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NOTE ON FUNCTIONAL-DIFFERENTIAL EQUATIONS
WITH INITIAL FUNCTIONS OF BOUNDED VARIATION

MiLaN TvrDY, Praha

(Received January 10, 1974)

In this note we shall deal with the standard functional-differential equation of
retarded type

1) ﬂO:Ji@w@sﬂﬂr+$+f@ ac. on [a,b],
(2 x(1) =u(t) on [a—ra],

where —o0 < a < b < +oo and the initial functions u(f) are of bounded variation
on [a — r,a]. We assume that P(t, 9) is a Borel measurable in (t, ) € [a, b] x
X (—o0, +0) n x n-matrix function such that p(f) = var’ P(t, ) < oo for all
te[a, b] and

J;@&<m,

f(t) is an n-vector function Lebesgue integrable on [a, b] (f(¢) € Z,(a, b)). We shall
suppose also P(t, 9) = P(t, —r)for § < —rand P(t, 9) = P(t, 0) for § = 0. Without
any loss of generality we may suppose furthermore that P(¢, +) is right continuous
on (—r,0) and P(t,0) = 0 for all t€ [a, b].

Let #7 ,(a — r, a) denote the space of (column) n-vector functions with bounded
variation on [a — r, a]. #%,(a, b) is the space of n-vector functions which are

absolutely continuous on [a, b]. The introduced spaces are equipped with the
usual norms

ue BV (a—r a) > |u)s = ”u(a)” + var?_, u,

xed (@) [l = [x@)] +vars,

seeian) e = [l
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Proposition 1. There exists a unique n x n-matrix function Y(t, s) defined on
[a, b] x [a, b] and such that

() Y(t,s) = r= LY(t, o) P(o,s — g)do for a =

I for a<t<b, t<s=Zb,

A
IIA
o
Q
IIA
©w
IIA

where I is the identity n x n-matrix. Given t € [a, b], Y(t, *) is of bounded variation
on [a, b] and given s € [a, b], Y(+, s) is absolutely continuous on [a, b].
(F or the proof of a slightly modified assertion see J. K. HALE [2], Theorem 32,2.)
The following representation of solutions of the system (1), (2) is well known (cf.
H. T. Banks [1] or J. K. Hale [2], Theorems 16,1 and 32,2):

Proposition 2. Given u e .@V,,(a -, a), there exists a unique n-vector function
x() defined on [a — r, b] and absolutely continuous on [a, b] and such that (1)
and (2) hold. This function x(t) is on [a, b] given by

4 x = du + ¥Pf,
where
Q:ue BV, (a—r a)- Yt a)u(a) + J.'z I:ds-[ Y(t, 0) P(o, s — o) da} u(s) e
G ab),

t
¥ fe % (ab)— f ¥(t, 5) /(s) ds e £%,(a, b)
and Y(t, 5) is defined by Proposition 1.

The operators ®, ¥ in (4) are obviously linear arid bounded. The aim of this note
is to show that @ is even completely continuous. By Theorem 3,1 of ST. SCHWABIK [5]
it suffices to show that the function

5)  K(ts) = f Y(t, 0) (o, s — o) do, (t,5)e[a, b] x [a— r,a]

is of bounded two-dimensional variation (according to Vitali) on [a, b] x [a — 7, a]
(v(K) < o) and vari_, K(a, *) + vary K(+, a) < oo. Such functions are said to be of
strongly bounded variation on [a, b] x [a — r, a]. (For the definition and basic pro-
perties of functions of bounded two-dimensional variation see T. H. HILDEBRANDT [4].)

Lemma 1. The fundamental matrix solution Y(t,s) defined by Proposition 1
is of strongly bounded variation on [a, b] x [a, b].

Proof. Analogously to J. K. Hale in the proof of Theorem 32,2 in [2] we shall
introduce the function W(t, s) fulfilling the matrix Volterra integral equation

IIA

t
- P, s — t)—fW(t,o‘)P(a,s—-a)da fora<t<b as<s=<t,

W(t, s) =
0 fora<t<b t<s=<bh.
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The existence of such a function W(t, s) follows from the contraction mapping prin-
ciple. Moreover, given t € [a, b], the function W(t, -) is of bounded variation on
[a, b]. Now, let s,te[a, b], s <t and let {s =5, <s; <... <5, =1} be an
arbitrary subdivision of the interval [s, t]. Then

S IWes) = W) S 3 1Py = 0 = Plosey = 0] +
#5175y = o) = ple s = ) de
' J [W(t.0) P(o, 311 = o) da} < p() + 2Jf(var; W, -)) (o) do,

where p(t) = var®, P(t, +) for t € [a, b]. Gronwall’s inequality yields

©) [W(e, )] < var! W(t, -) < p(t) exp (2 J 'Wo) da> <

s

forallt, s €[a, b], t = s. Itis easy to verify (cf. [2], proof of Theorem 32,2) that for
allt, se[a, b]

Y(t,s) =1 + ftW(r, s) dr .

Furthermore, let v ={a =1, <t; <...<t,=b; a =5, <s <...<s, = b}
be an arbitrary net type subdivision of [a, b] x [a, b]. Then according to (6)

P 4
AA; LY = ; Z; HY(tj’ sk) - Y(tj—l’ Sk) - Y(tj’ Sk—l) + Y(tj—-la sk—1)” =

1

]
-

M~
TfM-a

j

>

Jj=1

II/\

M=

1

j Wz, 51) — W(s, se_1)) de

= L Y [ W(, ) — W(z, sy dr <

k=1

< Lvar; Wiz, +) de = Lp(f) cxp <2J.:p(a) da) de=M <.
Thus
W) =y 3

which completes the proof.

(IM-=

AN, YSEM < 0

Corollary 1. There exists M < oo such that for all‘ t,se[a, b]
||Y(t, s)“ + varb Y(t, *) + varb Y(+,5) + V(Y) £ M.

Lemma 2. The function K(t, s) defined by (5) is of strongly bounded variation
on [a, b] x [a — r, d].
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Proof.a)K(a, ") =0on[a — r,d].
b) Let {a =ty <t <..<t,=>b} be an arbitrary subdivision of [a, b].
Then by Corollary 1

J_m;HK(tj, & - Ky-na) =% (

t
f ’ Y(t;,0) P(o, a — ¢) do +
tj-1

# [0 o) = Yoo oo = a5 [nieyao <o,

Hence var} K(+, a) < oo.
¢) Given a net type subdivision {a =1, <t; <...<t,=b; a—r =5, <
<s; <...<s, =a}of [a,b] x [a — r, a], we have by Corollary 1
P q :
3 Y ”K(tj, si) — K(tj— 1, 5) — K(tj, s—y) + K(t;— g, si-q)|| =

1 k=1

fmm%@—nmbw@@%-ﬂ‘P@%*‘”””+

a

>

=1

<,

M=

1

=~

j

=

+ J‘tj Y(t;, 0) (P(o, s, — 0) — P(0, s~ - 0))do

b b
< J (varb Y(, 6) + sup.a s [Y(z, 0)|) var2, P(s, +) do < M'[ p(e)do < .

Consequently, v(K) < oo and this completes the proof of Lemma 2.
The following theorem is a direct consequence of Theorem 3,1 from [5] and of
Lemma 2.

Theorem. The Cauchy operator @ in the variation — of — constants formula (4)
is completely continuous.
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