1x ∈ N−, ax ∈ N+

is a bijection from {x ∈ N− : b−1x ∈ N−} ∪N+
0 onto

B = ({0} ×N+) ∪ ({1} × ({0} ∪ {x : x, ax, b−1x ∈ N−}))
∪ ({2} × {x ∈ N− : ax ∈ N+, b−1x ∈ N−}),

x 7→ 〈2, bx〉 is a bijection from {x ∈ N− : abx ∈ N−} ∪N+
0 onto

C = {2} × ({0} ∪ {x : ax ∈ N− ∨ b−1x ∈ N+}),

and 〈1, x〉 7→ 〈1,−x〉 is a fixpoint-free involution on

D = {1} × {x ∈ N : x, ax, b−1x do not have the same sign}.

We can thus define a poly-time involution r on {0, 1, 2} × [−(n− 1)/2, (n− 1)/2] by

r(e, x) =

g(fn,a(g−1(e, x))) 〈e, x〉 ∈ A,

h(fn,b−1(h−1(e, x))) 〈e, x〉 ∈ B,

〈2, bfn,ab(b−1x)〉 〈e, x〉 ∈ C,

〈1,−x〉 〈e, x〉 ∈ D,

〈e, x〉 x 6= 0, (x, n) > 1.

Since 3n is odd, we can use Lonely to find a fixpoint 〈e, x〉 of r. We cannot have 〈e, x〉 ∈ D.
If x 6= 0, (x, n) > 1, we can factor n. If 〈e, x〉 ∈ A, then y := g−1(e, x) is a fixpoint of fn,a.
Thus, either y2 = 1, y 6= ±1, in which case we can factor n, or y−1 is a square root of a.
Similarly, if 〈e, x〉 ∈ B ∪ C, we can factor n, or compute a square root of b or ab. �

17

Lemma 4.7 is enough to prove our main result, Theorem 3.7. However, we will proceed
with the proof of Theorem 3.4, as we are interested in the possibility of unconditional de-
randomization of the reduction of factoring to PPA, and placing FacRoot in PPA can be
seen as a partial step towards that goal. Moreover, randomized versions of Theorems 3.12
and 3.16 would not be interesting.

Lemma 4.8 The following problems are in PPA.

(i) FacRootOdd: given an odd n > 0, a sequence 〈ai : i < k〉 of integers coprime to n

such that k is odd, and a square root x of
∏

i<k ai modulo n, find a nontrivial divisor
of n, or a square root of some ai modulo n.

(ii) FacRootEven: given an odd n > 0, and a sequence 〈ai : i < k〉 of integers coprime
to n such that k is even, find a nontrivial divisor of n, or a square root of

∏
i<k ai or

of some ai modulo n.

Proof: (i): Put I = {0, . . . , k − 1} and y = 1, and repeat the following steps. If I = {i},
return xy−1 as a square root of ai. If |I| > 1, pick i, j ∈ I, i 6= j, and call FacRootMul

on n, ai, aj . If it gives us a nontrivial divisor of n, or a square root of ai or aj , we return it.
Otherwise, it provides a square root z of aiaj . We multiply y by z, remove i, j from I, and
repeat the loop.

(ii): Put x = ak =
∏

i<k ai, and call FacRootOdd. �

Definition 4.9 QuadRec is the following problem: given odd coprime n, m > 0 such that
n ≡ 1 (4), and a square root a of n modulo m, find a nontrivial divisor of n or m, or a square
root of m modulo n.

Notice that QuadRec is a special case of FacRoot: the input data ensure (n|m) = 1,
hence (m|n) = 1 by quadratic reciprocity.

Lemma 4.10 QuadRec ∈ PPA.

Proof: We may assume n, m > 1 and a ∈ M−, so that b = a−1 ∈ M is a fixpoint of fm,n.
Put n2 = (n + 1)/2, m2 = (m + 1)/2. The function

g(x) =

{
〈x,m2〉 x ∈ N+

0 ,

〈−x, b−mx/nc〉 x,mx ∈ N−

is a poly-time bijection with poly-time inverse from {x ∈ N− : mx ∈ N−} ∪N+
0 onto

A =
(
N+

0 × {m2}
)
∪

{
〈x, y〉 ∈ N+

0 × [0,m2) : mx− ny ∈ N+
}
,

where mx− ny is not evaluated modulo n, but literally. Likewise,

h(y) =

{
〈n2, y〉 y ∈M+

0 ,

〈b−ny/mc,−y〉 y, ny ∈M−

18

is a bijection from {y ∈M− : ny ∈M−} ∪M+
0 onto

B =
(
{n2} ×M+

0

)
∪

{
〈x, y〉 ∈ [0, n2)×M+

0 : mx− ny ∈M−}
.

The function k(x, y) = 〈n2− 1− x,m2− 1− y〉 is a poly-time involution with no fixpoints on

C =
{
〈x, y〉 ∈ [0, n2)× [0,m2) : mx− ny ≥ n2 or mx− ny ≤ −m2

}
.

We define a poly-time involution r on ([0, n2]× [0,m2]) r {〈n2,m2〉} by

r(x, y) =

g(fn,m(g−1(x, y))) 〈x, y〉 ∈ A,

h(fm,n(h−1(x, y))) 〈x, y〉 ∈ B r {h(b)},
〈0, 0〉 〈x, y〉 = h(b),

h(b) x = y = 0,

k(x, y) 〈x, y〉 ∈ C,

〈x, y〉 otherwise.

Notice that if x ∈ [0, n2) and y ∈ [0,m2) are such that mx − ny = 0, then x = y = 0, as
(n, m) = 1. It follows that the last clause in the definition of r applies to elements of the set

D =
(
([1, n2) r N+)× {m2}

)
∪

(
{n2} × ([1,m2) r M+)

)
∪

{
〈x, y〉 ∈ [0, n2)× [0,m2) : mx− ny ∈ ([1, n2) r N+) ∪ ((−m2,−1] r M−)

}
.

The domain of r has odd size (n2 +1)(m2 +1)−1, hence using Lonely, we can find a fixpoint
〈x, y〉 of r. If 〈x, y〉 ∈ A, it gives us a square root of m modulo n, or a square root of 1 distinct
from ±1, in which case we can factorize n. If 〈x, y〉 ∈ B, we get a square root of n modulo m

distinct from ±a, or a square root of 1 distinct from ±1, and both cases give a factor of m.
If 〈x, y〉 ∈ D, (n, x) or (m, y) is a nontrivial divisor of n or m, respectively. �

We are ready now to prove Theorem 3.4. Assume we are given an odd n > 0, and an
integer a such that (a|n) = 1. We first compute the sequences 〈ai : i ≤ t〉, 〈ni : i ≤ t〉 of values
of a and n during the execution of the algorithm in Figure 1. That is, we put 〈a0, n0〉 = 〈a, n〉,
and then we define 〈ai, ni〉 by induction on i as follows. If |ai| > ni/2, we let ni+1 = ni, and
ai+1 ≡ ai (ni) such that |ai+1| < ni/2. If 0 < |ai| < ni/2, we define

〈ai+1, ni+1〉 =

〈−ai, ni〉 ai < 0,

〈ai/2, ni〉 ai > 0 is even,

〈ni, ai〉 ai > 0 is odd.

We stop when we reach at = 0. Since (a|n) = 1, we have (ai, ni) = 1 for each i, in particular
nt = 1. Notice that t = O(‖n‖). Write R = {i < t : ai is odd, 0 < ai < ni/2}.

In the main part of the algorithm, we maintain a double sequence 〈ni,j : i ≤ t, j < si〉 of
integers ni,j > 1 such that ni =

∏
j<si

ni,j , and ni,j ≤ ni,j′ for j < j′. Moreover, we maintain
sequences 〈ui,j : i ≤ k, j < si〉, 〈vi,j,k, wi,j,k : i ∈ R, j < si, k < si+1〉, where some of the

19

ui,j , vi,j,k, and wi,j,k may be undefined. Where they are defined, we have u2
i,j ≡ ai (ni,j),

v2
i,j,k ≡ ni+1,k (ni,j), and w2

i,j,k ≡ ni,j (ni+1,k), respectively.
We initialize the sequences with si = 1, ni,0 = ni for ni > 1, si = 0 for ni = 1, and all ui,j ,

vi,j,k, and wi,j,k undefined. We repeat in arbitrary order the following updating steps until
none of them is applicable any more.

• Assume ni = ni+1, ni,j 6= ni+1,k, and d = (ni,j , ni+1,k) > 1. If d 6= ni,j , we increase si,
replace ni,j with d and ni,j/d, and undefine all associated ui,j , vi−1,l,j , and wi−1,l,j . If
d 6= ni+1,k, we deal with it similarly. Notice that we cannot have ni,j = d = ni+1,k.

Moreover, if this step is not applicable, then ni = ni+1 implies that si = si+1 and
〈ni,j : j < si〉 and 〈ni+1,k : k < si+1〉 are permutations of each other, hence in view of
their monotonicity, we have ni,j = ni+1,j for each j.

• For i < t such that 〈ni,j : j < si〉 = 〈ni+1,k : k < si+1〉 (which implies ni = ni+1):

– If ai ≡ ai+1 (ni), and exactly one of ui,j , ui+1,j is defined, we define the other to
the same value.

– If ai = αai+1, α ∈ {−1, 2}, (α|ni,j) = −1, and neither ui,j nor ui+1,j is defined,
we call FacRootMul(ni,j , ai, ai+1). If it returns a nontrivial divisor of ni,j , we
expand the ni,j sequence as in the first step. Otherwise, it gives a square root of
ai or ai+1 modulo ni,j , which we store as ui,j or ui+1,j , respectively.

– If ai = αai+1, α ∈ {−1, 2}, (α|ni,j) = 1, and exactly one of ui,j or ui+1,j is defined,
we call FacRootα(ni,j). If it returns a nontrivial divisor of ni,j , we expand the
ni,j sequence. Otherwise, it gives β2 ≡ α (ni,j), and we define ui,j := βui+1,j or
ui+1,j := β−1ui,j , respectively.

• For i ∈ R:

– If ui,j is defined and |I| is odd, where I = {k < si+1 : vi,j,k is undefined}, we put
x = ui,j

∏
k/∈I v−1

i,j,k, and call FacRootOdd on ni,j , 〈ni+1,k : k ∈ I〉, x. If it returns
a factor of ni,j , we expand the ni,j sequence. Otherwise, it returns a square root
of some ni+1,k, k ∈ I, modulo ni,j , which we store as vi,j,k.

– If ui,j is undefined and |I| is even, where I is as above, we call FacRootEven

on ni,j , 〈ni+1,k : k ∈ I〉. If it returns a factor of ni,j , we expand the ni,j sequence.
If it returns a square root of some ni+1,k, k ∈ I, modulo ni,j , we store it as vi,j,k.
Otherwise, it returns a square root x of

∏
k∈I ni+1,k, and then we define ui,j =

x
∏

k/∈I vi,j,k.

– If ui+1,k is defined and |I| is odd, or ui+1,k is undefined and |I| is even, where
I = {j < si : wi,j,k is undefined}, we proceed in a similar way to expand the ni+1,k

sequence or to define some wi,j,k or ui+1,k.

– If ni,j ≡ −1 (4), (ni+1,k|ni,j) = 1, and vi,j,k is undefined, we call WeakFacRoot

on ni,j , ni+1,k,−1. If it returns a factor of ni,j , we expand the ni,j sequence,
otherwise it returns a square root of ni+1,k modulo ni,j , which we store as vi,j,k.

20

– If ni+1,k ≡ −1 (4), (ni,j |ni+1,k) = 1, and wi,j,k is undefined, we proceed similarly.

– If ni,j ≡ 1 (4), wi,j,k is defined, and vi,j,k is undefined, we call QuadRec on
ni,j , ni+1,k, wi,j,k. If it returns a factor of ni,j or ni+1,k, we expand the ni,j or ni+1,k

sequence (respectively), otherwise it returns a square root of ni+1,k modulo ni,j ,
which we store as vi,j,k.

– If ni+1,k ≡ 1 (4), vi,j,k is defined, and wi,j,k is undefined, we proceed similarly.

In each step, either
∑

i≤t si ≤ O(‖n‖2) strictly increases, or it stays the same, and we define
some previously undefined ui,j , vi,j,k, or wi,j,k. It follows that the update procedure stops
after ‖n‖O(1) steps.

Let us write [ai|ni,j] = 1 if ui,j is defined, and [ai|ni,j] = −1 otherwise. We define
[ni+1,k|ni,j] and [ni,j |ni+1,k] similarly using vi,j,k and wi,j,k, respectively. Notice that [ai|ni,j] =
1 implies (ai|ni,j) = 1, and likewise for [ni+1,k|ni,j], [ni,j |ni+1,k].

Lemma 4.11 When the update procedure stops, the following properties hold.

(i) If ni = ni+1, then si = si+1 and ni,j = ni+1,j.

(ii) If ni = ni+1 and ai ≡ ai+1 (ni), then [ai|ni,j] = [ai+1|ni+1,j].

(iii) If ni = ni+1 and ai = αai+1, α ∈ {−1, 2}, then[
ai+1

ni+1,j

]
=

(
α

ni,j

)[
ai

ni,j

]
.

(iv) If i ∈ R, then [
ai

ni,j

]
=

∏
k<si+1

[
ni+1,k

ni,j

]
,

[
ai+1

ni+1,k

]
=

∏
j<si

[
ni,j

ni+1,k

]
.

(v) If i ∈ R and ni,j ≡ ni+1,k ≡ −1 (4), then[
ni+1,k

ni,j

][
ni,j

ni+1,k

]
= −1.

(vi) If i ∈ R and ni,j ≡ 1 (4) or ni+1,k ≡ 1 (4), then[
ni+1,k

ni,j

][
ni,j

ni+1,k

]
= 1.

Proof: (i), (ii), and (iv) are clear.
(iii): The statement is clear if (α|ni,j) = 1. If (α|ni,j) = −1, the inapplicability of update

steps implies that [ai|ni,j] = 1 or [ai+1|ni+1,j] = 1. We cannot have both, since this would
imply (ai|ni,j) = (ai+1|ni,j) = 1, hence (α|ni,j) = 1.

(v): By quadratic reciprocity, exactly one of (ni+1,k|ni,j) = 1, (ni,j |ni+1,k) = 1 holds. The
inapplicability of update steps then implies that [ni+1,k|ni,j] = 1 or [ni,j |ni+1,k] = 1. We
cannot have both, as this would mean (ni+1,k|ni,j) = (ni,j |ni+1,k) = 1.

21

(vi): The statement is clear if ni,j ≡ ni+1,k ≡ 1 (4). Assume ni,j ≡ 1 (4) and ni+1,k ≡ −1
(4), the other case is symmetric. By the inapplicability of update steps, [ni,j |ni+1,k] = 1
implies [ni+1,k|ni,j] = 1. On the other hand, if [ni+1,k|ni,j] = 1, then (ni+1,k|ni,j) = 1, hence
(ni,j |ni+1,k) = 1 by quadratic reciprocity, thus [ni,j |ni+1,k] = 1 by the inapplicability of update
steps. �

Using Lemma 4.11, we can show ∏
j<si

[
ai

ni,j

]
=

(
ai

ni

)
by reverse induction on i. The induction step for i ∈ R goes as follows:∏

j<si

[
ai

ni,j

]
=

∏
j<si

k<si+1

[
ni+1,k

ni,j

]

=
∏
j<si

k<si+1

[
ni,j

ni+1,k

]
(−1)(ni,j−1)(ni+1,k−1)/4

= (−1)(ai+1−1)(ni+1−1)/4
∏

k<si+1

[
ai+1

ni+1,k

]

= (−1)(ai+1−1)(ni+1−1)/4

(
ai+1

ni+1

)
=

(
ni+1

ai+1

)
=

(
ai

ni

)
.

In particular, either s0 > 1, in which case n0,0 is a nontrivial divisor of n, or s0 = 1
and [a0|n0,0] = 1, where a0 = a and n0,0 = n, in which case u2

0,0 ≡ a (n). This completes the
proof of Theorem 3.4.

5 Conclusion

We have shown that integer factoring has randomized reductions to the classes PPA and PPP
(more precisely, PWPP). We also provided evidence that there in fact exist deterministic re-
ductions, namely this is true under the widely believed assumption of the generalized Riemann
hypothesis for quadratic Dirichlet characters.

Problem 5.1 Is Factoring in PPA, PPP, or FPPPP?

Some of our other results can be seen as partial indication that such an unconditional deter-
ministic reduction might be possible at least in the case of PPA. In particular, the fact that
FacRoot ∈ PPA bypasses the randomized reduction of WeakFacRoot to FacRoot, and
we have shown that PPA contains the search problems to find square roots modulo arbitrary
integers (which is probabilistically Turing-equivalent to factoring) and to find quadratic non-
residues (which is easily solvable in randomized polynomial time). Nevertheless, it remains
open whether Problem 5.1 can be resolved unconditionally.

22

Another interesting question is whether the methods used for the reduction of factoring
to PPA can be pushed down to the class PPAD ⊆ PPA. Note that many natural problems
are known to be complete for PPAD, such as computating Nash equilibria [9].

Problem 5.2 Does Factoring have some form of reduction to PPAD?

Acknowledgements

I would like to thank Josh Buresh-Oppenheim for a clarification of his work, and Rahul Savani
for a useful suggestion.

References

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, Annals of Math-
ematics 160 (2004), no. 2, pp. 781–793.

[2] Eric Bach, Explicit bounds for primality testing and related problems, Mathematics of
Computation 55 (1990), no. 191, pp. 355–380.

[3] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi, The
relative complexity of NP search problems, Journal of Computer and System Sciences 57
(1998), no. 1, pp. 3–19.

[4] Alessandro Berarducci and Benedetto Intrigila, Combinatorial principles in elementary
number theory, Annals of Pure and Applied Logic 55 (1991), no. 1, pp. 35–50.

[5] Joshua Buresh-Oppenheim, private communication.

[6] , On the TFNP complexity of factoring, unpublished note, http://

www.cs.toronto.edu/~bureshop/factor.pdf, 2006.

[7] Samuel R. Buss, First-order proof theory of arithmetic, in: Handbook of Proof Theory
(S. R. Buss, ed.), Studies in Logic and the Foundations of Mathematics vol. 137, Elsevier,
Amsterdam, 1998, pp. 79–147.

[8] Samuel R. Buss and Alan S. Johnson, Propositional proofs and reductions between NP
search problems, Annals of Pure and Applied Logic 163 (2012), no. 9, pp. 1163–1182.

[9] Xi Chen and Xiaotie Deng, Settling the complexity of two-player Nash equilibrium, in:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
2006, pp. 261–271.

[10] Emil Jeřábek, On independence of variants of the weak pigeonhole principle, Journal of
Logic and Computation 17 (2007), no. 3, pp. 587–604.

[11] , Abelian groups and quadratic residues in weak arithmetic, Mathematical
Logic Quarterly 56 (2010), no. 3, pp. 262–278.

23

[12] Jan Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory, Encyclo-
pedia of Mathematics and Its Applications vol. 60, Cambridge University Press, 1995.

[13] Christos H. Papadimitriou, On the complexity of the parity argument and other inefficient
proofs of existence, Journal of Computer and System Sciences 48 (1994), no. 3, pp. 498–
532.

[14] Michael O. Rabin, Digitalized signatures and public-key functions as intractable as fac-
torization, Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer Science,
1979.

24

